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Abstract 

On-going, large-scale neuroimaging initiatives can aid in uncovering neurobiological causes and correlates of poor 
mental health, disease pathology, and many other important conditions. As projects grow in scale with hundreds, 
even thousands, of individual participants and scans collected, quantification of brain structures by automated algo-
rithms is becoming the only truly tractable approach. Here, we assessed the spatial and numerical reliability for newly 
deployed automated segmentation of hippocampal subfields and amygdala nuclei in FreeSurfer 7. In a sample of 
participants with repeated structural imaging scans (N = 928), we found numerical reliability (as assessed by intraclass 
correlations, ICCs) was reasonable. Approximately 95% of hippocampal subfields had “excellent” numerical reliability 
(ICCs ≥ 0.90), while only 67% of amygdala subnuclei met this same threshold. In terms of spatial reliability, 58% of hip-
pocampal subfields and 44% of amygdala subnuclei had Dice coefficients ≥ 0.70. Notably, multiple regions had poor 
numerical and/or spatial reliability. We also examined correlations between spatial reliability and person-level factors 
(e.g., participant age; T1 image quality). Both sex and image scan quality were related to variations in spatial reliability 
metrics. Examined collectively, our work suggests caution should be exercised for a few hippocampal subfields and 
amygdala nuclei with more variable reliability.
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Graphical Abstract

1 Introduction
The hippocampus and amygdala are brain regions 
that play key roles in generating and modulating our 
responses to emotions and stress [2, 66]; they are sub-
sequently two of the most commonly explored and 
cited brain regions in research. In fact, a query on Pub-
Med revealed that nearly 84,000 publications within the 
last 10  years alone referenced the hippocampus or the 
amygdala [1]. A clear understanding of the structure and 
function of brain regions supporting a variety of emo-
tion-related processes has implications for both psycho-
logical well-being and physical health [17]. For example, 
both the hippocampus and amygdala show volumetric 
alterations in different neurodegenerative diseases and 
various forms of psychopathologies, including Alzhei-
mer’s, Major Depression, Anxiety Disorders, and Autism 
[9, 31, 77, 87]. Continued study of these subcortical struc-
tures could further our knowledge on emotions, memory, 
decision making, and other processes and may lead to 
novel intervention strategies for different disorders.

Early studies focused on the hippocampus and amyg-
dala typically examined volumes of these regions using 
expert manual tracing [  8, 28, 32, 47, 51, 79, 88]. These 
approaches were at the time necessary to obtain reliable 
and valid measures of the size of these key brain areas, 
but hand-tracing is often exceedingly time intensive. As 
work in this space has continued, large-scale structural 
MRI-data sets (Ns from 100 to 1000  subjects) are now 
commonly available [48] and work has shifted from man-
ual tracing of regional volumes. Researchers are now able 
to leverage ever-improving computational algorithms to 
automatically segment structural images into their com-
ponent anatomical structures [49]. These approaches 
represent a scalable and less demanding method to test 
relations between volumetric measures of these two 
structures and psychological variables of interest.

A commonly used software suite, FreeSurfer [20] pro-
vides a host of functions for structural MRI processing 
and analysis, including segmenting subcortical struc-
tures. Past work has examined both the validity and 
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reliability of hippocampus and amygdala segmentation in 
FreeSurfer [41, 49, 57]. One can think of validity as how 
well an output aligns with “ground-truth” (e.g., compar-
ing FreeSurfer automated amygdala segments to expertly 
hand-traced volumes), while reliability reflects consist-
ency of outputs (e.g., comparing FreeSurfer automated 
amygdala from repeated scans of the same person, with-
out consideration of any “ground-truth”). Previous work 
has found strong reliability for FreeSurfer in terms of 
hippocampus and amygdala segmentations. Published 
reports examining test—retest reliability of subcorti-
cal volume measures have noted intraclass correlations 
from FreeSurfer ranging from 0.977 to 0.987 for the hip-
pocampus and 0.806–0.889 for the amygdala [42, 45, 85]. 
Results considering validity have been more mixed. Work 
has investigated validity by comparing the spatial and 
numeric overlap between the volumes produced by Free-
Surfer against those produced by expert hand tracing, 
finding reasonable Dice coefficients for the hippocampus, 
but lower performance on the amygdala (Hippocampus 
Dice coefficient = 0.82; Amygdala Dice coefficient = 0.72) 
[33, 56].

In considering both the hippocampus and amygdala, 
each of these brain areas are often discussed as unitary 
structures; however, a large body of basic molecular and 
cognitive neuroscience research underscores that the 
hippocampus and amygdala each consist of multiple dis-
tinct subregions with different information-processing 
roles. For example, the hippocampus can be subdivided 
into the following regions: Dentate Gyrus, critical for pat-
tern separation [60]; Cornu Ammonis (CA) 3, central to 
pattern completion [29]; CA1, important for input inte-
gration from CA3 and entorhinal cortex [6]; and Subicu-
lum, relevant for memory retrieval [72]. Most of the past 
structural neuroimaging work has combined all these 
regions, using measures of whole hippocampal volume. 
This may mean a loss of specificity regarding associations 
with basic cognitive processes as well as neurobiological 
alterations seen in different disorders. By examining sub-
cortical structure at a more fine-grain scale, results can 
be more precisely fit to their root cause and better inter-
preted considering their theoretical implications.

