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Abstract 

Virtual reality exposure therapy (VRET) is a novel intervention technique that allows individuals to experience anxiety-
evoking stimuli in a safe environment, recognise specific triggers and gradually increase their exposure to perceived 
threats. Public-speaking anxiety (PSA) is a prevalent form of social anxiety, characterised by stressful arousal and 
anxiety generated when presenting to an audience. In self-guided VRET, participants can gradually increase their 
tolerance to exposure and reduce anxiety-induced arousal and PSA over time. However, creating such a VR environ-
ment and determining physiological indices of anxiety-induced arousal or distress is an open challenge. Environment 
modelling, character creation and animation, psychological state determination and the use of machine learning (ML) 
models for anxiety or stress detection are equally important, and multi-disciplinary expertise is required. In this work, 
we have explored a series of ML models with publicly available data sets (using electroencephalogram and heart 
rate variability) to predict arousal states. If we can detect anxiety-induced arousal, we can trigger calming activities to 
allow individuals to cope with and overcome distress. Here, we discuss the means of effective selection of ML models 
and parameters in arousal detection. We propose a pipeline to overcome the model selection problem with different 
parameter settings in the context of virtual reality exposure therapy. This pipeline can be extended to other domains 
of interest where arousal detection is crucial. Finally, we have implemented a biofeedback framework for VRET where 
we successfully provided feedback as a form of heart rate and brain laterality index from our acquired multimodal 
data for psychological intervention to overcome anxiety.
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1 Introduction
Anxiety is an emotional state characterised by negative 
affect and worry, heightened arousal, careful environ-
mental monitoring, rumination and avoidance behaviour, 
ranging from mild to severe. Intense states of anxiety, or 
even fear—a more rudimentary physiological response to 
a perceived threat that can lead to fight/flight/freeze reac-
tions and panic behaviour—can be symptoms of different 
psychological disorders. For example, phobias are defined 
by an exaggerated fear or unrealistic sense of threat to a 
situation or object, which appear in many forms. In the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5, 2013) [1, 2], the American Psychiatric Associa-
tion defines five types of phobia, related to natural envi-
ronments (e.g., heights), animals (e.g., spiders), specific 
situations (e.g., public spaces), blood/injury or medical 
issues, and other types (e.g., loud noise, vomiting, chok-
ing). These debilitating disorders affect about 13% of the 
world’s total population. Research is ongoing for contrib-
uting factors to the onset, development, and maintenance 
of phobias and anxiety-related disorders, their underlying 
cognitive and behavioural processes, physical manifesta-
tion, and treatment methods [3]. Traditional treatments 
of such disorders include in vivo exposure, interoceptive 
exposure, cognitive behavioural therapy (CBT), applied 
muscle tension, supportive psychotherapy, hypnotherapy, 
and medications such as beta-blockers or sedatives [4].

Virtual reality exposure therapy (VRET) is one of the 
most promising novel treatments, enabled by its supe-
rior immersive capabilities that generate a greater sense 
of presence and enhance user effects, especially for nega-
tively valenced, high arousal stimuli [5]. Over the last two 
decades VRET, encompassing psychological treatment 
principles and enabled by advancing display and com-
puting technology developments, has become a popular 
digital intervention for various psychological disorders 
[6, 7], being as effective as in  vivo (i.e., face-to-face) 
exposure therapy post-intervention [8]. For example, a 
meta-analysis showed VRET for Social Anxiety Disor-
der (encompassing an exaggerated fear of being rejected, 
negatively evaluated or humiliated during social interac-
tions, observations and/or in performance situations) to 
be more effective than wait-list controls (with large effect 
sizes), and even therapist-led in  vivo exposure therapy 
(though only small effect size) [6]. It shows good accept-
ability in users due to its safe, controlled and empower-
ing means of exposure. The state-of-the-art development 
clearly lacks one key development; there is no attempt of 
real-time biofeedback for VRET intervention. A vital part 
of our development of VRET is the integration of bio-
signals, such as heart rate variability or cortical arousal, 
to assess and ameliorate physiological distress states 
(e.g., fear or anxiety-induced arousal) during exposure. 

