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Abstract 

Virtual Reality (VR) allows users to interact with 3D immersive environments and has the potential to be a key technol-
ogy across many domain applications, including access to a future metaverse. Yet, consumer adoption of VR tech-
nology is limited by cybersickness (CS)—a debilitating sensation accompanied by a cluster of symptoms, including 
nausea, oculomotor issues and dizziness. A leading problem is the lack of automated objective tools to predict or 
detect CS in individuals, which can then be used for resistance training, timely warning systems or clinical interven-
tion. This paper explores the spatiotemporal brain dynamics and heart rate variability involved in cybersickness and 
uses this information to both predict and detect CS episodes. The present study applies deep learning of EEG in a 
spiking neural network (SNN) architecture to predict CS prior to using VR (85.9%, F7) and detect it (76.6%, FP1, Cz). 
ECG-derived sympathetic heart rate variability (HRV) parameters can be used for both prediction (74.2%) and detec-
tion (72.6%) but at a lower accuracy than EEG. Multimodal data fusion of EEG and sympathetic HRV does not change 
this accuracy compared to ECG alone. The study found that Cz (premotor and supplementary motor cortex) and O2 
(primary visual cortex) are key hubs in functionally connected networks associated with both CS events and suscep-
tibility to CS. F7 is also suggested as a key area involved in integrating information and implementing responses to 
incongruent environments that induce cybersickness. Consequently, Cz, O2 and F7 are presented here as promising 
targets for intervention.
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1 Introduction
Virtual Reality (VR) technology is becoming prevalent 
in entertainment, art, education, social and professional 
settings [1, 2]. VR allows for interactive immersion into 
shared digital environments that can be accessed by 
many. Despite this, individual experiences in VR remain 
far from idyllic. Drawbacks exist in the form of cyber-
sickness (CS)—a debilitating sensation accompanied by 
a cluster of symptoms that include nausea, oculomotor 
issues and dizziness [3]. It is unfortunate that limitations 
to human physiology and perception form a barrier to 
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consumer adoption of VR technology; especially since 
our world continually charges towards a nexus of vir-
tual and real-world interactions. A way to combat CS 
would be to utilize a tool that predicts or detects it. Yet, 
these tools must be automated and objective, so that 
preparations or active responses like training resistance, 
timely warning systems and clinical intervention can 
be implemented. Tracking of CS is currently restricted 
to subjective reports through verbal confirmation or 
questionnaires. Not only do these methods not allow 
for future prediction, but they are time inefficient and 
require manual input. With current technology at our 
disposal, objective biomarkers correlated with cybersick-
ness can be collected from wearable devices and fed into 
machine learning algorithms for streamlined, automatic 
prediction and/or detection of cybersickness events [4]. 
While various models for prediction and detection of 
CS severity have been proposed [4, 5], there lacks a way 
to both collect CS data and continue to generate new 
knowledge about the condition through machine learn-
ing assisted approaches. To achieve this, the present 
study uses a modified version of the brain-inspired Neu-
Cube spiking neural network (SNN) architecture [6] to 
both predict and detect CS whilst generating new knowl-
edge about the condition.

There are several reasons for choosing SNNs for this 
purpose. SNNs are advanced machine learning techniques 
[7] and are considered the third generation of artificial 
neural networks. They simulate the behaviour of biologi-
cal neural networks by creating and updating connections 
between spiking neurons (synaptic connections) to learn 
temporal associations between them. This architecture and 
mechanism of learning has several advantages in temporal 
information processing [8-13] over that of traditional neu-
ral networks. This includes robustness to noise through 
the encoding of consecutive time series data, such as EEG, 
into a compressed data format known as spikes (binary 
units) [7]. Encoding procedures such as threshold-based-
spike-generation, produce spikes that represent a change 
in consecutive values above a certain threshold, allowing 
for changes in data to be captured over time. Additionally, 
if multiple time series, such as EEG channels, are mod-
elled in a single SNN, patterns of interactions between the 
changes in their time series can be detected and analyzed. 
SNN architectures can further benefit from the usage of 
brain templates that specify a spatial distribution in the 
anatomical shape of a brain. Upon training, these models 
can be considered an interpretable spatiotemporal map 
of the brain activities measured, which assists to bet-
ter understand brain dynamics under diverse conditions. 
Further on, this spatiotemporal map can be represented 
as a feature vector, and additional parameters from other 

biologically relevant data such as HRV can be added for 
classification of different brain states.

Consequently, the present study performs deep learn-
ing of integrated EEG and sympathetic heart rate variabil-
ity (HRV) data in an interpretable dynamically evolving 
SNN architecture. This architecture mimics the biologi-
cal structure and processing mechanisms of the human 
brain, and captures spatiotemporal information from 
EEG signals to form a dynamically updateable neural 
map of CS. A machine learning algorithm was developed 
that can detect CS events (76.6%) and predict it prior to 
VR usage at resting baseline (85.9%) using electroenceph-
alogram (EEG) data. F7 alone was the most optimal input 
for cybersickness prediction. The algorithm also inte-
grated fusion of electrocardiogram (ECG) heart rate vari-
ability data but it did not improve classification accuracy. 
The study found that features related to cybersickness 
susceptibility are diverse and that highlighted features 
change over time. Amongst many important features, 
Cz (premotor and supplementary motor cortex) and O2 
(primary visual cortex) are key hubs in functionally con-
nected networks associated with both CS events and 
susceptibility to CS. According to accuracy results and 
analysis of CS related brain hubs, Cz, O2 and F7 present 
as promising targets for intervention. The study addition-
ally proceeded with an exhaustive analysis to find the best 
time segment during a resting-state EEG baseline and its 
data length for optimal prediction accuracy.

2  Contributions
In summary, the paper contributes the following:

– A novel approach to the prediction and detection 
of cybersickness using interpretable spiking neural 
networks (SNN) and weighted K-nearest neighbor 
(KNN) algorithms using EEG and ECG data, both 
separately and in their integration.

– Optimized SNN architecture based on inherent char-
acteristics of cybersickness

– Machine learning assisted knowledge discovery and 
insight into the spatiotemporal brain dynamics of 
cybersickness

– Considerations for feature reduction for diagnostic 
and predictive CS computational models.

– Machine learning extracted clinical biomarkers for 
the development of intervention strategies.

3  Methods
3.1  Subjects
Sixty-four participants, male (29) and female (35), age 
range of 18–33 years (mean 23, standard deviation ± 4.1) 
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were recruited from the student and working popula-
tion. The exclusion criteria were a previous diagnosis of 
neurological disorder, cardiovascular disease, diabetes, 
gastrointestinal disorder, medications, or smoking. All 
subjects had either normal or corrected visual acuity with 
contact lenses. This study was approved by the University 
of Otago Ethics Committee (H20/169) and performed in 
accordance with relevant guidelines and regulations. All 
participants provided signed consent.