Responding to this issue, the developers of FreeSurfer 
have expanded their segmentation methods to include 
a more granular segmentation of hippocampal subre-
gions [38]. To do this, they combined ultra-high-reso-
lution T1-weighted scans of post-mortem samples with 
subfields of the hippocampus segmented by hand, to 
develop an automated algorithm. With this algorithm, 
there appears to be good numerical reliability and slightly 
lower spatial reliability for these segments, mirroring 
the reliability work focusing on the whole hippocam-
pus. Numerical reliability and ICCs are focused on the 

consistent overall volume size (as indexed by the number 
of voxels in a region), whereas spatial reliability and the 
calculation of Dice coefficients assess that the set of vox-
els classified are the same across both cases. These forms 
of reliability are typically correlated, but segments could 
have high numerical reliability but low spatial reliabil-
ity. In such a case, the same number of voxels are being 
labelled as a brain region, but the voxels are in fact spa-
tially divergent (and may not be the same brain area). Past 
work has observed high numerical and moderately high 
spatial reliability for the hippocampal subfields, report-
ing ICCs ranging from 0.70 to 0.97 and Dice coefficients 
ranging from approximately 0.60–0.90 [7, 81]. While we 
focus on numerical and spatial reliability here, on-going 
work with manual segmentation procedures continue to 
develop—that is, different research groups are still work-
ing to establish a consensus for how to segment the hip-
pocampus [44, 89].

The amygdala, similarly, has its own subdivisions and 
the reliability of the automatic segmentation of these 
subdivisions is still unclear. The FreeSurfer team also 
expanded their segmentation pipeline to cover a set 
of subdivisions for the amygdala. The algorithm they 
employ is trained on manually segmented amygdala 
nuclei from high-definition 7 Tesla ex-vivo MR images 
and divides this structure into 9 labelled sub-regions. 
They applied this segmentation to data sets looking at 
populations with autism [18] and those at risk for Alz-
heimer’s disease [39] finding significant improvements 
in pathology detection when this more fined grained 
view of the amygdala was used in the model [73]. How-
ever, direct assessment of numerical and spatial reliabil-
ity for amygdala subdivisions is limited. Quattrini and 
colleagues (2020) examined these segments in a modest 
cohort of individuals (total N = 133) and found reason-
able reliability for larger subdivisions (> 200  mm3 for the 
amygdala; > 300  mm3 for the hippocampus). This work, 
however, aggregated across 17 research sites and multi-
ple MRI vendors, deployed a dated version of the soft-
ware (FreeSurfer 6.0), and typically acquired repeated 
imaging scans across weeks and months. Given these 
limitations, the consistency of these segments for a more 
conventional, single-site study, is still an open question, 
and it is still unclear whether this fine-grained separation 
is consistent in the areas that the algorithm is automati-
cally dividing and outputting. Such gaps are critical to 
fill given that many groups are using these algorithms for 
applied purposes and reporting differences between clin-
ical and non-clinical populations [55, 90].

Motivated by these facts, we seek to provide an in-
depth examination of reliability, both numerically and 
spatially, for FreeSurfer derived hippocampal and amyg-
dala subdivisions. We leverage an open-access data set of 
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repeated structural scans consisting of a robust sample 
size (N = 928 subjects) that provides precise estimates of 
reliability variables and unprecedently considers multiple 
scans to obtain these reliability parameters. Specifically, 
three repeated structural scans were taken on the same 
day and same scanner for a total of over 2700 included 
scans; other similar investigations of reliability have relied 
on much smaller sample sizes, scans repeated across sev-
eral days, multiple scanners, and outdated neuroimaging 
software (e.g., [68]. This investigation minimizes interfer-
ence from different scanners and benefits from a large 
sample size, three repeated scans, and up-to-date meth-
ods to understand reliability.

In addition to this first-order goal of considering reli-
ability, we also wanted to consider whether person-level 
(e.g., age, sex) and MR-acquisition (e.g., image quality) 
factors influence the reliability of these subdivisions. Of 
note, recent work suggests that MR quality can signifi-
cantly drive signal variations in structural MRI analy-
ses [27, 49]. Pursuing these aims can inform whether all 
subdivisions are truly “reliable” and should be explored 
in FreeSurfer-related analyses, or if caution should be 
taken in morphometric comparisons (especially for those 
working in applied areas, e.g., tests of amygdala subdivi-
sions in depressed vs. non-depressed groups). It is critical 
to highlight less reliable segmentations given the popu-
larity of the hippocampus and amygdala in research and 
the widespread deployment of FreeSurfer software.

2  Methods
2.1  Participants
Data from an open-access neuroimaging initiative, the 
Amsterdam Open MRI Collection (AOMIC) [76], were 
used to investigate numerical and spatial reliability of 
FreeSurfer’s amygdala and hippocampal subregion seg-
mentation algorithms. AOMIC includes structural and 
functional neuroimaging scans from participants, repeat-
ing scans in the same session to see the stability of MRI-
based metrics. For this work, data from 928 participants 
(Average Age = 22.08, Standard Deviation = 1.88) were 
examined. The majority of participants (n = 913, 98% 
of the sample) had three T1-weighted MR images col-
lected in the same scanning session, while a small sub-
group of participants (n = 15, ~ 2% of the sample) had 
two T1-weighted scans. All repeated MRI scans were 
acquired with the same imaging parameters (noted 
below).

