
Goelz et al. Brain Informatics           (2023) 10:11  
https://doi.org/10.1186/s40708-023-00190-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Brain Informatics
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Abstract 

The aim of this study was to extend previous findings on selective attention over a lifetime using machine learning 
procedures. By decoding group membership and stimulus type, we aimed to study differences in the neural represen‑
tation of inhibitory control across age groups at a single‑trial level. We re‑analyzed data from 211 subjects from six age 
groups between 8 and 83 years of age. Based on single‑trial EEG recordings during a flanker task, we used support 
vector machines to predict the age group as well as to determine the presented stimulus type (i.e., congruent, or 
incongruent stimulus). The classification of group membership was highly above chance level (accuracy: 55%, chance 
level: 17%). Early EEG responses were found to play an important role, and a grouped pattern of classification perfor‑
mance emerged corresponding to age structure. There was a clear cluster of individuals after retirement, i.e., misclas‑
sifications mostly occurred within this cluster. The stimulus type could be classified above chance level in ~ 95% of 
subjects. We identified time windows relevant for classification performance that are discussed in the context of early 
visual attention and conflict processing. In children and older adults, a high variability and latency of these time win‑
dows were found. We were able to demonstrate differences in neuronal dynamics at the level of individual trials. Our 
analysis was sensitive to mapping gross changes, e.g., at retirement age, and to differentiating components of visual 
attention across age groups, adding value for the diagnosis of cognitive status across the lifespan. Overall, the results 
highlight the use of machine learning in the study of brain activity over a lifetime.
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Graphical Abstract

Classification of age groups and task conditions provides additional evidence for differences in electrophysiological
correlates of inhibitory control across the lifespan

Participants: N=222, age: 8-86 years, 5 age groups (children - old 
adults)

ResultsMethods and participants

Our analysis was sensitive to mapping gross changes, e.g., at retirement age, and to differentiating
components of visual attention across age groups. Machine learning thus extends classical
methods in that it can be used to test existing theories but also to extend them.
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1 Introduction
Selective attention (as part of inhibitory control) 
describes the ability to focus on relevant information 
while simultaneously suppressing irrelevant or distract-
ing input which is essential for the accomplishment 
of complex tasks [1]. This ability changes throughout 
the lifespan. Whereas selective attention develops in 
children due to the differentiation of brain areas and 
networks, the opposite is noticeable in older adults, 
namely, a reduction in selective attention likely related 
to dedifferentiation processes in the brain [2, 3]. Focus-
ing on the neuronal response to sensory stimuli meas-
ured with electroencephalography (EEG) differences in 
the distribution, amplitude, and latency of event-related 
potentials (ERP) were reported for different age groups 
[3]. Comparing six different age groups Reuter et  al. 
[4] confirmed a u-shaped function of ERP markers for 
encoding and processing speed (i.e., P1, N1, N2, and P3 
latencies), markers of visual processing and attention 
(i.e., P1 and N1 amplitudes) as well as gradual changes 
in markers of cognitive processing (N2, P3 amplitudes, 
and P3 distribution). Moreover, results suggest that 
different neural mechanisms underly performance in 
children and older adults [4]. The u-shaped function in 
previous ERP findings suggests that ERP components 
are similar between children and older adults despite 
fundamentally different mechanisms, i.e., differentia-
tion in children versus dedifferentiation in older adults. 
It is unclear whether these differences are reflected in 
distinctive brain activation patterns and to what extent 
lifelong changes in electrophysiological markers can be 
detected at the level of individual trials.