Here, the correct detection of physiological states 
through robust models for the effective management of 
anxiety-induced arousal or stress is pivotal to facilitat-
ing intervention and enhancing psychological health and 
well-being. However, a reliable and automated system is 
needed to accomplish this task. Given that artificial intel-
ligence (AI) and machine learning (ML) have been play-
ing significant roles in the methodological developments 
for diverse problem domains, including computational 
biology [9, 10], cyber security [11–14], disease detection 
[15–21] and management [22–27], elderly care [28, 29], 
epidemiological study [30], fighting pandemic [31–37], 
healthcare [38–42], healthcare service delivery [43–45], 
natural language processing [46–50], social inclusion 
[51–53] and many more, the AI and ML-based methods 
can be employed to do this task. Hence, here we have 
explored a series of ML models with publicly available 
data sets (using electroencephalogram and heart rate var-
iability) to predict arousal states. If we can detect anxiety-
induced arousal, we can trigger calming activities to allow 
individuals to cope with and overcome distress. Here, we 
discuss the means of effective selection of ML models 
and parameters in arousal detection. We have presented 
our first abstract concept ML Driven Self-guided Vir-
tual Reality Exposure Therapy Based on Arousal State 
Detection from Multimodal Data in [54]. Then we started 
implementation, and here in this paper, we have added 
the concept of Biofeedback as a form of variation of heart 
rate and laterality index using EEG data and synthesised 
heart rate collected by emotive EPOC flex [55].

2  Related work
Arousal detection, a noninvasive intervention, requires 
a multi-disciplinary approach, where psychological state 
determination, ML models for arousal or stress detec-
tion, and exploration of the related domains for model 
implementation are equally important. In this paper, we 
narrow down the areas and present an overview of the 
state-of-the-art scenarios.

2.1  Emotion/stress detection
Koelstra et  al. [56] presented a multimodal dataset for 
the analysis of human affective states. They collected 
physiological signals, including electroencephalographic 
(EEG) data from participants watching music videos and 
rated each video in terms of excitement, stress, arousal, 
flaws, valence, like, dislike. The data has been widely 
used for developing various ML models for arousal, anxi-
ety and stress detection. Ahuja and Banga [57] created 
another dataset where they classified mental stress in 
206 students. They used linear regression (LR), support 
vector machine (SVM), Naïve Bayes (NB) and random 
forest (RF) ML classification algorithms [9, 30, 38, 41, 49, 
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51, 58–60] to determine mental stress. Using SVM and 
tenfold cross-validation, they claimed an 85.71% accu-
racy. Ghaderi et  al. [61] used respiration, galvanic skin 
response (GSR) from hand and foot, heart rate (HR) and 
electromyography (EMG) at different time intervals to 
examine different stress levels. Then they used k-nearest 
neighbour (k-NN) and the SVM ML model for stress 
detection [61].

2.2  Emotion/stress detection using EEG
EEG is a noninvasive way to measure electrical responses 
generated by the outer layers of the cortex, primar-
ily pyramidal cells. It has been used to investigate neu-
ral activity during arousal, stress, depression, anxiety or 
various other emotions. Several studies have applied ML 
methods to classify and/or predict emotional brain states 
based on EEG activity [72, 73]. For example, Chen et al. 
[74] designed a neural feedback system to predict and 
classify anxiety states using EEG signals during the rest-
ing state from 34 subjects. Anxiety was calculated using 
power spectral density (PSD), and then SVM was used 
to classify anxious and non-anxious states. Shon et  al. 
[67] integrated genetic algorithm (GA)-based features 
in the ML pipeline along with a k-NN classifier to detect 
stress in EEG signals. The model was evaluated using 
DEAP data set [56] for the identification of emotional 
stress state. Other work also used the publicly available 
DEAP data set for emotion recognition in virtual envi-
ronments [68]. Based on Russell’s circumplex model, 
statistical features, high order crossing (HOC) features 
and powerbands were extracted from the EEG signals, 
and affective state classification was performed using 
SVM and RF. In major depressive disorder (MDD, n = 