2.2  MRI scan parameters
MR images were acquired with a Phillips 3  T Intera 
scanner at the University of Amsterdam. T1-weighted 
MR images were acquired using a sagittal 3D-MPRAGE 

sequence (TR/TE = 8.1  ms/3.7  ms,  1mm3 voxel, matrix 
size = 64 × 64). Additional details about the scan-
ning parameters are described by Snoek and colleagues 
(2021). MRI Images were visually inspected to determine 
if a participant’s scans should be included in subsequent 
processing steps (e.g., FreeSurfer).

2.3  Structural neuroimaging processing (FreeSurfer)
Standard-processing approaches from FreeSurfer (e.g., 
cortical reconstruction; volumetric segmentation) were 
performed in version 7.1 (Stable Release, May 11, 2020) 
This was implemented via Brainlife (http://io), a free, 
publicly funded, cloud-computing platform designed for 
developing reproducible neuroimaging processing pipe-
lines and sharing data [4, 65]. FreeSurfer is a widely docu-
mented and freely available morphometric processing 
tool suite (http:// surfer. nmr. mgh. harva rd. edu). The tech-
nical details of this software suite are described in prior 
publications [14, 20–23, 23, 24, 24]. Briefly, this process-
ing includes motion correction and intensity normaliza-
tion of T1-weighted images, removal of non-brain tissue 
using a hybrid watershed/surface deformation procedure 
[75], automated Talairach transformation, segmentation 
of the subcortical white matter and deep gray matter vol-
umetric structures (including hippocampus, amygdala, 
caudate, putamen, ventricles), tessellation of the gray 
matter white matter boundary, and derivation of cortical 
thickness. Scans from two subjects failed to run to com-
pletion in this pipeline and both subjects were removed 
from further analysis.

FreeSurfer version 7.1 natively includes options to seg-
ment hippocampal subfields and amygdala nuclei. The 
hippocampal segmentation method [37] is based on a 
hippocampal atlas initially produced from a data set of 
15 hand-traced high definition ex-vivo T1-weighted 7 T 
scans then applied to a set of 39 standard resolution in-
vivo MPRAGE scans using parameterized mesh defor-
mations and a probabilistic atlas classification approach. 
This atlas is used for algorithmic segmentation of MR 
images pre-processed through the FreeSurfer recon-all 
pipeline. These images were classified using a parameter-
ized generative model and optimizing the likelihood that 
any given voxel belongs to the label of a particular hip-
pocampal region in a Bayesian inference framework (for 
Additional file 1, see [37]. The atlas for this method parti-
tions the hippocampus into the following 12 subfields: (1) 
Parasubiculum, (2) Presubiculum [Head and Body], (3) 
Subiculum [Head and Body], (4) CA1 [Head and Body], 
(5) CA3 [Head and Body], (6) CA4 [Head and Body], (7) 
Granule Cell and Molecular Layer of the Dentate Gyrus 
[GC-ML-DG, Head and Body], (8) Molecular layer [Head 
and Body], (9) Fimbria, (10) Hippocampal Fissure, (11) 

http://surfer.nmr.mgh.harvard.edu
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Hippocampal Tail, and (12) Hippocampus-Amygdala-
Transition-Area (HATA. This yields nineteen subdivi-
sions from FreeSurfer (including these regions and head/
body divisions.

For the amygdala, the automated segmentation method 
[73] is based on an atlas produced from 10 hand-traced 
high definition ex-vivo T1w 7  T scans (5 participants 
traced bilaterally). As in the hippocampal atlas, this 
manually segmented ex-vivo data were then applied to 
the probabilistic classification of the nodes on a param-
eterized deformation mesh of the amygdala. Similar to 
the hippocampus, the segmentation of later input data 
is performed in the framework of Bayesian inference. 
The amygdala atlas partitions the structure into the fol-
lowing 7 subnuclei: (1) Lateral, (2) Basal, (3) Central, (4) 
Medial, (5) Cortical, (6) Accessory Basal, (7) Paralami-
nar. Two additional subdivisions, the Corticoamygdaloid 
Transition Area and Anterior Amygdaloid Area, are also 
output.

Of note, here we processed scans from each participant 
using the “cross-sectional” pipeline. This is in contrast 
to FreeSurfer’s longitudinal stream that creates an unbi-
ased within-subject template image to improve tempo-
ral consistency and reduce potential source of bias (e.g., 
misregistration) [69, 70]. We consider scans processed 
using FreeSurfer’s “longitudinal” pipeline in supplemen-
tal analyses (see Additional file 1). Cross-sectional pipe-
lines were applied to the three scans for each participant. 
For both the hippocampal subfields and amygdala nuclei, 
volume (in  mm3 for each subdivision was extracted and 
used in numerical reliability analysis. Spatial informa-
tion (labelled voxels in axial, coronal, and spatial orienta-
tions was output for each subdivision. Each participant’s 
T1-weighted scan was then transformed to a common 
space using FMRIB’s Linear Image Registration Tool 
(degrees of freedom = 6; registering the 2nd and 3rd 
scans to the participant’s 1st scan). This transforma-
tion matrix was then saved and applied to each volume’s 
labelled output for hippocampal and amygdala subdi-
visions using a nearest neighbour interpolation; these 
transformed hippocampal and amygdala subdivisions 
were then used in spatial reliability analysis.