Recently, the use of machine learning techniques 
to study experimental effects in EEG studies gained 
popularity as a complement to classical ERP analyses. 
These methods are referred to as multivariate pattern 
analysis (MVPA) or decoding approaches and are based 
on classification algorithms developed in the field of 
brain–computer interfaces (BCI) [5]. The main idea is 
to train a machine learning model based on single-trial 
EEG data that allows to classify a certain behavior or 
experimental condition. This involves the automatic 
detection of generalizable multivariate patterns associ-
ated with the behavior or experimental condition. Tar-
geting the information content on a single-trial level 
with respect to an experimental condition rather than 
averaged activation on single electrodes and time win-
dows, such approaches can be seen as complementary 
to classical univariate ERP analyses [5]. Classification 
approaches are less dependent on a priori assumptions 
(e.g., selection of electrodes or time windows), and 
naturally simplify the problem of multiple comparisons 
[6]. In this way, these methods have higher sensitivity 
by exploiting the interdependence of EEG signals while 
omitting the information loss due to trial averaging. 
Moreover, additional analyses allow characterizing the 
cortical representation of a high number of stimuli, e.g., 
their dynamics and similarity [5, 7]. Nevertheless, these 
methods should be considered as a complement to the 
classical univariate methods, since directional effects 
cannot be represented. To study the neuronal response 
to sensory stimuli on single-trial level decoding 
approaches are often used in a time-resolved manner 
to investigate the time course of information density in 
relation to the stimulus. This includes determining the 
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times at which it is possible to determine the nature of 
a stimulus based on the neural response to it. Deter-
mining the dynamics of cortical stimulus processing 
is thus captured in a data-driven manner, providing a 
complement to classical ERP analyses. For example, 
visual object perception [8] or working memory were 
investigated using decoding approaches [9]. Recently, 
Vahid et  al. [10] identified predictive neurophysiologi-
cal processes related to N1 and N2 time windows on 
a single-trial level associated with selective attention 
using machine learning methods and highlighted the 
possibility of such methods to validate and form a new 
hypothesis in a data-driven way. Moreover, López-
García et  al. [11] successfully applied time-resolved 
decoding to study selective attention in a flanker par-
adigm and confirmed interference processing being 
reflected in the N2 time window on a single-trial level 
with this approach. Comparing decoding performance 
across groups could provide new insights into differ-
ences in the cortical representation of stimuli or tasks 
that would not have been possible with conventional 
EEG analyses. So far, this has been done for different 
age groups [, 12, 13] and patient groups [14]. The use 
of machine learning to derive generalizable principles 
from the complex interaction of time series data could, 
therefore, add value to the study of lifelong changes 
in the neural representation of selective attention by 
confirming hypotheses in a data-driven manner and 
exploring important implications for its applications [, 
15, 16].

Extending a previous analysis by Reuter et  al. [4], we 
aimed to use machine learning to further explore selec-
tive attention across the lifespan by decoding the neural 
representation of inhibitory control using classification 
in different age groups. We further aimed to explore the 
classification of age groups to infer age-related changes in 
selective attention. We hypothesized to classify the type 
of stimulus and group membership above chance in all 

groups. We further assumed different decoding trajecto-
ries in decoding stimulus types.

2  Methods
2.1  Data set
We used data from a total of 222 participants originally 
collected in three experimental studies each focusing on 
a different age group. Data sets comprised of EEG data 
recorded during a modified Flanker task [4]. The full 
data set includes 92 data sets collected in the setting 
of the Bremen-Hand-Study@Jacobs [, , 17–19] (Study 
1), 81 data sets as part of the re-LOAD project [20, 21] 
(Study 2) and 49 data sets as part of the CEBRA project 
[22] (Study 3). The data were first analyzed in a com-
prehensive manner in Reuter et  al. [4] including all 222 
participants. All adult participants gave their written 
informed consent. For children, guardians gave their 
written informed consent and children agreed to par-
ticipate. For Study 1 and Study  3 the German Psycho-
logical Society and for Study 2 the Ethics Committee of 
the Faculty of Humanities of the Saarland University, 
Germany, granted ethical approval. Participants older 
than 65 scored higher than 27 in the Mini-Mental State 
Examination (MMSE, [23]) or at least 23 in the Montreal 
Cognitive Assessment (MoCA, [24, 25]). Participants are 
separated in the following age categories [4]: children 
(8 to 10 years), young adults (20 to 29 years), early mid-
dle-aged adults (36 to 48 years), late middle-aged adults 
(55 to 64), old adults < 75 (66 to 75 years), very old adults 
> 75 (76 to 83 years). We excluded eight participants from 
further analysis as they had less than 35 correct trials in 
one of the conditions. Due to poor EEG data quality, we 
further excluded five participants. Group characteristics 
included in the final data set are displayed in Table 1.

2.2  Experimental procedures
All participants performed a modified version of 
the Flanker task previously reported in Reuter et  al. 