3.2  Experimental equipment
A VR video of rotating stars published by previous research-
ers was played in an HTC Vive headset (HTC Corporation, 
Taipei, Taiwan) [14]. EEG was recorded using starstim32 
(Neuroelectrics). ECG was recorded using Shimmer3 5 
lead ECG (Shimmer, Dublin, Ireland) at a sampling rate of 
512  Hz. Five electrodes were placed, two 5  cm above the 
pelvic girdle, labelled according to proximity towards the 
left leg (LL) and right leg (RL), and two 5  cm below the 
clavicle, labelled according to proximity towards the left arm 
(LA) and right arm (RA), with the fifth electrode at the V3 
position relating to the midway point between the 4th and 
5th intercostal space. Data obtained from the LL-RA chan-
nel between electrodes were used for analysis.

3.3  Software
iMotions 8.0 (iMotions, Cophenhagen, Denmark) was 
used to synchronize EEG and ECG data recordings for a 
unified collection of measurement time series. Live view 
of biosensor data streaming ensured quality data collec-
tion and so that markers separating baseline, stimulation 
and post stimulation could be placed during the experi-
ment. Neucube was used for the SNN architecture and 
feature vector production. Python 3.8.8 was used for the 

classification algorithms  and neuron proportion visuali-
sation. HRV was analyzed using Kubios HRV Premium 
Ver. 3.3 software [15] (Kubios, Kuopio, Eastern Finland). 
For 10 s HRV results, Neurokit2 [16] was used to deter-
mine R-peaks and pyHRV [17] was used to calculate 
RMSSD. BrainNet Viewer was used to visualize feature 
interaction networks [18].  The VR video used in this 
experiment was developed in previous work by research-
ers from Stanford University, and was chosen for its pro-
pensity to induce cybersickness in individuals. The VR 
video consists of clockwise rotating white dots about the 
roll axis, dispersed at different depths through the visual 
foreground and background [14].

3.4  Protocol
Participants (n = 64) underwent a 2  min resting state 
baseline (A) before VR immersion without HMD usage, 
then watched a 2  min VR video of rotating stars (B), 
followed by removal of the headset and a 2  min recov-
ery period. EEG and ECG was recorded continuously 
throughout the entire experiment. To mitigate any poten-
tial noise, participant immersion in VR was a passive 
ordeal where the only requirement was to stare straight 
ahead with minimal body and head movement, and all 
parts the experiment were seated. The conscious per-
ception of cybersickness was reported via a thumbs up, 
and was simultaneously marked on the data stream. Indi-
viduals who reported cybersickness and those that did 
not (controls) were separated into two groups. A pre-
experiment motion sickness susceptibility questionnaire 
[19] (MSSQ-Short) was administered to assess motion 
sickness history and susceptibility, along with a post-
experiment simulator sickness questionnaire [20] (SSQ) 
to collect individual sickness ratings Fig. 1.

Fig. 1 a Experiment flow, b VR video example
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3.5  Statistics
A Mann–Whitney U test was run to compare between 
cybersick and control groups for the following data: 
MSSQ-short scores, SSQ scores, spike count and HRV 
parameters—Parasympathetic nervous system index 
(PNS), sympathetic nervous system index (SNS), stress 
index (SI), standard deviation of N–N intervals (SDNN), 
root mean squared of successive differences of R–R inter-
vals (RMSSD).

3.6  The NeuCube brain‑inspired spiking neural network 
architecture

The following sections below describe the general archi-
tecture of the model and data pipeline. This includes ini-
tial encoding of the raw EEG data into spikes, training of 
the SNN reservoir for knowledge discovery and feature 
selection, producing a feature vector which represents 
the spiking activity in the neural network through con-
nections with an output neuron layer, and finally classi-
fication of this feature vector. A graphical representation 
of this data pipeline is shown in Fig. 2.

3.7  Spike encoding
SNNs receive reconstructed input signals as binary 
waveforms known as spike trains. Thus, the raw EEG 
data must first be transformed into this format. Step 
Forward (SF) encoding was used as a ‘signal to spike 
encoder’. SF is a threshold-based algorithm that works 
based on updating cutoff values for excitatory and inhibi-
tory spikes, according to a base value at time t = 0 and a 
user defined threshold value. If a signal’s value is greater 
than the current excitatory cutoff (base+ threshold) then 
an excitatory spike is encoded, and the excitatory cut-
off value is updated as the new base value. If the signal’s 
value at t is less than the current inhibitory cutoff value 
(base+ threshold) then an inhibitory spike is encoded 
and the inhibitory cutoff value is updated as the new 
base value. In some cases, no spike is encoded and the 
base value remains the same [21]. Spike counts for every 
channel were extracted and compared between CS and 

control groups at baseline (A) and during the CS onset 
event (B).

3.8  NeuCube reservoir
A reservoir of connected neurons was initialized in prep-
aration for spike inputs. A SNN reservoir (SNNr) mod-
ule is in principle scalable in size, and here it is composed 
of 1471 LIF neurons representing  1cm3 of the brain, 
located at the same coordinates as those modelled in the 
Talairach atlas to create a 3D-brain geometry. Defining 
the spatial location of neurons allows spatial–temporal 
patterns to be elucidated from spike inputs. Connec-
tion weights between reservoir neurons were randomly 
initialized using the small world connectivity (SWC) 
approach. The SWC limits connections to only form 
within a defined radius and the random connections 
creates a diverse set of dynamical states. Connection 
weights, also known as ‘synaptic weights’, modulate any 
increase or decrease in the membrane potential of the 
post-synaptic neuron. In other words, it is a measure of 
the contribution of a pre-synaptic neuron towards the fir-
ing of a post-synaptic neuron. Connections also hold an 
intrinsic value of ‘synaptic delay’, which is the time delay 
in firing between pre and post synaptic neurons. Excita-
tory and inhibitory synapses within the reservoir are 
probabilistically determined according to the following 
formula:

where Pi,j is the probability of establishing a connection 
between two neurons i and j; C is the maximum connec-
tion probability; λ is the small world connection radius; 
dnormi,j  is the normalized distance between two neurons; 
dthresh is the maximum connection distance between two 
neurons. In this way, closer neurons have a higher prob-
ability of stronger connection weights than neurons fur-
ther away.