2.4  Automated MRI image quality assessment
The Computational Anatomy Toolbox 12 (CAT12) tool-
box from the Structural Brain Mapping group, imple-
mented in SPM12, was used to generate a quantitative 
metric indicating the quality of each collected MR image 
[26]. The method employed considers four summary 
measures of image quality: (1) noise to contrast ratio, 
(2) coefficient of joint variation, (3) inhomogeneity to 
contrast ratio, and (4) root mean squared voxel resolu-
tion. To produce a single aggregate metric that serves as 

an indicator of overall quality, this toolbox normalizes 
each measure and combines them using a kappa statis-
tic-based framework, for optimizing a generalized linear 
model through solving least squares [13]. After extracting 
one quality metric for each scan, we generated three val-
ues that represent the difference between two scans (i.e., 
Scan 1–Scan 2; Scan 1–Scan 3; Scan 2–Scan 3). After tak-
ing the absolute value of each of these difference scores, 
we then averaged them together and used this as a meas-
ure of aggregate image quality.

2.5  Derivation of reliability measures
To assess the reliability of numerical volumes output for 
hippocampus and amygdala subdivisions, we computed 
intraclass correlation coefficients (ICC) between each 
labelled sub-region for the test and the retest MRI scans. 
Of note, an ICC is a descriptive statistic indicating the 
degree of agreement between two (or more) sets of meas-
urements. The statistic is similar to a bivariate correlation 
coefficient insofar as it has a range from 0 to 1 and higher 
values represent a stronger relationship. An ICC, how-
ever, differs from the bivariate correlation in that it works 
on groups of measurements and gives an indication of 
the numerical cohesion across the given groups [53]. 
The ICC was calculated separately for each sub-region 
using the statistical programming language R, with the 
icc function from the package ‘irr’ [25]. A two-way model 
with absolute agreement was used to investigate the reli-
ability of subdivision segmentation; this was calculated 
for each subdivision’s volume (in  mm3). Although there 
are no definitive guidelines for precise interpretation of 
ICCs, results have frequently been binned into three (or 
four) quality groups, where 0.0–0.5 is “poor”, 0.50–0.75 is 
“moderate”, 0.75–0.9 is “good” and 0.9–1.0 is “excellent” 
[10, 43].

In addition to ICCs, Bland–Altman metrics were cal-
culated for each hippocampal and amygdala subdivision 
using the function blandr.statistics from the package 
’blandr’ [15]. In this approach, the mean differences 
(“bias”) between the FreeSurfer outputs (comparing the 
first and second scan, the first and third scan, and the sec-
ond and third scan) were first calculated and presented as 
a portion of the mean volume. We took the absolute value 
of each of these three values and averaged them together 
to represent the average Bland–Altman metric across the 
three scans for a given brain region. Bland–Altman plots 
were also constructed for a small number of subdivisions 
to assess agreement between FreeSurfer outputs.

Although ICCs and Bland–Altman metrics serve as 
indicators of numerical reliability, these may still be 
incomplete, particularly when we think about the spatial 
information present in MRI volumes. Indeed, even with 
numerical similarity, there may be discrepancies in the 
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specific spatial voxels labelled for a given subdivision. To 
assess whether the voxels assigned to each region were 
the same between the two timepoints, we calculated 
the Sørensen-Dice Coefficient using the @DiceMetric 
program in the AFNI fMRI software package [12]. The 
Dice coefficient is calculated as (2TP)/(2TP + FP + FN) 
[TP = True Positive; FP = False Positive; FN = False Nega-
tive] and gives an equal weight to criteria of positive pre-
dictive value and sensitivity in assessing spatial reliability 
of subdivisions. Dice coefficients were averaged across 
the three scans for each brain region to obtain an over-
all metric of spatial reliability (e.g., one Dice value for the 
Left Lateral Nucleus, one Dice value for the Right Lateral 
Nucleus). As recommended by past reports [91, 92], we 
considered Dice coefficients ≥ 0.700 as exhibiting “good” 
spatial overlap.

2.6  Statistical analysis
Once overall reliability metrics were calculated, we exam-
ined person-level (e.g., age, sex) and MR-acquisition (e.g., 
MRI quality) factors in relation to these measures. Many 
different factors may impact amygdala and hippocampal 
segmentation. For example, past work suggests volumes 
(of the hippocampus and amygdala) vary with partici-
pant age and sex; this association is particularly strong 
for the hippocampus [16, 61] and suggestive data simi-
larly for the amygdala [51, 52, 64, 67]. Finally, image qual-
ity has been shown to have a significant effect on brain 
volume measurements [27]. Noisier images may lead to 
gray/white matter misclassification, and impact reliabil-
ity between different scans. To consider these potential 
effects, we examined each region’s reliability in relation 
to age, sex, and difference in the CAT12 quality metric. 
Of note, the average difference in quality between the 
three scans (described in Automated MRI Image Quality 
Assessment) was included in these analyses.

We computed Pearson’s r correlations between Dice 
coefficients and relevant metrics (i.e., MRI scan quality, 
sex, and age) using the R function ‘rcorr’ from package 
Hmisc (Harrell Jr., 2022). Specifically, for each participant 
we correlated relevant metrics (the difference in scan 
quality across 3 scans, sex, and age) with the average of 
the Dice values across 3 scans for each left and right brain 
region. We highlighted in Tables  3 and 4 correlations 
with p values smaller, or equal to, 0.05.