Table 1 Group characteristics

Late-ma late middle-aged, early-ma early middle-aged, std standard deviation, min minimum, max maximum

Group N (female) Age Number of trials

Incongruent Congruent

Mean Std N Mean Std Min Max N Mean Std Min Max

Children 46 (23) 9.32 0.65 3262 70.91 15.30 36 98 3026 65.78 13.27 38 94

Young 39 (34) 22.85 2.50 2554 65.49 24.31 40 109 2476 63.49 22.59 36 109

Early‑ma 21 (12) 42.62 3.61 2038 97.05 10.33 79 125 1951 92.90 8.39 75 106

Late‑ma 25 (14) 59.04 2.39 2378 95.12 10.65 71 109 2372 94.88 9.01 80 113

Old < 75 40 (36) 71.93 3.04 2355 58.88 19.73 40 111 2263 56.58 14.42 41 92

Very old > 75 38 (30) 78.14 1.94 2632 69.26 21.07 39 105 2506 65.95 21.60 36 101



Page 4 of 11Goelz et al. Brain Informatics           (2023) 10:11 

[17],Winneke et  al. [19, 56] and summarized in Reuter 
et al. [4]. The stimuli consisted of four circles surround-
ing a target circle in the middle. The target circle was 
either set to red or green and the task was to press the 
corresponding button with the index or middle finger of 
the right hand as fast as possible. The surrounding (flank-
ing) targets were either set to blue (neutral condition) to 
the same color as the target (congruent condition) or the 
opposite color, i.e., green target and red flanker and vice 
versa (incongruent condition).

The experimental procedures were identical between 
all studies except for trial number and stimulus duration. 
In Study 1 and Study 3, participants performed 300 tri-
als (approx. 100 trials per condition), whereas in Study 
2, they performed 150 trials (approx. 50 trials per con-
dition) in randomized order. Stimuli were presented for 
200 ms in Study 1 and Study 3, whereas in Study 2, stimuli 
were presented for 500 ms. Each trial started with a white 
fixation cross (300 ms), next a blank screen (200 ms) was 
presented followed by the presentation of the stimulus 
and a variable intertrial interval of about 950  ms (i.e., 
800  ms to 1100  ms). Participants did a minimum of 20 
practice trials and were asked to respond as fast and pre-
cisely as possible. Only congruent (no inhibitory control) 
and incongruent (inhibitory control) conditions as well as 
correct trials, i.e., trials with a correct response between 
100  ms and 1200  ms after stimulus onset, were consid-
ered in the following analyses.

2.3  EEG recordings and preprocessing
EEG was recorded with the same 32 Biosemi active elec-
trode system (ActiveTwo, BioSemi, Amsterdam, Neth-
erlands) throughout all studies. Electrodes were placed 
according to the 1020 system (Jasper, 26). Six additional 
electrodes recorded vertical and horizontal eye move-
ments as well as mastoid potentials. The sampling rate 
was set to 2048 Hz and an online band pass filter between 
0.16 and 100  Hz was used. Prior to classification we 
downsampled the data to 256  Hz and filtered between 
1 Hz and 40 Hz using the default FIR filter implemented 
in MNE-Python (version 1.1). Next, we cut the data to 
segments of 900 ms, i.e., − 100 ms to 800 ms from stimu-
lus onset.

2.4  Machine learning
For classification we relied on a combination of spatial 
filtering and classification using support vector machines 
(SVMs) with radial basis function (rbf ) kernel to clas-
sify the age group and stimulus type. Spatial filtering 
allows to extract induced spatial patterns, i.e., neuronal 
responses to external stimuli at single-trial level with not 
phase locked dynamics, and is thus advantageous com-
pared to the creation of averages across trials [27, 28]. To 

enhance signal to signal plus noise ratio, i.e., to enhance 
ERP responses we used the xDAWN algorithm [29]. The 
xDAWN algorithm was originally developed for P300 
evoked potentials in the BCI context and subsequently 
extended to any type of ERP (see Cecotti and Ries [27] 
for an overview). Compared to other spatial filtering 
methods like principal component analysis or independ-
ent component analysis xDAWN was shown to be more 
suitable for the analysis of ERPs aiming at estimating 
temporal and spatial signatures [30]. Based on the pre-
processed EEG segments (cf.2.3), five spatial filters were 
trained using the training data only (cf.2.4.1). Spatially fil-
tered EEG signals were then classified using a SVM with 
rbf kernel. Scikit-learn (version 1.1.1), MNE (version 1.1), 
and imbalance-learn (version 0.10.1) were used to imple-
ment the machine-learning pipelines.