Pi,j =

{

C ∗ e
−

(

dnormi,j /�

)2

if dnormi,j ≤ dthresh
0 otherwise

Fig. 2 Data pipeline. (spike timing dependent plasticity) STDP, (spike driven synaptic plasticity) SDSP, (dynamic evolving spiking neural network-k 
nearest neighbour algorithm) deSNN-KNN
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3.9  SNNr training
Training the SNNr involved unsupervised learning of 
spike trains introduced by ‘input neurons’ at 32 EEG 
channel locations. These locations were gained from 
the conversion of 10–10 scalp electrode positions into 
Talairach coordinates. Input neurons feed spike trains 
of each sample to the SNNr in a temporally synced and 
spatially distributed manner. Similar to the notion of 
summation at an axon hillock [22, 23], an output spike 
is produced by a post synaptic neuron when many input 
spikes from pre synaptic neurons accumulate over a short 
period of time. As spike trains spread throughout the 
SNNr, connection weights between reservoir neurons are 
updated according to a rule called ‘Spike Timing Depend-
ent Plasticity’ (STDP). This sort of learning mimics cel-
lular processes of long-term potentiation and long-term 
depression involved in learning and memory [24].

S is the time delay between presynaptic and post-syn-
aptic firing. t+ is the pre-synaptic time interval. t+ is the 
post-synaptic time interval. A+ is the amplitude of weight 
increase. A− is the amplitude of weight decrease.

The STDP rule implements a form of logical causal-
ity, in which connection weights increase or decrease 
proportional to the synaptic delay. If a presynaptic neu-
ron fires before a post-synaptic neuron, the connection 
weight increases between them. Likewise, connection 
weights decrease if a postsynaptic neuron fires before a 
presynaptic neuron. The end product is a trained ‘SNNr 
cube’—a neuronal model with connection weights that 
represent complex and dynamic spatiotemporal brain 
activity.

In our study, the training samples were divided into two 
groups equally, CS (n = 32) and control (n = 32). A SNNr 
cube was trained on all 32 channels of EEG data for each 
group, giving two distinct SNNr cubes with different con-
nection weights. The connection weights of these cubes 
were subtracted from each other, producing an SNNr 
cube specific to cybersickness.

3.10  Knowledge discovery
Subtracted SNNr cubes were made using data 2  s in 
length selected from time segments 30–32 s and 90–92 s 
at baseline, and from 1 s before the CS event. Since con-
nections between neurons at SNNr initialization are 
randomly generated, the same initialized connections 
were kept constant for subtractions between cybersick 
and control groups. Underpinning this subtraction, was 
the hypothesis that there would be different brain infor-
mation processes and network dynamics in CS versus 

W (s) =

{

A+exp[s/t+] for s < 0
A−exp[−s/t+] for s > 0

control subjects. In theory, these differences would not 
just appear during the manifestation of CS but also dur-
ing resting-state baseline as a precursor to CS or marker 
of susceptibility. The reason behind selecting two time 
points at baseline was to see if these markers might 
change over time.

Using the subtracted SNNr cube, clusters of reservoir 
neurons surrounding each input neuron were grouped by 
connection weight. Neuron proportion was calculated as 
the percentage of neurons in the cube belonging to each 
cluster. Total input cluster interactions were compared 
to each other in a Feature Interaction Network (FIN) 
analysis. FIN revealed relative strengths of functionally 
connected areas of the brain that discriminate between 
the two classes. The top 5 features (channels) by neu-
ron proportion were chosen as input neurons to train a 
new SNNr cube, representing only the most informative 
features that define CS. Data for the control group dur-
ing VR immersion were selected as the median time of 
CS induction, which was at the 39 s mark. This process is 
detailed in Fig. 3.

3.11  Producing a feature vector
Default NeuCube processing uses one reservoir cube 
trained on all data samples for classification, with the 
notion that data of a certain label will have differ-
ent spike activity and spike propagation than data of 
another label [25]. This study took a different approach 
by subtracting individually trained SNNr cubes, to pro-
duce synaptic connection weights within the reservoir 
that form a neural map specific to CS. This map is a 
template through which new data samples are parsed to 
obtain a feature vector, which is the synaptic connec-
tion weights between input + reservoir neurons, and 
output neurons. A dynamic evolving SNN algorithm 
(deSNN) was used to learn the association between 

Fig. 3 Finding the top five features to create a new SNNr cube with 
key CS information; c EEG channels, CS cybersickness, Ctrl Control, sub 
subtracted cube
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class labels and the training samples in a supervised 
manner. deSNN has the advantage over other SNN 
classification models in that it is computationally inex-
pensive and boosts the importance of the order in 
which input spikes arrives, along with considering all 
other incoming spikes. Thus, it is suitable for on-line 
learning and early prediction of temporal events. In this 
algorithm, a new output neuron ( O ) for each training 
sample was created. These output neurons connect to 
every input and reservoir neuron ( N  ). The connections 
have initial weights that are set according to the Rank-
Order learning rule (RO).

The RO learning rule boosts the importance of 
the first incoming spikes on neuronal synapses. The 
advantage of RO is fast, one-pass learning and asyn-
chronous data entry of synaptic inputs. The value of 
the mod parameter for part 1 of this study was set to 
a default of 0.9. The O–N connection weights between 
the SNNr and the output deSNN neurons are then fur-
ther dynamically tuned by the following spikes via spike 
driven synaptic plasticity (SDSP)—a modified version 
of STDP. Due to a bi-stability drift in the SDSP rule, 
once a weight reaches the defined high value (result-
ing in LTP) or low value (resulting in LTD), it is fixed 
for the rest of the training phase. The rate at which a 
weight reaches LTD or LTP depends on the values of 
the set drift parameter.

driftup is the value increase in synaptic weight after pre-
synaptic firing. driftdown is the value decrease in synaptic 
weight with no pre-synaptic firing. driftup is set to 0.08 
and driftdown is set to 0.08 for part 1 of the study. SDSP 
works similar to STDP except that the post-synaptic 
membrane potential is assumed to always reach above 
threshold when the pre-synaptic neuron fires, leading to 
an increase in connection weight of the synapse between 
two neurons. At the same time, if no firing occurs from 
the pre-synaptic neuron, the connection weight of the 
synapse is decreased.

Altogether, the deSNN algorithm provided brain-
inspired feature vectors for every sample, consisting of 
both input–output neuron connections, and reservoir-
output neuron connections that can be classified.

The following connection strategies between the SNNr 
neurons and the deSNN classifier neurons were explored 
in this paper while searching for an optimal model:

winit(Nn,Om) = modorder(Nn,Om)

wfinal(Nn,Om) =
winit(Nn,Om)+ driftup ∗ nspikes

−driftdown ∗ nspikes

– SNNr cube trained on all data of 32 input neurons; 
1471 SNNr neurons connected to each output neu-
ron in the evolved deSNN classifier;

– SNNr cube trained on all data of 32 input neurons; 
only the 32 input neurons are connected to the out-
put neurons;

– SNNr cube trained on 5 channel data; 1471 SNNr 
neurons connected to each output neuron in the 
evolved deSNN classifier

– SNNr cube trained on all data using all combinations 
of 5 top input neurons (e.g. top channels); only the 5 
input neurons are connected to each output neuron;

3.12  ECG
The following heart rate variability parameters were 
computed: PNS, SNS, SI, SDNN, RMSSD. The selected 
time segments were 2 min, 30 s and 10 s in length. Only 
RMSSD was analyzed for the 10  s time segments, due 
to the statistical unreliability of the other parameters 
for this length of data. RMSSD is considered a reliable 
indicator for parasympathetic cardiac activity robust 
to the signal noise of respiration. Meanwhile, SI is an 
index for sympathetic activity. Both parasympathetic and  
sympathetic activity contribute to SDNN. PNS and SNS 
are validated indicators of parasympathetic and sympa-
thetic activity [15, 26].