32), Duan et al. [69] extracted interhemispheric asymme-
try and cross-correlation features from EEG signals and 
combined these in a classification using k-NN, SVM and 
convolutional neural networks (CNN). Similarly, in other 
research by Omar [70], frontal lobe EEG data were used 
to identify stressed patients. Fast Fourier transformation 
(FFT) was applied to extract features from the signal, 
which were then passed to ML models, such as SVM and 
NB, for subject-wise classification of control and stress 
groups. Table 1 shows a summary of ML models used for 
arousal detection and their performance.

2.3  Machine learning and VRET
Balan et  al. [3] used the publicly available DEAP [56] 
database and applied various ML algorithms for clas-
sifying the six basic emotions joy, anger, sadness, dis-
gust, surprise and fear, based on the physiological data. 
They presented the stages of model development and its 
evaluation in a virtual environment with gradual stimu-
lus exposure for acrophobia treatment, accompanied by 
physiological signals monitoring. In [62], authors used a 
hybrid ML technique using k-Means++ clustering algo-
rithm and principal component analysis (PCA) to cluster 
drug addicts to find out the relationship between cardiac 
physiological characteristic data and treatment effect. 
The author showed the relationship between cardiac 
physiological characteristics and treatment effects using 
virtual reality. Other research [64] used a single session 
VRET for patients with spider phobia, including clinical, 
neuroimaging (functional magnetic resonance imaging, 
fMRI), and genetic data for baseline and post-treatment 
(after 6 months) analysis. They claimed a 30% reduction 
in spider phobia, assessed psychometrically, and a 50% 

Table 1 Machine learning models of arousal detection

Refs. Domain Data type Model Performance Modality

[3] Acrophobia GSR, HR, BVR SVM, RF, k-NN SVM-42.6%, k-NN-89.5%, RF-99% Unimodal

[62] Drug addiction HRV PCA, k-Means++ . Unimodal

[63] Spider phobia Clinical characteristics RF, Permutation Test ∗p < 0.05 ; ∗ ∗ p < 0.01 ; ∗ ∗ ∗p < 0.001 Unimodal

[64] Spider phobia fMRI, genetic data SVM, GPC . Unimodal

[65] PSA . . . Unimodal

[66] Anxiety disorder EEG SVM Healthy subjects-97.70 ± 3.32%, Anxious 
subjects-92.29 ± 4.44%

Unimodal

[67] Stress EEG k-NN with GA-based 
feature selection

k-NN 71.76% Unimodal

[68] Emotion recognition EEG SVM, RF RF-74.0%, SVM-57.2% Unimodal

[69] Major depressive disorder EEG k-NN, SVM, CNN CNN-94.13%, SVM-88.22%, k-NN-83.15% Unimodal

[70] Stress EEG SVM, NB SVM-90%, NB-81.7% Unimodal

[56] Human affective state EEG LR, SVM, NB Multimodal

[57] Metal stress EEG LR, SVM, NB 85.71% Unimodal

[71] Construction worker stress EEG k-NN, GDA, SVM k-NN - 65.80%, QSVM-69.62%, GSVM-80.32% Unimodal
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reduction in individual distance avoidance tests using 
behavioural patterns. From these literature reviews, we 
systematically picked the widely used ML algorithms to 
develop our ML pipeline. In Fig.  1, we showed the the 
performance (accuracy, precision, recall and F1-Score) of 
the publicly available data set that we used to train our 
model. based on our careful existing literature review 
we considered Gaussian Naïve Bayes (GNB), quadratic 
discriminant analysis (QDA), support vector machine 
(SVM), multilayer perceptron (MLP), AdaBoost (ADB), 
k-nearhood neighbour (KNN), decision tree (DT) and 
random forest (RF) ML models with multiple parameter 
settings.