3  Results
3.1  Hippocampus reliability
Using ICC analysis, we found consistently reasonable 
levels of numerical reliability for hippocampal subfields. 
Multiple regions demonstrated “excellent” reliability 
(ICC ≥ 0.90), while all of the subfields were at least in the 
“good” range (ICC = 0.75–0.90). See Table  1 for values 

from the 19 subfield segmentations in each hemisphere. 
Bland—Altman bias indicated some variability with dif-
ferences between scans, as a portion of that structure’s 
volume, ranging from 0.078 to 1.198%. See Fig.  1 for a 
density plot of the average difference in volume estima-
tion across three scans for two hippocampal subfields.

Using Dice coefficients as metrics of spatial reliability, 
results became a bit more variable with 11 areas show-
ing “excellent” spatial reliability, 7 areas showing “good” 
spatial reliability, and one area (left Hippocampal fissure) 
showing poor spatial reliability (Dice coefficient < 0.5). 
See Fig. 2 for a plot of all Hippocampal Dice coefficient 
values and Fig. 3 for an example of regions with accept-
able spatial reliability (parasubiculum) and poor spatial 
reliability (hippocampal fissure).

3.2  Amygdala reliability
Within the amygdala, the numerical reliability was “excel-
lent” for about 67% of the regions (ICC > 0.90), while 
the remainder of the regions were in the “good” range 
(ICC = 0.75–0.90) (see Table  2). Bland–Altman bias 
values were somewhat variable with a range of 0.058–
1.563%. See Fig.  4 for a density plot of the average dif-
ference in volume estimation across three scans for two 
amygdala subnuclei.

Regarding spatial reliability, seven areas demonstrated 
excellent or good reliability (> 0.7) including the lat-
eral, basal, and accessory basal subnuclei (See Table  2). 
There were, however, areas with poor spatial reliability, 
including the Medial and Paralaminar Nuclei (Dice Coef-
ficients = 0.30–0.4, See Fig.  5 for a plot of all Amygdala 
Dice Coefficient values). Figure 6 displays a depiction of 
the Lateral nucleus, an area with acceptable spatial reli-
ability, and the Paralaminar nucleus, an area with poor 
spatial reliability.

3.3  Reliability differences in relation to person‑level 
and MR‑acquisition factors

We next examined associations between spatial reliabil-
ity and subject-level variables. Correlations between the 
Hippocampal-subfield Dice coefficients and our subject-
level variables are shown in Table 3. Differences in image 
quality and participant sex were significantly and nega-
tively related to volumes in a majority of the hippocampal 
subfields at the p < 0.01 level (shown in Table 3). Age was 
significantly correlated with only a small subset of right 
hippocampal subfield volumes.

Correlations between spatial reliability and subject-
level variables for the amygdala nuclei are reported in 
Table  4. Image quality was significantly and negatively 
related to a number of regions including the lateral 
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nucleus, the right basal nucleus, the corticoamygdaloid 
transition, and the right anterior amygdaloid area (at 
p < 0.01). The spatial reliability of several regions was also 
significantly and associated with sex and age.

4  Discussion
In this paper, we assessed the numerical and spatial reli-
ability of FreeSurfer’s hippocampal and amygdala sub-
division segmentation algorithms. The ICCs, serving 
as our indicator of numerical reliability, were reason-
able (hippocampal subfields: 0.887–0.979; amygdala 
nuclei: 0.832–0.964), indicating that FreeSurfer is gener-
ally numerically reliable in providing overall volume for 
each subregion. Using Bland–Altman metrics of bias as 
an additional proxy of numerical reliability suggests a 
few regions exhibited variability in segmentation across 
scans; specifically, 5 regions across the hippocampus and 
amygdala showed ≥ 1% bias in volume from one scan to 
the next. This is concerning given that individuals with 

dementia (e.g., Alzheimer’s disease) or recurrent men-
tal health issues (e.g., depression) often only differ 1–5% 
from control groups in subcortical volumes (e.g., [40, 46, 
74]. The Dice coefficients, serving as our indicator of spa-
tial reliability, were reasonable, though lower than the 
ICCs. Of potential concern, a few subdivisions in both 
the hippocampus and amygdala had fairly low spatial reli-
ability, suggesting unreliable segmentation. Examined 
collectively, applied researchers should take care when 
applying these types of automated segmentation tech-
niques, especially if not thoroughly trained in amygdala 
and hippocampal anatomy.

While our results suggest that many of the volumetric 
outputs of amygdala and hippocampal subdivisions are 
mostly numerically reliable, the drop in spatial reliabil-
ity may mean researchers should exercise caution in the 
analysis and interpretation of areas with poor spatial reli-
ability. For example, the hippocampal fissure, paralami-
nar nucleus (amygdala), and medial nucleus (amygdala) 

Table 1 Intraclass correlation coefficients (ICC), Dice coefficients, Bland–Altman bias as a portion of a volume’s structure (bias as POV), 
and Bland–Altman bias ranges for Hippocampal Subfields for left and right hemisphere regions (e.g., ICC LH = intraclass correlation 
coefficients for left hemisphere; Dice RH = Dice coefficient for right hemisphere)