3.13  Data Fusion
This study approached data fusion by combining fea-
ture vectors representing synaptic connection weights 
with the output layer of NeuCube and HRV variables 
that yielded the best accuracies. These include the best 
combination of parasympathetic or sympathetic features 
which would be added on to the final feature vector.

3.14  Classification
Three different algorithms were used to classify the 
feature vectors, with leave-one-out cross validation 
(LOOCV):

3.15  Modified KNN
A distance-based algorithm between data points. The 
study employed a modified version of KNN, in which 
the following parameters were optimized using an 
exhaustive grid search:

(1) k is for all neighbours or restricted by class label;
(2) Using Manhattan distance or Euclidean distance;
(3) Distance initially weighted uniformly or by signal-

to-noise ratio (SNR) that identifies the importance 
of the features (see the wwkNN method [38]);
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(4) Neighbours weighted during voting –

a. Uniform (equally)
b. By the inverse of their distance
c. By the function: max distance−(neighbour−minimum distance)

max distance

(5) Feature weights weighted during voting –

a. Uniform for each feature
b. SNR for each feature

3.16  Linear discriminant analysis (LDA)
An algorithm that finds linear combinations of features 
that separate classes along a hyperplane. Least squares 
solution was used with optimized shrinkage.

3.17  Light gradient boosting machine (LightGBM)
LightGBM is a gradient boosting framework that uses 
tree-based learning algorithms.

Optimized for number of trees, learning rate, boosting 
type (gradient boosting decision tree, GBDT), gradient-
based one-side sampling (goss), dropouts meet multiple 
additive regression trees (dart).

3.18  Part 2: Algorithm Optimisation with Extensive Time 
Segment Analysis

Part 2 of the study used high capacity computing pro-
vided by New Zealand eScience Infrastructure (NeSI) 
to extend the previous analysis using the modified KNN 
algorithm. The goal was to find the best time segment 
for prediction out of the 2  min EEG resting-state base-
line, partitioned into varying data lengths (2 s, 5 s, 10 s). 
The analysis similarly scans through all types of model 
training, and feature vector type in terms of connections 
to the output neurons as in Part 1. The difference is that 
mod and drift parameters for SDSP were optimized for 
classification of the best time segment for prediction 
and also for detection to see if this would improve accu-
racy. Additionally, the value of driftup was set to always 
be more than driftdown , which implements stronger I–O 
connection increases compared to decreases. This type of 
SDSP also maintains stronger I–O connections for input 
neurons that fire more compared to those that fire less, 
thereby boosting their importance further. Varying data 
lengths serve to explore whether capturing more EEG 
data improves prediction accuracy, whereas optimizing 

for SDSP improves the transformation of the EEG data 
into the feature vector for classification.

4  Results
4.1  Part 1
4.1.1  MSSQ‑short and SSQ scores
MSSQ-short scores did not differ significantly (P > 0.05) 
between CS and Control groups (Fig. 4). SSQ scores dif-
fered significantly between CS and control (P > 0.0001) 
(Fig.  5). CS groups had significantly higher SSQ scores 
than controls, showing that MSSQ-short percentile 
scores were not a good indicator of sickness in VR usage.

Fig. 4 MSSQ-short scores P > 0.05. Error bars show ± SEM

Fig. 5 SSQ scores, **** = p  < 0.0001. Error bars show ± SEM
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4.1.2  EEG
Functional connectivity analysis at resting baseline EEG 
(30–32 s) shows that CS prone individuals have more con-
centrated negative connections in the Cz area, interspersed 
with surrounding positive connections (Fig. 6a and b), when 
compared to controls. Feature interaction analysis (FIN) 
revealed that Cz is likely a hub for brain activity process-
ing in this time segment, either collecting or sending out 
this information to all the other key channels located in 
the left and interhemispheric frontal and bilateral parietal 
areas (Fig. 6c and d). The top 5 features according to neu-
ron proportion were P4, Fz, Cz, PO3 and F3, with Cz being 
the highest (Fig. 7). A second time segment further on in the 
baseline (90–92 s) was analyzed, which showed that other 

important features (T8, CP6, Fz, FC5, T7) can appear at 
different time segments (Figs.  8, 9). During the CS event, 
the high functional connectivity seen at baseline in CZ 
changes to interspersed positive and negative connections. 
Meanwhile there is a shift towards O2 positive connection 
dominance. FIN analysis (Fig.  10) showed that both O2 
followed by Cz are most likely hubs for cybersickness pro-
cessing, where both have the highest neuron proportion 
(Fig. 11). The top 5 features according to neuron proportion 
were FC6, FP2, FP1, Cz and O2. These results indicate that 
important areas identified in the baseline that are also found 
during the manifestation of cybersickness could be impor-
tant biomarkers of susceptibility to cybersickness.

Fig. 6 Resting-state baseline 30–32 s subtracted network dynamics. Functional connectivity of neurons in the SNNr is represented by a right 
hemisphere medial view of the SNNr and b axial view. Blue lines are positive connections, red lines are negative connections. Brighter neurons have 
stronger connections. Feature interaction networks between channels are represented by c right hemisphere medial view and d axial view. Thicker 
lines indicate stronger interaction whether they be positive or negative. These interactions confirm our hypothesis that even at baseline of 30–32 s, 
there is a significant difference between the brain information processes of CS versus control subjects
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4.2  Classification results
Overall, our modified KNN algorithm was the best for both 
prediction (EEG 76.6%, ECG 74.2%) and detection (EEG 
75%, ECG 72.6%) of CS (Tables 1, 2, 3, 4 and 5 and Fig. 12). 
Both EEG and ECG had similar classification accuracies, 
although EEG alone was slightly better. Although data fusion 
of both EEG and ECG could increase accuracy to 77.4% for 
prediction, it reduced the accuracy for detection to 70.9% 
(Fig. 12).

4.3  EEG considerations
Some participants were predicted at 30–32  s (samples 3, 
4, 18, 24, 27) but not at 90–92 s and vice versa (samples 9, 
22 and 23). A hypothesis was that spike count, MSSQ-
short percentile scores, SSQ total scores, or CS onset times 
could explain why some participants were predicted in one 

baseline segment but not the other. This was not the case, 
as none of the above showed any deviation from the norm 
when graphed (Appendix Figs. 13, 14, 15, 16, 17, 18).