3  ML model pipeline and data set
First, we collected EEG and multimodal physiological 
data from suitable sensors. Then we cleaned the data 
for further processing. Here we used individual phases 
of feature selection, feature prepossessing and feature 
constructions for model selection used for parameter 
optimisation. This process was repeated using auto-
mated ML for the best possible outcome from the col-
lected data set. After the model validation, we apply 
our trained model to VRET and/or other domains 
where arousal detection is crucial. Figure  2 shows the 
proposed ML pipeline.

Fig. 1 Figures show the performance (accuracy, precision, recall and F1-Score) of the publicly available data set that we used to train our model. 
Here, we consider QDA, GNB, SVM, MLP, ADB, KNN, DT and RF ML models. KNN, DT and RF have been used with multiple parameter settings. The 
figure on the top shows the performance of the SWELL [80] data set and the figure on the bottom shows the performance on the EEG data set of 
[79]
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3.1  Feature extraction for real‑time data analysis
Different feature for real-time data analysis has been 
extracted form [71, 75–77]. In the domain of ML selec-
tion of useful features from data to identify stress levels 
is crucial. A better selection of features can improve the 
efficacy of the classification algorithm with a reduced 
computational cost. For the case of EEG signals, we can 
consider a large number of features both in frequency 
domains and in time. However, learning the possible 
combination of subsets and comparing their perfor-
mance requires extra computational burden.

If we record our EEG signal with 128 Hz, calculating 
any feature over one single EEG reading is not informa-
tive enough, as 128 data points per second will be mas-
sive. This issue can be overcome by introducing the 
concept of a window, which is a continuous block of 
readings. Different studies claimed that a window size 
between 3 to 12 s is an adequate window size while clas-
sifying mental status using EEG signals. A sliding window 
approach is another alternative. However, research shows 
that with an added cost of computation burden. Here in 
our experiment, we have used a fixed size window of 5 s 

Fig. 2 Proposed machine learning pipeline: we collect EEG and multimodal physiological data from suitable sensors. To clean the data for further 
processing, we used individual phases of feature selection, feature prepossessing and feature constructions for model selection which was used 
for parameter optimisation. This process was repeated using automated ML for the best possible outcome from the collected data set. After model 
validation, we use our trained model for meltdown moment detection, workplace stress detection, VRET and/or other domains where arousal 
detection is crucial

Fig. 3 Data acquisition using emotive EPOC flex. The figure on the left shows the top view, the figure in the middle shows a side view of emotive 
EPOC flex, and the figure on the right shows the data acquisition phase using emotive EPOC flex and Oculus Quest 2 head-mounted displays
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with 128 Hz of sampling frequency. Figure 3 shows data 
acquisition using emotive EPOC flex. The figure on the 
left shows the top view, the figure in the middle shows 
a side view of emotive EPOC flex, and the figure on the 
right shows the data acquisition phase using emotive 
EPOC flex and Oculus Quest 2 head-mounted displays.

The mean of the raw signal [75]:

where X(n) represents the value of the nth sample of the 
raw EEG signal, n = 1, . . .N . The standard deviation of 
the raw signal:

The mean of the absolute values of the first differences of 
the raw signal:

The mean of the absolute values of the second differences 
of the raw signal:

The means of the absolute values of the first differences 
of the normalised signals:

where X̃(n) = X(n)−µX
σX

 , µX and σX are the means and 
standard deviations of X.

The means of the absolute values of the second differ-
ence of the normalised signals:

Time and frequency domain features, extracted from 
EEG signals.
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The average absolute value of amplitude among different 
channels (mean value):

Median of the signal among different EEG channels 
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Minimum amplitude among different channels (smallest 
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The variance of the signal EEG amplitude among differ-
ent channels (variance):

The maximum value of EEG amplitude among different 
channels in the time domain (peak):

Location of maximum EEG amplitude among channels 
(peak location):

(18)VARj =
1

N − 1

N
∑

i=1

EEG2
i,j .