Color coding is in accordance with excellent [Bold], good [Italic], poor [Underline] scores for ICCs and Dice coefficients (ICC: 0.90–1.00 [excellent], 0.75–0.89 [good], 
0.00–0.74 [poor]; Dice coefficients: 0.70–1.00 [excellent], 0.50–.69 [good], 0–0.49 [poor]). We have also highlighted regions with > 1% bias as a portion of a volume’s 
structure in Italic

Subfield Abbreviations include: Cornu Ammonis CA, Granule Cell and Molecular Layer of Dentate Gyrus GC-ML-DG, Hippocampus-Amygdala-Transition-Area HATA ; 
Hippocampal Parcellation HP

Region ICC LH ICC RH Dice LH Dice RH Bias as 
POV LH 
(%)

Bias Range LH (%) Bias as POV 
RH (%)

Bias Range RH (%)

Parasubiculum 0.929 0.946 0.713 0.710 0.356 0.000–45.834 0.410 0.008–32.920

Presubiculum head 0.924 0.936 0.792 0.792 0.212 0.001–29.992 0.078 0.002–23.345

Presubiculum body 0.960 0.963 0.799 0.791 1.057 0.000–41.021 0.626 0.001–33.210

Subiculum head 0.961 0.959 0.775 0.773 0.130 0.001–27.278 0.085 0.002–25.029

Subiculum body 0.961 0.964 0.823 0.826 0.100 0.004–31.485 0.289 0.002–16.760

CA1 head 0.971 0.979 0.818 0.825 0.106 0.000–22.307 0.260 0.000–16.274

CA1 body 0.948 0.970 0.751 0.780 0.127 0.001–50.541 0.465 0.001–29.594

CA3 head 0.952 0.969 0.662 0.675 0.533 0.000–24.448 0.742 0.000–22.072

CA3 body 0.933 0.950 0.597 0.627 0.413 0.000–55.834 0.973 0.001–27.936

CA4 head 0.966 0.966 0.793 0.800 0.551 0.000–20.589 0.494 0.000–21.287

CA4 body 0.931 0.938 0.767 0.780 0.541 0.002–29.764 0.625 0.002–20.289

GC ML DG head 0.965 0.973 0.617 0.625 0.554 0.001–20.329 0.542 0.002–18.378

GC ML DG body 0.940 0.942 0.592 0.650 0.500 0.000–21.930 0.503 0.001–27.053

Molecular layer HP head 0.971 0.976 0.690 0.692 0.206 0.001–18.600 0.240 0.001–14.279

Molecular layer hp body 0.954 0.961 0.631 0.647 0.495 0.001–25.208 0.558 0.000–18.751

Fimbria 0.936 0.942 0.681 0.679 0.639 0.008–78.157 1.198 0.004–57.572

Hippocampal fissure 0.887 0.888 0.497 0.511 0.443 0.001–41.512 0.586 0.000–45.252

Hippocampal tail 0.954 0.968 0.880 0.890 0.315 0.000–50.169 0.393 0.001–18.664

HATA 0.936 0.945 0.760 0.770 1.049 0.000–34.712 0.216 0.007–26.125

Whole hippocampal body 0.959 0.966 0.365 0.000–27.935 0.435 0.004–15.245

Whole hippocampal head 0.975 0.980 0.227 0.001–19.277 0.273 0.002–13.619

Whole hippocampus 0.976 0.983 0.251 0.001–21.668 0.341 0.000–12.473
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showed poor spatial reliability (< 0.5) through their Dice 
coefficients. Because the spatial reliability of these areas 
is relatively poor, studies that interpret changes in volume 
within or across subjects might be using segmentations 
which contain improperly (or inconsistently) classified 
voxels within those regions. For example, several studies 
have already reported significant findings from the paral-
aminar nucleus of the amygdala [55, 90]; given the ques-
tionable reproducibility of its anatomical bounding, these 
findings may require further verification.

Connected to spatial reliability, there are a few potential 
drivers of the substandard performance in this domain. 
First, these areas are small and may be difficult to isolate. 
In such cases, even a few mislabelled voxels can greatly 
influence spatial overlap. Many of the areas with the low-
est spatial reliability are also the smallest subdivisions. 
For example, the paralaminar and the medial nuclei of 
the amygdala range between 20 and 60  mm3 in our sam-
ple and have some of the lowest spatial reliability values. 
However, this is not the only factor hampering perfor-
mance, as other structures (of similar sizes) have reason-
able spatial reliability values (e.g., HATA ≥ 0.760 Dice 
coefficients; Parasubiculum ≥ 0.710 Dice coefficients), 

while comparatively larger structures (e.g., hippocampal-
fissure; CA3-body) demonstrate lower spatial reliability. 
Second, irregular MR contrast is often common to these 
areas, especially for the amygdala. Given the close vicin-
ity to bone and sinuses, there is typically susceptibility-
related dropout, field inhomogeneities, and physiological 
artifacts in the amygdala and the hippocampus [54, 71, 
82]. This may introduce inconsistent gray/white matter 
contrast, complicating isolation of different subdivisions. 
Finally, several amygdala and hippocampal subdivisions 
are irregularly and complexly shaped. For example, both 
the anterior and posterior borders of the amygdala are 
difficult to consistently demarcate [1, 11, 19, 80]. Many 
past reports using manual tracing actually employ “heu-
ristics” rather than clear anatomical boundaries (e.g., [59] 
used a “semicircle substitution”).