2.4.1  Classification of age group
We classified group membership on a trial-by-trial basis 
using all participants data to build a model capable of 
predicting the associated age group for each trial. We 
trained and tested our xDAWN + SVM model using 
stratified tenfold cross validation. We, therefore, ran-
domly split the data 10 times using all trials (N trials per 
fold: 21538.50 ± 363.91) of 188 participants for training 
and all trials (N trials per fold: 2981.30 ± 365.50) of 21 
participants for testing our model preserving the percent-
age of samples for each class, i.e., age group. To account 
for class inequality, we randomly subsampled the train-
ing data to the minority class in each fold. As such the 
same number of trials per age group was present in the 
training data. In addition to a model using all time sam-
ples, we aimed to capture time-resolved decoding perfor-
mance. That is, we trained and tested repeatedly based on 
20 data points with 19 overlapping data points and thus 
iterated from the beginning to the end of the trial to draw 
conclusions about decoding performance over time.

2.4.2  Classification of stimulus type
Stimulus type classification (congruent/incongru-
ent) was performed within participants, i.e., analogous 
to the group-level procedure, we trained and tested a 
xDAWN + SVM model for each participant individu-
ally. We divided all trials 10 times randomly in a training 
set (N trials: 113.61 ± 33.44) and a testing set (N trials: 
28.90 ± 8.33) preserving the percentage of samples for 
each class. We trained and tested the models in a win-
dowing approach using 20 data points with 19 data points 
overlap to infer decoding performance over time and to 
be able to compare this between age groups to determine 
the most discriminative features, i.e., time windows.
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3  Statistics
We calculated statistics with python using scipy (version 
1.8.0) and statsmodels (version 0.13.2). For group classi-
fication we report the confusion matrices including pre-
cision and recall. In addition, we calculated the accuracy 
score for each time window. To test if the model of age 
group classification performed above chance level, we 
calculated the threshold over which the classification 
results could be considered significant. We, therefore, 
relied on the method described in Combrisson and Jerbi 
[31]. Compared to a permutation approach which ran-
domly shuffles the labels (e.g., 1000 times) with the aim 
to create a null distribution against which the signifi-
cance of a model can be tested, this method uses a bino-
mial cumulative distribution to estimate the significance 
threshold of a classifier. Since permutation approaches 
are computationally very expensive, especially for large 
data sets and time-resolved decoding, we relied on this 
approach due to its computational efficiency and suit-
ability. Due to the large number of trials and our time-
resolved decoding approach, it was not feasible to 
generate a robust null distribution using a high number 
of group-level permutations. We had a sufficiently large 
database at the group level, which was more tolerant of 
deviations from the assumption of a binomial distribu-
tion due to cross-validation parameters, such as classifier 
type and feature space [32]. Besides, comparable results 
between this approach and a permutation approach were 
reported [31].

For task classification at an individual level, we 
reported the area under the receiver operating charac-
teristic curve (AUC) as a mean over all cross-validation 
folds for each time window. We relied on this metric 
rather than accuracy as López-García et al. [11] empha-
sized higher sensitivity of this score compared to accu-
racy for task classification over time. Since the number 
of trials within a subject was much smaller than on 
group levels and for this reason the assumption of a 
binomial distribution could not be accepted, we used 
the permutation approach on this level to test the mod-
els of stimulus type classification against chance [33]. 
Therefore, we shuffled the labels 1000 times for each 
participant creating a null distribution at the group 
level. From this distribution, we derived the threshold 
over which the classifier performance could be consid-
ered significant at an alpha level of 0.05. We extracted 
the maximum AUC score and timepoint of maximum 
AUC score for each participant. In the case of normal 
distributed data, we conducted one-way ANOVAs to 
assess the effects of age group on maximum classifica-
tion performance and timepoint followed by t tests for 
post hoc comparisons. Otherwise, we used nonpara-
metric Kruskal-Wallis test followed by Dunn’s tests for 
post hoc comparisons. For all tests, the alpha level was 
set to 0.05 and false discovery rate was used to correct 
for multiple comparisons [34].