(19)Pkj = max
i

EEGij .

are also termed windows. We extracted our features from 
these windows. Previous studies show that the window 
size between 3 to 12 s is an effective window length while 
classifying the mental status from EEG signals [71].

Level of excitement (arousal) [71]:

Half of the signal power of channel j is distributed in the 
frequencies less than MEDFj (median frequency):

(28)A =

α(F3+ F4 + AF3+ AF4)

β(F3+ F4 + AF3+ AF4)
.

The time between EEG signal peaks between the various 
windows (peak to peak):

Shows the sharpness of EEG signals peak (kurtosis):

Power of the EEG signal in channel j in the frequency 
domain in the interval [8 Hz, 15 Hz] (Alpha mean power):

Power of the signal in Beta interval (Beta mean power):

Power of the signal in Delta interval (Delta mean power):

Power of the signal in Theta interval (Theta mean power):

Level of happiness (valence) [71]:

We have used the sampling frequency of the signal to 128 
Hz. If we want to calculate the features on one individual 
EEG reading then may not be much informative, due to 
a large number of data points. To overcome this prob-
lem, we have used blocks of continuous readings which 
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If arousal is less than 4 and valence is between 4 and 6, as 
in the following equation, it is defined as calm [77]:

where arousal stands for a range from calm to excited, 
while valence presents a range from unpleasant to pleas-
ant. If arousal exceeds 5 and valence is less than 3, as in 
the following equation, it is defined as a stress state [77]:

The frequency range are [78]:

δ : 0.5− 4 hertz;

θ : 4 − 8 hertz;

α : 8− 12 hertz;

β : 12− 30 hertz;

γ :> 30 hertz.

3.2  Data set
In the first stage, we explored three publicly available 
data sets. The first one is the SWELL data set of [80]. The 
authors calculated the inter-beat interval (IBI) between 
peaks in electrocardiographic (ECG) signals. Then, the 
heart rate variability (HRV) index was computed on a 
5 min IBI array by appending the new IBI sample to the 
array in a repeated manner. The data set was manually 
annotated with the conditions under which the data were 
collected. This data set has 204,885 samples with 75 fea-
tures and 3 labelled classes. Here, 25 people performed 
regular cognitive activities, including reading e-mails, 
writing reports, searching, and making presentations 
under manipulated working conditions. We used a sec-
ond publicly available data set of [81], which was initially 
inspired from [82], with HRV data to train our proposed 
ML model and determine arousal levels.

(30)(arousal < 4) ∩ (4 < valence < 6),

(31)(arousal > 5) ∩ (valence < 3).
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We also used a third publicly available data set titled 
‘EEG during Mental Arithmetic Task Performance’ [79] to 
explore EEG recordings of 36 participants during resting 
state and while doing an arithmetic task. The dataset was 
collected using a Neurocom monopolar EEG 23-channel 
system device. Electrodes (Fp1, Fp2, F3, F4, Fz, F7, F8, C3, 
C4, Cz, P3, P4, Pz, O1, O2, T3, T4, T5, T6) were placed on 
the scalp using international 10/20 standard. The sampling 
rate for each channel was 500 Hz with a high-pass filter of 
0.5 Hz and a low-pass filter of 45 Hz cut-off frequency. In 
the experimental manipulation, participants were asked 
to solve mental arithmetic questions to increase cognitive 
load and induce stress, thus, evoking higher arousal states.

4  Result analysis
In this study, we took the dataset of EEG signals during 
mental arithmetic tasks1 [79]. Decomposed EEG signals 
for a duration of 5  s before and during an arithmetic 

task are shown in Fig. 4. The signals were in edf format, 
which is converted to epochs and their statistical features 
(mean, std, ptp, var, minim, maxim, argminim, argmaxim, 
skewness and kurtosis) were calculated. These were then 
used for the classification of the signals. RF model was 
used for this purpose which gave an accuracy of 87.5%.