Given these challenges, it is critical to advance novel 
approaches to segment the hippocampus and amyg-
dala into subdivisions while still maintaining high valid-
ity and reproducibility. In regard to the hippocampus, 
there has been a great deal of progress made by the Hip-
pocampal Subfields Group (HSG); this is a collaboration 
of > 200 imaging and anatomy experts worldwide that has 

Fig. 1 Bland–Altman plots of the average difference for volume estimation across subjects’ three MRI scans for the Left Cornu Ammonis (CA) 1 
Head (dark blue) and Right Fimbria (light blue). The horizontal axis indicates the average difference in Bland–Altman “bias” (difference between 
subregional volume output for different scans, as a proportion of a region’s volume), while the vertical axis indicates the number of scans with a 
given value. Of note, the left CA1 Head has a low degree of mean bias (as a proportion of the region’s volumes; 0.106%), while the right Fimbria has 
a fair degree of mean bias (1.198%)
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established guidelines for appropriate MRI acquisition 
for researchers interested in the hippocampus, as well as 
developing candidate protocols for the segmentation of 
hippocampal subregions (eg., [62, 84, 89]. This and other 
related work have suggested important ways to validate 
automatic segmentation, including not only comparison 
to manual delineations, but also replicating known dis-
ease effects (e.g., [58]. The HSG and FreeSurfer proto-
cols provide differing guidance on how to subdivide the 
hippocampus (see Table 3 of [89] for HSG subdivisions). 
Comparison between HSG and FreeSurfer subdivisions 
reveals that some hippocampal regions are divided with 
more granularity according to HSG guidelines, while 
some regions are more granular with FreeSurfer. For 
example, while FreeSurfer divides the subiculum, presub-
iculum, CA1, CA3, CA4, and other regions into “head” 
and “body,” the HSG does not. Our work suggests that 
some of these smaller subdivisions may be less reliable 
than others; Dice coefficients for CA3 head and CA3 
body, for instance, were some of the few hippocampal 
regions in the “good” (and not “excellent”) range. The 
HSG also includes regions not evaluated by FreeSurfer, 
including the Entorhinal Cortex, Parahippocampal Cor-
tex, Perirhinal Cortex, while Freesurfer includes regions 

not considered by the HSG. Importantly, one of the areas 
identified by our work as having poor reliability—the 
hippocampal fissure—is not listed as an HSG subdivi-
sion. Based on these considerations, we echo HSG’s call 
to harmonize across protocols, especially across regions 
with less reliability (e.g., hippocampal fissure), and to re-
evaluate some FreeSurfer subdivisions.

Similar joint efforts to HSG are not, to our knowledge, 
currently underway for amygdala subnuclei segmenta-
tion. Convening such a collaborative could be particu-
larly impactful moving forward, especially as debate 
has been fairly continuous regarding subdivisions of the 
amygdala at the histological level (e.g., [78]. Our results 
found that, across both the hippocampus and amygdala, 
most regions found to have less satisfactory reliability 
were in the amygdala. Given the popularity of the amyg-
dala as a brain region (e.g., recent reports have found that 
manuscripts findings on the amygdala are more likely to 
be published in high-impact journals; [5] and widespread 
deployment of FreeSurfer by basic and applied research-
ers, we recommend caution in interpreting findings 
regarding amygdala subnuclei.

In the interim or the absence of joint efforts to establish 
more reliable amygdala segmentations, we have several 

Fig. 2 Hippocampal Dice coefficient values for all hippocampal subfields. Error bars represent 1 standard deviation above and below the mean. 
Subfield Abbreviations include: Cornu Ammonis CA, Granule Cell and Molecular Layer of Dentate Gyrus GC-ML-DG, Hippocampus-Amygdala-Trans
ition-Area HATA , Hippocampal Parcellation HP 
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Fig. 3 Graphic representations showing magnified depictions of Hippocampal subregions with low and high Dice coefficients (i.e., spatial 
reliability) from repeated scans (Scan 1 shown in Red; Scan 2 shown in Purple, Scan 3 shown in Yellow). The anatomical (T1w) image underlaid is 
the unbiased subject template from an example participant. The top panel A represents the hippocampal fissure, an area with low spatial reliability 
across scans, and the bottom panel B represents the parsubiculum, and area with high spatial reliability. Slices move right to left from medial to 
lateral

Table 2 Intraclass correlation coefficients (ICCs), Dice coefficients, Bland–Altman bias as a portion of a volume’s structure (bias 
as POV), and Bland—Altman bias ranges for Amygdala Subnuclei for left and right hemisphere regions (e.g., ICC LH = intraclass 
correlation coefficients for left hemisphere; Dice RH = Dice coefficient for right hemisphere)

Color coding is in accordance with excellent [Bold], good [Italic], poor [Undeline] scores for ICCs and Dice coefficients (ICC: 0.90–1.00 [excellent], 0.75–0.89 [good], 
0.00–0.74 [poor]; Dice coefficients: 0.70–1.00 [excellent], 0.50–.69 [good], 0–0.49 [poor]). We have also highlighted regions with > 1% bias as a portion of a volume’s 
structure in Italic

Region ICC LH ICC RH Dice LH Dice RH Bias as 
POV LH 
(%)

Bias range LH (%) Bias as 
POV RH 
(%)

Bias Range RH (%)