Fig. 1 Classification Performance of group membership classification. A Confusion matrix including precision, recall for each group as well as the 
accuracy score (Acc.). B Accuracy as a function of time as mean over folds with 95% confidence interval. The gray bars correspond to the stimulus 
duration. Late-ma late middle‑aged, early-ma early middle‑aged, Acc accuracy
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4  Results
4.1  Classification of group membership
The classification of group membership is presented in 
Fig.  1. Classification was well above chance level (accu-
racy = 0.55, chance level: 0.17 at p = 0.05). Visualizing 
misclassifications in a confusion matrix (see Fig.  1A) a 
clear group structure emerged. While the classification 
of the children’s group worked best, trials in the remain-
ing groups were increasingly classified into adjacent age 
groups. Here, a larger number of misclassifications can 

be observed between the younger and early-/late-middle 
aged adults and a clear cut off to the older adults < 75. 
Within the two older groups old > 75 and old < 75, how-
ever, the highest number of misclassifications can be 
observed. With respect to time-resolved decoding clas-
sification performance was up to 10% higher during the 
task. The classification performance increased shortly 
after stimulus onset, with the maximum between 100 ms 
and 200  ms which is where N1 and P1 are typically 
reported (see also Fig. 2D). Thereafter, the classification 

Fig. 2 Performance for decoding of stimulus type. A Time of maximum decoding performance. B Maximum decoding performance. Each point 
represents one participant, large points represent the group average. *Denotes a significant difference. C Group means decoding trajectories. D 
Whole data set ERPs at electrodes O2, Fz, Pz. AUC  area under the receiver operating characteristic curve,  late-ma late middle‑aged, early-ma early 
middle‑aged
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performance decreased until the end of the trial (see 
Fig. 1B).

4.2  Results of task classification and their differences 
between groups

Task Classification was possible above chance level for 
95.75% of all participants (chance level: 0.61 at p = 0.05, 
see Fig.  2B). Classification failed in three children, two 
young adults, and one participant in each of the other 
groups. The AUC score significantly differed between the 
groups [F(5206) = 4.805, p < 0.001]. Post-hoc comparison 
revealed significant lower scores in children compared to 
young adults, late middle-aged adults, old adults < 75 and 
very old adults > 75 (p < 0.05).

While the maximum AUC score occurred around 
200  ms to 300  ms in the young, early middle-aged, and 
late middle-aged adults (see Fig.  2A , C), this was later 
(at approximately 400  ms) in the children and both 
groups of older adults (old adults < 75 and very old adults 
> 75). Overall, however, this timepoint was more dis-
persed among the children and old. The timepoints cor-
responded to the ERP components N1, N2, and P3 (see 
Fig.  2D). Kruskal-Wallis test revealed significant group 
differences for this [H(5) = 35.575, p < 0.001]. Children’s 
AUC scores peaked significantly later than AUC scores 
of young, early middle-aged, and late middle-aged adults. 
In addition, the maximum AUC score occurred later in 
old adults < 75 compared to early middle-aged adults. 
Further old adults < 75 and very old adults > 75 had later 
peak AUC scores than the young and the late middle-
aged adults (all p < 0.05, see Fig. 2A).

5  Discussion 
In this study, we aimed to extend previous results [4] on 
the development of selective attention (as one part of 
inhibitory control) across the lifespan. We used classifi-
cation algorithms on EEG data recorded during a flanker 
task to infer group differences in the dynamics of cen-
tral processing of selective attention by decoding group 
membership and the type of stimulus presented at the 
individual level. Both, decoding of group membership 
and decoding of stimulus type were significantly above 
chance. By studying the decoding performance over 
time, we found that differentiation of groups was per-
formed best early after stimulus onset at around 100 ms 
to 200  ms. Furthermore, we found different trajectories 
of decoding the stimulus type between groups. While 
decoding performance in younger adults to late middle-
aged adults was maximal at about 200 ms, this was highly 
variable in children and older adults. On average, the 
period around 400 ms was most important for decoding 
the stimulus type in these groups.

5.1  Classification of group memberships peaked early 
after stimulus onset

The classification of group membership was above 
chance level. Precision and recall of the group of chil-
dren were highest. Misclassified trials in the other groups 
were mainly assigned to adjacent age groups. Overall, 
this reflected the age structure of the sample. While the 
gap between children and the next older group of young 
adults was quite large, it was smaller for the other groups. 
However, it should be emphasized that misclassifica-
tion in the two oldest age groups of old adults < 75 and 
very old adults > 75 years was quite high in comparison 
and occurred mainly within these groups. This is cer-
tainly partly a reflection of the data structure but could 
also be an indicator for the high variability of neural 
activity within these age groups as aging trajectories are 
highly individual [35]. It should also be noted that there 
was almost no misclassification between the two oldest 
groups and children. While ERP markers in the litera-
ture on lifetime changes of selective attention are often 
described as u-shaped [3, 4], our results may highlight 
that different mechanisms at the beginning and the end 
of this u-shaped trajectory, i.e., differentiation in children 
and dedifferentiation in older individuals, are reflected 
in different brain activation patterns. Furthermore, late 
middle-aged adults were less likely to be misclassified, 
although the age gap to the adjacent groups was compa-
rable to that between the two older groups. Late middle-
aged adults were also rarely classified as older, which 
could indicate strong changes in cognitive performance 
after reaching retirement age (65 years in Germany). We 
are unable to shed light on this due to a lack of data on 
participants’ retirement. However, a decline in cogni-
tive abilities and cerebral perfusion after retirement is 
reported in the literature [36–38]. Our results suggest 
that this is also detectable at the neural level based on 
EEG recordings which might argue for the diagnostic 
value of task-related EEG.