Figure 4 shows the time-domain representation of EEG 
signal of [79]. In this figure, plots on the left show record-
ings during the initial condition and plots on the right 
during the stressed condition in channels F3, F4, Fz, and 
Cz. We can clearly see the increase of oscillatory patterns 
of the signal from initial to stressful conditions.

Figure  5 shows average frequency content of sig-
nal epochs before and during solving arithmetic tasks 
using [79] data set. We can see some changes in exci-
tation levels. The figures on the left show the signal in 
a relaxed state, whereas the figures on the right depict 
the signals under stress while performing mental arith-
metic tasks. Similarly, subsequent images in Fig.  5 

Fig. 4 The time domain representation of EEG data of [79]. The top figures show the combined representations. Figures on the left show the initial 
condition and figures on the right show the stressed condition in channels F3, F4, Fz, and Cz. We can clearly see the increase of oscillatory patterns 
of the signal from initial to stressful conditions

1 https:// physi onet. org/ conte nt/ eegmat/ 1.0. 0/.

https://physionet.org/content/eegmat/1.0.0/
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show the time–frequency analysis of individual chan-
nels (F3, Cz, and P4) generated using power plots and 
topographic maps. A significant difference can be seen 
between plots before and during evoked stress states 
(Fig.  6). Figure  7 shows the pair plot of a few notable 

features MEAN-RR, MEDIAN-RR, SDRR-RMSSD, 
MEDIAN-REL-RR, SDRR-RMSSD-REL-RR, VLF, VLF-
PCT from SWELL dataset [80]. These statistical fea-
tures have been used to classify the signals aiming for 
arousal detection. This publicly available HRV dataset 

Fig. 5 Average frequency content of signal before and during the arithmetic task using [79] data set. We can clearly see changes in excitation 
levels. The figure on the left shows the initial level, whereas the right figure shows the stressed condition during mathematical problem-solving. The 
figures were generated using the open source python package MNE-Python [83]
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has been used to train our ML models. Figure 8 shows 
the prediction of stressful moments from the HRV data 
set generated by [81] inspired from [82]. We used the 
publicly available data set of [81] to train our proposed 
ML model and determine momentary stressful states. 
Figure  9 shows the performance (accuracy, precision, 
recall and F1-Score) of the publicly available data set 
that we have used to train our model. Here we consider 
Gaussian Naïve Bayes (GNB), quadratic discriminant 
analysis (QDA), support vector machine (SVM), multi-
layer perceptron (MLP), AdaBoost (ADB), k-nearhood 
neighbour (KNN), decision tree (DT) and random for-
est (RF) ML models. KNN, DT and RF have been used 

with multiple parameter settings. The figure on the top 
shows the performance of the SWELL [80] data set and 
the figure on the bottom shows the performance on the 
EEG data set of [79].

5  Biofeedback for VRET
As the Related work Sect. 2 indicates, the state-of-the-art 
development clearly lacks one key direction; there is no 
attempt at real-time biofeedback for VRET intervention. 
Here in this research, a vital part of our development 
of VRET is the integration of bio-signals, such as heart 
rate, heart rate variability or cortical arousal, to assess 
and ameliorate physiological distress states (e.g., fear or 

Fig. 6 Images above show the time–frequency representations plotted using power plot topographic maps. Changes in power spectral density 
can be seen for individual channels before and during the stressed conditions. The figures were generated using the open source python package 
MNE-Python [83]
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anxiety-induced arousal) during exposure. We have cre-
ated a VR environment and a mechanism to provide 
biofeedback during the VRET session. We acquired the 
cortical arousal using an emotive EPOC flex. After a near 
real-time processing of the EEG signals (as we considered 
a window approach, there was a constant delay equiva-
lent to window length as shown in Fig. 9 plus an insignifi-
cant variable delay for signal processing time). To reduce 

the interference, we had to target to minimise the use of 
the number of sensors. We planned to use heart rate, so 
it was challenging to calculate heart rate using emotive 
EPOC flex. In the Fig.  9, we can see an emotive EPOC 
flex with its adjustable 10–20 diagram. The bottom seg-
ment shows a sample signal collected using its different 
electrodes. The red rectangular box shows a window 
of 5 s from where data were collected with a 128-Hz 