It was hypothesized that the spike count at each channel 
would be different in the CS groups compared to controls 
at all time segments. We found that the spike count was sig-
nificantly lower in the CS group than in the controls at the 
30–32 s baseline segment (for P4, Fz, Cz PO3, F3) and during 
VR immersion (O2) (P < 0.0001), but not at 90–92 s. Sample 
7 in 30–32 s has a high spike count compared to others, as 
does sample 10 during VR immersion, but removal of these 
samples does not change the statistical differences (30–32 s 
P < 0.0001, VR immersion P < 0.001) between CS and con-
trols spike count. Classification accuracy, however, remains 
similar for 30–32 s and 90–92 s analysis (76.6% and 75.0%, 
respectively).

Fig. 7 Neuron proportion clustered by connection weights in the subtracted SNNr = SNNr/control – SNNr/cs at resting-state baseline 30–32 s. Blue 
indicates higher proportion, red indicates less neuron proportion. It shows a larger difference between the CS and control subjects in the brain 
areas Cz, F3, P4, PO3, Fz, Pz and C3, with a dominant factor of Cz
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4.4  ECG and HRV considerations
Sympathetic indexes (SNS + SI) outclassed other HRV 
parameters in terms of classification accuracy. A nor-
mal control baseline may be easy to predict or detect, 
but small changes in these HRV values may not always 
equate to cybersickness. HRV parameters were useful 
for classification but there were no significant differ-
ences (p>0.05) between CS and Ctrl groups according to 
a Mann Whitney U rank test. The statistical method may 
have been  limited in its ability to capture relevant dif-
ferences between groups and this points towards more 

complex methods of analysis. Furthermore, both of the 
KNN algorithms employed here employ a min/max vot-
ing type on the importance of K-neighbours, which takes 
into account a weighted Euclidian distance via signal to 
noise ratio (SNR) between sample data points. These 
weightings between all data points and between K- 
neighbours are still influenced by the sample sizes and 
distribution of the data. Therefore, it may also be possi-
ble that a larger sample size is needed to more accurately 
represent cybersickness.

Fig. 8 Resting-state baseline 90–92 s subtracted network dynamics. Functional connectivity of neurons is represented by a right hemisphere 
medial view and b axial view. Blue lines are positive connections, red lines are negative connections. Brighter neurons have stronger connections. 
Feature interaction networks between channels are represented by c right hemisphere medial view and d axial view. Thicker lines indicate a 
stronger interaction whether they be positive or negative. These interactions confirm our hypothesis that even at the 90–92 baseline, there is a 
significant difference between the brain information processes of CS versus control subjects
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4.5  Part 2
An extensive analysis was conducted on all 2s, 5s and 
10s time segments  in the entire baseline recording 
with 5 channels and 32 channels training. 5 channel 
trained cubes provided the highest accuracies. The 2 s 
time segment relating to 110–112 s trained on 5 chan-
nels (O1, F8, F7, P8, T7), with only one of I–O connec-
tion (F7 channel) used for prediction, yielded the best 
prediction results of 85.9% accuracy. Overlapping time 
segments for data lengths 5  s and 10  s did not reach 
the same performance, achieving a max 75–76% using 
the best combination of I–O connections. In addi-
tion, detection performance was improved to 76.6% 
after SDSP optimization.  Data fusion of this  opti-
mised  EEG  feature vector  with ECG HRV param-
eters  provides  minimal changes in the ECG  accuracy: 
77.4% (part 1) versus 74.2% (part 2) for prediction, 
70.9% (part 1) vs 72.6% (part 2) for detection (Table 6). 

5  Discussion
5.1  Classification
This paper presents a proof of concept for on-the-spot pre-
diction of cybersickness at resting state baseline and near-
instant detection of cybersickness during its onset. The 
algorithms are based on brain inspired SNN architectures 
and HRV classification. Another study has also demon-
strated the predictive capacity of their algorithm for CS at 
resting baseline with a smaller sample size of n = 19 [27]. 
Near-instant detection was demonstrated by Nam et  al. 
[28] but required PCA preprocessing, power spectral analy-
sis for EEG and 7 other biosignals. The present study shows 
that only 2 s of EEG data and 30 s of ECG data are required, 
and both biosignals can be used individually or together to 
predict and detect CS. The modified deSNN-KNN classifi-
cation algorithm produced the best results in terms of accu-
racy, over LDA and light-GBM. It was found that similar 
classification accuracies can be obtained using either earlier 

Fig. 9 Neuron proportion clustered by connection weight at 90–92 s resting-state baseline. Blue indicates higher proportion, red indicates less 
neuron proportion. It shows a larger difference between the CS and control subjects in the brain areas T8, CP6, Fz, T7, FC5 with a dominant factor of 
T8
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(30–32  s, 76.6%) or later time segments (90–92  s, 75%) at 
baseline. Upon further investigation, the study found that 
time segment optimization was still important (85.9%). Sim-
plifying feature vectors by removing reservoir—output neu-
ron connections, and leaving the direct connections of input 
neurons to output neurons increases accuracies (Tables  1, 
2 and 3). In addition, reducing redundancy in training data 
by focusing on key cybersickness relevant areas also has 
the same positive effect on accuracy. However, in the case 
where a model is trained on all 32 features, but only the top 
5 features are considered, a reduction leads to a decrease in 

accuracy (75.00–68.80%) (Table  3). This highlights that in 
idealistic scenarios, not just a few but all features a model is 
trained on should be considered when eliminating redun-
dancy. However, it is important to note that there is a 
trade-off in considering all features, as computational cost 
increases when conducting exhaustive searches.

Our analysis did not reveal why some participants were 
predicted in one baseline segment but not the other. An 
explanation is that this could be due to differences in the 
temporal characteristics of the spiking activity of neurons 
captured by the connection weights between input clusters 

Fig. 10 Cybersickness network dynamics of the SNNr = SNNr/control—SNNr/cs, in VR. Functional connectivity of neurons is represented by a 
(medial view) and b (axial view). Blue lines are positive connections, red lines are negative connections in a and b. Brighter neurons have stronger 
connections. Feature interaction networks between channels are represented by (c) and (d). Thicker lines indicate stronger interaction whether they 
be positive or negative. These interactions confirm our hypothesis that there is a significant difference between the brain information processes of 
CS versus control subjects during the CS manifestation when subjects are exposed to VR. Some of these interactions have been captured already at 
baseline (see Fig. 6 and Fig. 8)
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and between individual reservoir neurons. Another expla-
nation could be due to the nature of clinical studies, where 
there is interindividual variation between participants.