Classification performance increased shortly after 
stimulus onset, peaked at 100 ms and 200 ms and gradu-
ally decreased until trial offset. While group differences 
based on averaged ERP data were described in the com-
ponents N1, P1, N2, and P3 in previous research [4], we 
were able to show here that even at the single-trial level 
group-differentiating information is present. Instead 
of selected timepoints and electrodes, our analysis fur-
ther allowed us to determine in a data-driven way at 
which timepoints the EEG signal was best differentiable 
between groups. The peak in decoding performance was 
present at 100  ms to 200  ms in which P1 and N1 ERP 
components are present (see Fig.  2D) indicating that 
the early components contribute most to the classifica-
tion. These ERP components are typically discussed in 
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relation to sensory inhibition and visual attention [39, 
40]. Other studies have found P1 and N1 components in 
children and older adults to be of greater amplitude and 
latency [41–44]. In the previous study, large amplitude 
differences were found between age groups in N1 and 
P1 components, which was interpreted as a reduction in 
intracortical inhibition in children and older adults, and 
as increased visual attention in older adults [4]. The high 
decoding performance found just in this period under-
lines these previous findings at the level of single-trials. 
However, maturation processes in childhood and changes 
in scalp to scull conductivity over the lifespan could have 
had an influence [45].

In general, classification performance during the task 
was up to 10% higher than before the onset of the stimu-
lus. This highlights the added value of task-related EEG. 
Thus, task-related EEG could be used in clinical contexts 
to predict, for example, the cognitive status of patients. 
This could be especially of interest in contexts, such as 
the classification of mild cognitive impairment, where 
resting state EEG alone could have limited power [46, 47].

5.2  Trajectories of decoding stimulus type differed 
between group

Peak performance of stimulus type decoding at individ-
ual level was above chance level for over 95% of all partic-
ipants which is in line with previous ERP results finding 
differences between stimulus types in N2 amplitude and 
P3 amplitude and latency [3, 4]. There were no group dif-
ferences in maximum decoding performance between 
all adult groups. In children, on the other hand, decod-
ing performance was significantly lower. The classifier 
was less able to distinguish between trials that required 
inhibitory control and those that did not in this group. 
At the behavioral level, lower performance in attentional 
control tasks has been reported in children and it is pro-
posed that the ability to process interfering information 
develops slowly in children [48]. In fact, this could also 
be shown in the present data at the behavioral level [4]. 
Here, especially in children, a large interference effect 
was shown, i.e., a lower accuracy in the incongruent com-
pared to the congruent condition, which could indicate 
that inhibitory control has not yet fully been released. 
Moreover, it was shown from ERP amplitudes of N2 and 
P3 components that these are less differentiated between 
stimuli with different attentional demands in older adults 
but also in children confirming this assumption on the 
neural level [4, 49]. However, only marginal interac-
tion effects between stimulus type and age group were 
found based on classical ERP analyses [4]. Using machine 
learning we go beyond these earlier ERP results, as we 
found different time curves or trajectories of classifica-
tion performance between the age groups, characterized 

by different time windows of maximum decoding per-
formance. Here, we found high variability in children 
and the two oldest age groups suggesting a high degree 
of individuality in visual attention in these age groups 
which may reflect growth in children or deterioration 
in older adults. For younger to late middle-aged adults, 
the trajectories were very similar. The highest decoding 
performance was observed in the time frame around 
200  ms, suggesting the importance of this time frame 
for discriminating between congruent and incongruent 
conditions. This is consistent with findings on decoding 
stimulus type in tasks that capture inhibitory control [10, 
11]. ERP components N1 and N2 also occur during these 
periods (see Fig. 2D and Reuter et al. [4]). N1 was shown 
to be modulated by early visual attentional processes [50] 
and N2 was discussed as marker of conflict processing in 
flanker tasks [51]. In contrast, maximum decoding per-
formance in the two oldest age groups was delayed and 
peaked at approximately 300  ms to 400  ms, suggesting 
that later timing and components are critical for classi-
fication between stimulus categories in these age groups. 
This difference in the time windows that allow to differ-
entiate between trials with inhibitory control and trials 
without was not reflected in the previous ERP analyses 
[4] and could indicate the general slowing of cognitive 
processes [52].