Fig. 7 The figure shows the pairplot of a few notable features MEAN-RR, MEDIAN-RR, SDRR-RMSSD, MEDIAN-REL-RR, SDRR-RMSSD-REL-RR, VLF, 
VLF-PCT from SWELL dataset [80]. These statistical features have been used for the classification of the signals aiming at arousal detection. This 
publicly available HRV dataset has been used to train our ML models
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Fig. 8 The figure shows the prediction of stressful moments from the HRV data set generated by [81] inspired from [82]. We used the publicly 
available data set of [81] to train our proposed ML model for VRET and determine momentary stress states

Fig. 9 Figure on the top-left show an emotive EPOC flex while the top-right is showing its 10–20 diagram. The bottom one shows a sample signal 
acquisition with its different electrodes. The red rectangular box is showing a window of 5 s from where data were collected with a 128-Hz sampling 
frequency
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sampling frequency. We used electrodes FT9 and FT10 
to determine our heart rate. We placed the probe across 
the neck. For the acquired raw signal, first, we performed 
the baseline correction and then filtered the data. After-
wards, we calculated the bipolar difference to determine 
the heart rate. On the other side, we used 5-s window for 
our EEG data acquisition. Then we systematically did the 
baseline correction, filtered the data and used electrodes 
F3, F4, AF3 and AF4 to calculate the literality index. Then 
we used calculated heart rate and literality index as forms 
of biofeedback. Figure 10 shows the block diagram of the 
feedback generation process. During the heart rate calcu-
lation from EEG data, we used electrodes FT9 and FT10 
to determine our heart rate. We placed the probe across 
the neck. For the acquired raw signal first, we performed 
the baseline correction and then filtered the data. After-
wards, we calculated the bipolar difference to determine 
the heart rate. Figure  11 shows the time-domain repre-
sentation of the signals at their different stages of pro-
cessing. From Fig. 12, we have determined the peaks to 
calculate the heart rate where we had to reject the false 
one systematically. Figure  13 shows a few snapshots of 
the virtual environment where biofeedback has been 
used. In the environment, we can see the image of the 
heart and brain with different colours and shapes. The 
size and the colours of the heart and brain were mapped 
with the level of arousal. A small pink heart represents a 
normal condition. However, as the heart rate increases, 
its colour and size also change in the VR environment. 
The colour and size of the brain are related to the lateral-
ity index.

We believe we have invented the wheel here, and there 
was no previous wheel to compare. Biofeedback-based 
intervention for VRET is a novel invention. Earlier, there 
was no existing literature or published work of biofeed-
back for VRET to compare our results. We have a future 
plan to recreate the experiment with and without bio-
feedback and compare the results. We also have the plan 
to deploy our proposed machine-learning framework for 
VRET with biofeedback and compare the results. Yet, we 
have to keep it in mind that for the same ML algorithm 
with a fixed parameter settings, if we use a different set of 
data then the results may vary slightly as showed by [48].

6  Challenges and future research directions
As we mentioned in the Related work section (Sect.  2), 
this work is derived through multi-disciplinary research. 
So, diverse open challenges have been identified. Some of 
the key issues are:

• The real-time analysis of the ML data. Stream pro-
cessing will be one of the next challenges that we 
want to overcome for the same problem.

• One VRET session for a specific kind of anxiety 
might be very different from another VRET session 
with a different kind of anxiety or disorder. For a vali-
dation check, a comparison of a development with a 
new idea and its implementation to an existing work 
might be very challenging.