Fusion of EEG and ECG did not yield much improve-
ment in accuracy, and in the case of detection it wors-
ened accuracies in part 1. Multi-modal data fusion was 
investigated to explore if information from two organs 
would lead to increased accuracy, especially because 
they are biologically linked through the nervous system 
both in anatomy and also in association to nausea [29]. 
Because of the disparity in classification performances 
between EEG and ECG, it is likely that the classification 

algorithm’s ability to differentiate strongly between labels 
is ‘drowned’ out by the ECG HRV features, which is why 
the EEG now adds no useful information for classifica-
tion beyond what is already there. It is also possible that 
KNN being a distance-based algorithm, gets worse with 
higher dimensional feature vectors, a trend shown as well 
in the improved classification performances the less fea-
tures there are in the feature vector.

5.2  MSSQ and SSQ scores
In our experiment, the MSSQ-short was not a good pre-
dictor of cybersickness induction or sickness ratings. This 

Fig. 11 Neuron proportion in SNNr = SNNr/control—SNNr/cs, clustered by connection weights during a VR experiment. Blue indicates a higher 
proportion, and red indicates a lower proportion of neurons. The difference in the connectivity confirms our hypothesis that there is a significant 
difference between the brain information processes of CS versus control subjects during the CS manifestation, when subjects are exposed to VR, 
with dominating brain areas being O2, Cz, Fp2, Fp1 and Fc6. Some of these areas have been captured already at baseline (see Fig. 7)
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Table 1 Prediction accuracies of LDA, modified KNN and LGBM classification algorithms at baseline 30–32 s for all subtracted SNNr 
cubes

Top accuracies are highlighted in bold

Prediction 30–32 s

I–O connection 32 Channels trained 5 Channels trained

LDA KNN LGBM LDA KNN LGBM

1471 reservoir + I-O 59.4% 65.60% 68.8% 53.1% 67.20% 53.1%

32 62.5% 67.20% 62.5% N/A N/A N/A

5 54.7% 60.90% 54.7% 59.4% 73.40% 59.4%

P4 48.4% 65.60% 57.8% 46.9% 51.60% 51.6%

Fz 50.0% 59.40% 46.9% 57.8% 70.30% 70.3%

Cz 43.8% 60.90% 57.8% 39.1% 60.90% 54.7%

PO3 0.00% 57.80% 48.4% 0.00% 57.80% 54.7%

F3 53.1% 62.50% 62.5% 53.1% 64.10% 64.1%

Best combo out of 5 Cz + F3 56.3% P4, Fz, Cz 75.00% P4, PO3 64% Cz + F3 62.5% Fz, Cz 76.6% Cz 70.3%

Table 2 Prediction accuracies of LDA, modified KNN and LGBM classification algorithms at baseline 90–92 s for all subtracted SNNr 
cubes

Top accuracies are highlighted in bold

Prediction 90–92 s

I–O connection 32 Channels trained 5 Channels trained

LDA KNN LGBM LDA KNN LGBM

1471 reservoir + I–O 53.1% 67.20% 60.9% 50.0% 65.60% 73.4%

32 57.8% 70.30% 64.1% N/A N/A N/A

5 51.6% 68.80% 70.3% 54.7% 64.10% 68.8%

T8 48.4% 71.90% 60.9% 50.0% 62.50% 56.3%

CP6 59.4% 54.70% 56.3% 56.3% 64.10% 67.2%

Fz 50.0% 60.90% 59.4% 0.00% 64.10% 54.7%

FC5 18.8% 60.90% 56.3% 42.2% 60.90% 54.7%

T7 23.4% 65.60% 53.1% 42.2% 57.80% 54.7%

Best combo out of 5 T8 + CP6 + Fz 59.4% T8 73.40% T8 61.3% T8,CP6,Fz,FC5 57.8% T8, CP6 75% T8,CP6 66.1%

Table 3 Detection accuracies of LDA, modified KNN and LGBM classification algorithms at the time of the CS event for all subtracted 
SNNr cubes

Top accuracies are highlighted in bold

Detection CS onset

I–O connection 32 Channels trained 5 Channels trained

LDA KNN LGBM LDA KNN LGBM

1471 reservoir + I–O 57.8% 70.30% 75.0% 56.3% 57.80% 65.6%

32 65.6% 75.00% 70.3% N/A N/A N/A

5 50.0% 62.50% 67.2% 53.1% 62.50% 60.1%

FC6 59.4% 65.60% 62.5% 53.1% 67.20% 65.6%

Fp2 42.2% 56.30% 59.4% 43.8% 59.40% 59.4%

Fp1 46.9% 60.90% 57.8% 0.00% 64.10% 59.4%

Cz 25.0% 56.30% 54.7% 53.1% 56.0% 64.1%

O2 51.6% 53.10% 45.3% 0.00% 50.0% 59.4%

Best combo out of 5 FC6 59.4% Fp2, Cz 68.80% Fp1,Cz 68.8% FC6 + Fp2 + Cz 
57.8%

Fp2, Cz 68.80% FC6,Fp1,Cz 68.8%
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points towards the need for questionnaires more targeted 
at visually induced motion sickness [30] to assess suscep-
tibility. SSQ scores were a good adjunct to the subjective 
cybersickness reports in the separation of cybersick and 
control groups.

5.3  Related spatiotemporal brain dynamics were discovered  
in the following areas

Fz Brodmann 8 visual attention and eye movements.
T8, T7: Auditory processing.
CP6: Auditory processing, speech comprehension.

Table 4 Prediction accuracies of LDA, modified KNN and LGBM classification algorithms at different time segments for the best 
combination of HRV parameters

Top accuracies are highlighted in bold

ECG prediction

Time segment ML algorithm

LDA KNN LGBM

2 Min baseline 56.5% SI + SDNN 74.2% PNS + SNS 69.4% SNS

15–45 s 61.3% PNS + SNS + SDNN + RMSSD 67.7% SI 67.7% SNS + SI + RMSSD

75–105 s 62.9% PNS + SNS 74.2% SNS 71.0% SNS + SDNN

25–35 s 6.5% RMSSD 67.7% RMSSD 61.3% RMSSD

85–95 s 16.1% RMSSD 59.7% RMSSD 51.6% RMSSD

Table 5 Detection accuracies of LDA, modified KNN and LGBM classification algorithms at different time segments for the best 
combination of HRV parameters

Top accuracies are highlighted in bold

ECG detection

Time segment ML algorithm

LDA KNN LGBM

2 Min VR 61.3% ( PNS or SDNN) + SNS + Mean HR 72.6% SNS + SI 69.4% SI + SDNN

30 s VR 66.1% PNS + SNS + SI 69.4% PNS + SNS + SI/ PNS + SI + RMSSD 67.7% SI + SDNN + Mean HR

VR 10 s 56.5% RMSSD 58.1% RMSSD 54.8% RMSSD

Fig. 12 Best KNN classification accuracies for EEG and ECG (HRV) in multiple time segment analyses

Table 6 Improved accuracies for CS prediction and detection 
using 5 channel EEG trained cubes at all time segments in the 
entire baseline recording

Top accuracies are highlighted in bold

Analysis included time segment and data length optimization (prediction only), 
and SDSP optimization of the mod, driftup and driftdown parameter. Prediction 
used modified KNN algorithm. EEG trained on top 5 channels. Neuron 
proportions at 110-112s: O1 (9%), F8 (9%), F7 (7%), P8 (7%), T7 (6%).  Fusion 
accuracies increased for detection but not for prediction

EEG EEG + ECG fusion

Prediction 85.9% (F7, 110-112s I-O 
connection)

74.2% (75–105 s, SNS)

Detection 76.6% (FP1, Cz I-O con-
nection)

72.6% (2 min, SNS + SI)
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O1, O2: Retinotopic mapping of visual scene, edge 
detection.