While decoding or classification approaches have been 
used in aging research to map neural distinctiveness in 
the visual [2] or motor system [13, 53] related to dediffer-
entiation, we show here that changes in the dynamics of 
stimulus processing can also be identified using machine 
learning methods. The methods made it possible to map 
the processing of stimuli at the individual level. On one 
hand, this could provide additional diagnostic value and 
be tested in clinical applications. On the other hand, the 
identified differences between the age groups could have 
implications for the development of technical systems for 
the automatic identification of attentional states.

5.3  Methodological considerations 
By combining different data sources, it was possible to 
access a large data set for our analyses based on machine 
learning. However, there are small differences between 
the individual studies due to methodological differences 
in Study 2. In particular, the presentation length of the 
stimulus was longer in this study. Although, subjects of 
Study 2 were included in three, the younger and the two 
older, age groups and we cannot observe many misclas-
sifications between these age groups in the group clas-
sification, we assume that these differences did not have 
a large impact on the results [4]. Furthermore, the data 
set of Study 2 consisted of female participants only. For 
this reason, female participants were overrepresented in 
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the young adult group and the two older groups, but the 
influence of gender in this data set was already estimated 
to be small [4]. Last, the number of trials performed was 
lower in Study 2. To have a database as large as possi-
ble as a basis for the machine learning analyses and to 
reduce selection errors, we decided against rectifying 
a certain number of trials. Furthermore, the influence 
of the number of trials can be assumed to be small [10]. 
Another influencing factor we would like to point out is 
the influence of different noise levels in the EEG data, 
which might have influenced the classification and thus 
the group comparisons. It is unclear and data set specific 
how large the effect is on the classification performance. 
Our previous analyses with different preprocessing strat-
egies showed comparable results. Unlike the raw data, we 
further used xDAWN spatial filtering to maximize signal 
to signal and noise ratio at the individual level. Finally, 
we would like to point out that this analysis should be 
seen as a complement to previous ERP results, since we 
are examining the information content of stimulus pro-
cessing to study differences in the cortical representa-
tion of inhibitory control across the lifespan but cannot 
make any statement about the direction of the effects. 
However, using machine learning methods in this work, 
we were free of assumptions regarding the localization 
of effects in space (electrodes) and time (time windows) 
and were able to achieve a higher sensitivity to stimulus 
effects across the lifespan. This approach can be attrib-
uted to decoding or MVPA approaches and could be 
used in studies with higher number of stimuli as starting 
point for further analyses to study the representational 
structure of stimuli as it is done in the representation 
similarity analysis (RSA) framework [7]. Thereby, the per-
formance of classifiers serves as a measure for the differ-
ence between two brain activity patterns. Cross validated 
metrics, as used in this study, are considered advanta-
geous [54].

6  Conclusion
In summary, we were able to extend previous results 
using machine learning techniques to detect age and 
task differences in cognitive processing on a single-trial 
level. This is especially crucial for a step behind classical 
ERP components and a more direct link between behav-
ior and neural dynamics [55]. The data-driven approach 
used in this research particularly highlights early atten-
tional processes in the classification of age groups and 
suggests the benefit of task-related EEG data in the clas-
sification of different age groups, which could be used in 
clinical contexts. With respect to information process-
ing in selective attention our analyses could confirm the 
relevance of time windows corresponding to N1 and N2 
components reported in ERP studies. Furthermore, the 

time windows relevant for inhibitory control differed 
between groups, i.e., later time windows were relevant 
in older adults, suggesting that different processes are 
important for selective attention at different ages. Over-
all, we showed that using machine learning compared 
to a priori selected electrodes and timepoints, we were 
able to obtain assumption-free insights into differences 
in inhibitory control over the lifespan. Machine learning 
thus represents an extension to classical methods that 
can be used to test existing theories but also to extend 
them.
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