• The placement of the BCI electrodes is an important 
consideration, and interesting to investigate further 

Fig. 10 Biofeedback for VRET: to reduce the interference, we had to target to minimise the use of the number of sensors. We planned to use 
heart rate, so it was challenging to calculate heart rate using emotive EPOC flex. We used electrodes FT9 and FT10 to determine our heart rate. We 
placed the probe across the neck. We first performed the baseline correction for the acquired raw signal and then filtered the data. Afterwards, 
we calculated the bipolar difference to determine the heart rate. On the other side, we used 5 s window for our EEG data acquisition. Then we 
systematically did the baseline correction, filtered the data and used electrodes F3, F4, AF3 and AF4 to calculate the literality index. Then we used 
calculated heart rate and literality index as forms of biofeedback



Page 14 of 18Rahman et al. Brain Informatics           (2023) 10:14 

to determine the most relevant regions of the brain 
to monitor arousal.

• To provide biofeedback for the VRET, haptic feed-
back could be used. It is yet to explore how real-time 

biofeedback can be provided. We need to investigate 
that at incorporate.

• In future, additional sensor/polar devices, chest 
straps and/or wristbands could be used to collect 
further types of signals. Moreover, additional data 
should be collected from different experimental 
conditions to further improve efficacy.

7  Conclusion
In self-guided VRET, participants can gradually increase 
their exposure to anxiety-evoking stimuli (like audi-
ence size, audience reaction, the salience of self, etc.) to 
desensitise and reduce momentary anxiety and arousal 
states, facilitating amelioration of PSA over time. How-
ever, creating this VR environment and determining 
anxiety-induced arousal or momentary stress states is 
an open challenge. In this work, we showed which selec-
tion of parameters and ML models can facilitate arousal 
detection. As such, we propose a ML pipeline for effec-
tive arousal detection. We trained our model with three 
publicly available data sets where we particularly focused 
on EEG and HRV data. Considering the scenarios, our 
proposed automated ML pipeline will overcome the 
model selection problem for arousal detection. Our 
trained ML model can be used for further development 

Fig. 11 Heart rate extraction from EEG data. We used electrodes FT9 and FT10 to determine our heart rate. We placed the probe across the neck. 
For the acquired raw signal first, we performed the baseline correction and then filtered the data. Afterwards, we calculated the bipolar difference 
to determine the heart rate

Fig. 12 Heart rate calculation from EEG data. Here, we have 
determined the peaks to calculate the heart rate where we had to 
reject the false peaks systematically
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in VRET to overcome psychological distress in anxi-
ety and fear-related disorders. As the first phase of 
work, we have implemented a biofeedback framework 
for VRET where we successfully provided feedback as 
a form of heart rate and brain laterality index from our 
acquired multimodal data for psychological interven-
tion to overcome anxiety. Further useful applications of 
the model can be seen in meltdown moment detection 
in autism spectrum disorder (ASD) and other scenarios 
where stress and arousal play a significant role and early 
intervention will be helpful for physiological ameliora-
tion. For example, early identification and signalling of a 
meltdown moment can facilitate the initiation of targeted 

interventions preventing meltdowns, which will help par-
ents, carers and supporting staff deal with such occur-
rences and reduce distress and harm in individuals with 
ASD. Finally, arousal and increasing stress have become 
buzzwords of recent times, adversely affecting a vast 
range of populations across the globe regardless of age 
group, ethnicity, gender, or work profile. Due to the long 
ongoing COVID-19 pandemic, changing scenarios, work 
patterns and lifestyles, increasing pressures, and techno-
logical advancements are a few possible reasons for this 
trend [56, 61, 81, 84]. Thus, accurate detection of dis-
tress-related arousal levels across the general population 
(e.g., in educational settings or the workplace) may help 

Fig. 13 Snapshot of some virtual environment where biofeedback has been used. In the environment, we can see the image of the heart and 
brain with different colours and shapes. The size and the colours of the heart and brain were mapped with the level of arousal. A small pink heart 
represents a normal condition. However, as the heart rate increases, its colour and size also change in the VR environment. The colour and size of 
the brain are related to the laterality index



Page 16 of 18Rahman et al. Brain Informatics           (2023) 10:14 

to avoid associated adverse impacts through effective 
interventions, prevent long-term mental health issues 
and improve overall well-being.
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