P4: Angular gyrus attention, memory retrieval, language 
number processing, spatial cognition.

PO3: Associative visual cortex (V3, V4, V5).
F3: Frontal eye fields, visual attention and eye movements.
FC5, FC6: Brocas speech production and articulation 

(primarily left hemisphere), language processing.
FP1, FP2: Executive function, decision making.
F7, F8: Active maintenance of stimulus information, 

interoceptive, limbic emotion-motivational, and sensory 
input integration.

CS is a complex condition with many brain areas 
involved [31, 32]. Presented in this study is functional 
connectivity of the brain that predicts future CS, mean-
ing that an individual with similar neural maps may be 
susceptible to cybersickness, and connectivity that marks 
the CS event. In the present study, a high neuron propor-
tion grouped by connection weight of frontal (FC6, FP1, 
FP2) regions during the CS event, and temporal regions 
(T8) during resting baseline are consistent with another 
study showing changes in these areas well into the CS 
event. In addition, areas involved in CS include those for 
visual + attention processing and executive function (CP6, 
O2, PO3, F3, F4, FP1, FP2). Liu et al. [31] found reduced 
gravitational frequency means (transition of EEG power 
spectral density, temporal changes within a frequency 
band), and gravitational frequency standard deviation (dis-
persion of brain signal) at FP1, FP2, TP9 and TP1. Power 
spectral entropy (disorder of time sequence signals and 
irregularity of multi-frequency component signals) and 
Kolmogorov complexity (time domain complexity) were all 
reduced at FP1 and FP2 during VIMS [31]. However, it was 
noted that these changes may be related to other factors, 
such as alertness level or various mental conditions, and 
not limited or specific to VIMS. Our finding of an increase 
in O2’s interaction with other areas during cybersickness 
highlights that visual processing is altered beyond just the 
demands of normal visual processing in VR. O2 has been 
selected as an important feature in other machine learning 
studies as well [28, 33, 34], but the possible differences in 
results compared to the discussed brain analysis and imag-
ing studies may be in the temporal specificity (2 s long) of 
our analysis compared to longer data lengths analysed.

Of interest is the brain activity hub found at Cz, which 
had altered connectivity at resting-state baseline as well as 
during the onset of cybersickness when compared with con-
trols. Reduced spike count at Cz before VR immersion may 
indicate that there is less frequency of communication from 
this area to other connected areas. Cz interacts with three 
cortices simultaneously, the somatosensory, motor and also 
is positioned over the mid cingulate, which has increased 
functional connectivity with the left V5/MT during 

cybersickness [35]. Krokos, Varshney [36] found high activ-
ity power in the central regions similar to the location of Cz, 
of average scalp maps according to independent component 
analysis. Brodmann area 5 corresponds to Cz, which is part 
of the superior parietal lobule and post central gyrus. It is 
located immediately posterior to the primary somatosen-
sory cortex. Neuroimaging evidence suggests that this area 
contributes to movement planning. Furthermore, one study 
showed a correlation between the activity of area 5 neurons 
and the starting or final coordinates of limb movement. This 
suggested that BA5 is involved in processing spatial infor-
mation for limb movement. Emerging evidence suggests 
that BA5 is also involved in the inhibition of movement [37]. 
A transcranial magnetic stimulation study found a causal 
role for BA5 in the regulation of corticospinal output dur-
ing preparation that differentiates between whether a move-
ment is withheld or executed [38]. Cz’s role in movement 
and also as a marker of future cybersickness at resting base-
line lends possible credence to the postural instability theory 
of motion sickness, which postulates that postural insta-
bility is both a marker and a predictor of motion sickness, 
likely extending as well to cybersickness in virtual reality 
[39]. Although our results suggest that processes related to 
motor control are altered during the event, further research 
is still required to link the brain dynamics related to postural 
instability  and cybersickness. Furthermore, a recent study 
shows that postural instability itself is not a good predictor 
of cybersickness [40]. For purely visually induced motion 
sickness (VIMS), increases in functional connectivity were 
also found between the right MT/V5 and anterior insula. 
Decreased functional connectivity was also found between 
the left and right V1 [35]. The left MT/V5 in particular is an 
area important for processing of “what” but not “where”, in 
priming for motion direction but not spatial position [41]. 
Nonetheless, cortical areas that control movement and vis-
ual processing are clearly involved in cybersickness.

Interestingly, cortical areas for visually induced cyber-
sickness also overlap with areas involved in vestibular pro-
cessing: Cz and FC6—premotor and supplementary motor 
(movement processing, planning and inhibition) and P4—
medial superior temporal (motion detection). In this study, 
it can be observed that the size of the nodal cluster and 
strength of connectivity shift to right hemispheric domi-
nance during CS, a preference also observed in vestibular 
processing. Overall, there appears to be an alteration of 
activity and connection in areas related to motor control 
and planning, as well as visual processing. These areas may 
become targets of intervention for future studies [29].

F7 was highlighted as an area of interest after its correla-
tion as an input to produce high accuracies in part 2 of the 
analysis. F7 relates to Brodmann area 45, the inferior fron-
tal gyrus (IFG) [42]. The IFG and also anterior insular (AI), 
which also has associations with V5/MT as described above, 
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is part of the ventrolateral prefrontal cortex (VLPFC). The 
VLPFC is involved in a host of functions related to active 
maintenance of stimulus information, including being both 
a control and integrative node in the brain and an interface 
between sensory and motor areas [29, 42]. Not only does it 
handle awareness of the immediate moment but also imple-
mentation of reactions to it. Furthermore, it is involved in 
forming immediate connections between sensory process-
ing and action control [43]. In addition, F7 integrates intero-
ceptive, limbic emotion-motivational (from orbitofrontal 
and subcortical areas), and sensory input (object identity 
from the ventral visual pathway) [43, 44-46]. In particular, 
visual information of behavioural significance travels from 
the ventral pathway to the VLPFC, and later to the dorso-
lateral prefrontal cortex (DLPFC) and arcuate area. From 
here additional information from the dorsal pathway is then 
integrated to form a precursor of motor command [44]. In a 
transcranial magnetic stimulation (TMS) study, it was found 
that the left VLPFC had a role in the regulation of negative 
emotions using positive reappraisal, which is the ability to 
reinterpret the meaning of an emotional event or stimulus 
into a more positive light. The VLPFC further produces 
a top-down biasing effect [47] that drives selection and 
retrieval dynamics in the posterior cortex [43, 45-48]. There 
also exists underlying asymmetry in the activation of the 
IFG/AI. F7 refers to the left IFG, and it has been found that 
incongruency in a flanker task activates IFG/AI, whereas 
the right IFG/AI (F8 was also a top 5 feature along with F7 
in the best time segment) is activated more by errors [49]. 
The IFG/AI is also involved in post error slowing, where 
performance is slowed down due to making an error [29, 
43]. The IFG/AI-anterior cingulate cortex network is also 
thought to be involved in incongruency detection and 
resolving, and the ability to inhibit inappropriate responses 
[43]. All together, it is not too far a stretch to imagine that 
a brain area involved in immediate recognition, regulation, 
resolution and action on the incongruency and error in the 
environment could be one of the key role players in suscep-
tibility to cybersickness, and this is reflected in its superior 
performance for prediction amongst all other features. The 
additional discovery of F7 in part 2 of the analysis has led 
to a comprehensive picture of cybersickness, in which there 
is now a node specific in function for integration and con-
trol in response to incongruent environmental information 
commonly found in VR stimuli that induce cybersickness 
[50], in addition to areas mention above involved with visual 
processing (O2) and motor planning (Cz).

5.4  ECG
This study tried to use ultra-short-term RMSSD record-
ings in an attempt to classify cybersickness without having 
to capture more than 10 s of ECG data. Ultra-short-term 
RMSSD recordings (30 s and 10 s) have been statistically 

reliable in previous studies, but this parameter alone does 
not yield high accuracies (Tables 4 and 5). Although reduc-
tions in RMSSD have been associated with cybersickness 
intensity, more evidence is needed to explore the role of 
parasympathetic cardiac indicators in cybersickness [51]. 
Conversely, nausea and visually induced motion sickness 
have been found to be mediated by the brain with links to 
sympathetic cardiac responses [29, 35, 52-54]. Although 
statistical differences between HRV parameters were 
not found, it was found that classification algorithms for 
cybersickness using sympathetic HRV indexes are still via-
ble. This finding is shared with other studies where HRV 
has shown promise for cybersickness classification [4]. 
This suggests that the differences in sympathetic param-
eters of HRV in cybersick people versus control are more 
complex and simpler types of statistical analysis may not 
capture this complexity.

5.5  Future suggestions and limitations
Given that HRV is computed using R–R intervals of an ECG 
wave, it may be the case that other parameters, arising also 
from other aspects of the ECG wave could be helpful as fea-
tures, such as those used in detecting other pathologies like 
atrial fibrillation [55-57]. Further research could elucidate 
on this matter.

The NeuCube SNNr has some similarities to a liquid state 
machine (LSM) [58]. In a LSM, both reservoir computing 
[59] and a spiking neural network is used to learn dynami-
cal systems. Spike inputs cause a propagation of spike activ-
ity throughout the reservoir, which are like ‘ripples’ caused 
by a ‘stone falling into liquid’. However, NeuCube differs in 
that the structure is brain-inspired with stationary spatial 
mapping of inputs, and in that it uses unsupervised and 
supervised learning [60]. This application of SNNr allowed 
for new knowledge generation about CS and directed fea-
ture selection, and even revealed promising targets for 
intervention. Still, the reservoir and output layer connec-
tions were detrimental to classification performance. It is 
likely that these connections served as noise to the classi-
fied feature vector. However, the information synthesized 
and stored within the SNNr is still meaningful and valuable. 
Other training parameters of the cube could be optimized 
such as the leak rate in membrane potential, the learn-
ing rate, refractory time for neuron firing and number of 
training iterations [6]. Nonetheless this points towards the 
need for future research on how to maximize interpretabil-
ity and knowledge discovery alongside classification per-
formance. Moreover, given that SNNr activity is primarily 
influenced by its initial connections, a careful consideration 
on how to initialize neurons within the SNNr is needed. 
In this study, the neurons within the SNNr have no distant 
connections because of the limited radius set by the small 
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world connectivity approach. However, in an actual brain, 
there are both distant and local connections between neu-
rons [61]. NeuCube allows for long distance connections to 
be created through a probability [6], but these connections 
are not currently biologically informed. Future research can 
expand on how to generate a more biologically plausible 
SNNr and on how to use the information generated within 
it to enhance model performance.

Some additional points also require consideration. This 
study used machine learning to extract information about 
the spatiotemporal processes within the cybersick brain 
but future studies could explore the role of the interplay 
between motor control, motor planning and visual process-
ing in VR on CS. Although, all the EEG channel signals are 
inputted back into the spiking neural network in a spatially 
locked manner (to the same talairach coordinate), it is worth 
to note that, the present study also have the EEG’s well-
known limited spatial resolution. The feature interaction 
network analysis only showed interactions between cortical 
areas, but not whether they were increasing or decreasing 
connections. Future studies could shed light on how key 
cybersickness centers in the brain act to control the flow of 
information between cortical areas. Furthermore, the find-
ing that different features can be found at different time seg-
ments, but still give similar accuracies, points towards the 
complexity of the cybersickness condition within the brain. 
It may therefore be of interest to look at the change in fea-
tures over time, rather than the features at snapshots in time 
to understand cybersickness in more detail. Finally, it is not 

yet known if the multimodal data fusion shown in this study 
could be improved by other biosignals and this could be val-
uable research to conduct moving forwards.

6  Conclusion
The paper proposes and demonstrates that a brain-
inspired spiking neural network (SNN) model can be 
created and used for on-the-spot prediction of cyber-
sickness at resting state baseline and near-instant 
detection of cybersickness during its onset. Using this 
SNN model means that instead of storing raw data, 
each sample can be stored as a feature vector repre-
senting brain activity, which means less memory stor-
age and processing requirements. The model can be 
dynamically updated on new data, modifying both the 
weighted template neural map and the feature vectors 
to produce new insights. HRV alone or data fusion 
with EEG are useful biosignals for the prediction and 
detection. Motor processing areas under Cz, visual 
processing areas at O2, as well as control and integra-
tion of incongruent information at F7 are key sites for 
CS. These sites contain biomarkers as a precursor and 
detector of cybersickness and could be useful target 
areas for clinical intervention.

Appendix
See in Figs. 13, 14, 15, 16, 17, 18.
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Fig. 13 MSSQ percentile score breakdown for the CS group
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