Lateral nucleus 0.964 0.956 0.900 0.899 0.108 0.003–24.233 0.200 0.001–16.662

Basal nucleus 0.959 0.956 0.877 0.882 0.387 0.001–24.086 0.213 0.001–20.245

Central nucleus 0.895 0.867 0.600 0.607 0.333 0.007–53.459 0.331 0.002–42.310

Medial nucleus 0.845 0.832 0.449 0.441 1.563 0.004–73.504 1.047 0.005–70.814

Cortical nucleus 0.889 0.905 0.564 0.567 0.376 0.001–68.640 0.703 0.001–29.931

Accessory basal nucleus 0.957 0.961 0.871 0.879 0.224 0.000–21.655 0.647 0.001–16.607

Paralaminar nucleus 0.941 0.946 0.465 0.480 0.143 0.000–27.786 0.199 0.003–17.924

Corticoamygdaloid transition 0.939 0.949 0.758 0.760 0.588 0.002–37.478 0.704 0.005–17.411

Anterior amygdaloid area 0.901 0.858 0.630 0.641 0.058 0.006–39.745 0.541 0.003–41.760

Whole amygdala 0.974 0.967 0.149 0.002–21.679 0.328 0.001–13.837
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suggestions for higher quality research. It may be reason-
able to only consider more macro-level amygdala seg-
mentation (e.g., basolateral, centromedial, basomedial, 
and amygdaloid cortical complexes, as detailed by [50]. 
Many groups have moved towards this idea, aggregat-
ing subdivisions using latent factor modelling and other 
techniques to group related regions (e.g., [63]. There is, 
however, ongoing debate about specific best practices, as 
even established guidelines for MRI acquisition or land-
mark in in-vivo data may present additional unforeseen 
challenges (e.g., Special hippocampal acquisitions pro-
viding incomplete coverage of target structure; In-vivo 
MRI does not supply enough features to define many 
hippocampal subfield boundaries). In addition, findings 
suggest that magnetic resonance images with 1 × 1 × 1 
1   mm3 resolution are too low in quality for investiga-
tions of hippocampal subfields [83]; future work should, 
therefore, strive to use higher resolution images with 
FreeSurfer segmentation (i.e., resolution smaller than 
1 × 1 × 1   mm3). Finally, single modality structural imag-
ing (e.g., a T1 scan without a T2 scan) is likely less reli-
able; protocols could require routines to have multiple 
imaging modalities or restrict output to more reliable 
regions if input contains a single imaging modality.

As noted in our introduction, our findings only speak 
to the reliability of these measures, and not the valid-
ity of these segments. Investigations of validity require 
comparison of automated output with “ground-truth” 
data typically derived from hand-tracing. Given that 
our data set contains over 2700 scans (and, therefore, 
the same number of amygdalae that would require trac-
ing), such an endeavor is less practical for this particular 
sample. Future work should establish the validity of these 
FreeSurfer subnuclei divisions, particularly considering 
the popularity of the amygdala as a brain region [5] and 
FreeSurfer as a segmentation software. Previous work has 
compared FreeSurfer’s hippocampal subfields to hand 
drawn volumes [35, 86]; however, there is yet to be any 
comparison of automated amygdala subnuclei segmen-
tation to hand-tracing. Reliable methods exist for expert 
manual segmentation of the amygdala [3, 19, 36]; how-
ever, this typically requires high-resolution and high-field 
strength neuroimaging (i.e., > 3 T MRI Scanner, sub-mil-
limeter voxels). Studies looking at the degree of overlap 
between such methods and the FreeSurfer algorithm for 
amygdala segmentation would be helpful for effective 
evaluation of validity.

Fig. 4 Bland–Altman plots of the average volume difference estimation across Scan 1, Scan 2, and Scan 3 for the left Lateral Nucleus (dark blue) 
and right Medial Nucleus (light blue). The horizontal axis indicates the average difference in Bland–Altman “bias” (difference between subregional 
volume output for different scans, as a proportion of a region’s volume), while the vertical axis indicates the number of scans with a given value. Of 
note, the left Lateral Nucleus has a low degree of bias (as a proportion of the region’s volumes; 0.108%), while the right Medial Nucleus has a fair 
degree of bias (1.047%)
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Our goal was to present reliability analyses that would 
be the most relevant to the ‘typical’ structural study, 
where a T1-weighted single scan is acquired for each par-
ticipant, recruited from a specific local area. In consider-
ing this approach, it is important to note a few potential 
limitations of our work. First, we processed test—retest 
MRI images using the cross-sectional FreeSurfer pipe-
line; we report in our Supplementary Materials using 
the longitudinal stream. Results were largely consistent 
across the two pipelines, with several hippocampal sub-
fields and amygdala subnuclei demonstrating decreased 
numeric reliability with the longitudinal processing 
stream. Furthermore, the following regions were con-
sistently highlighted as having less-than-excellent spa-
tial reliability across both streams: in the hippocampus, 
the hippocampal fissure, and in the amygdala, the cen-
tral, cortical, paralaminar, and medial nuclei. We present 
results from the cross-sectional processing pipeline, as 
is done in other studies of reliability (e.g., [49], because 
FreeSurfer’s longitudinal pipeline is not independently 
segmenting the different MRI scans. This violates some 
theoretical aspects of test—retest reliability and would 
be expected to produce a more favorable set of reliability 
metrics for FreeSurfer’s methods.

Second, we only used T1-weighted scans in FreeSurfer, 
but additional MRI volumes (e.g., T2-weighted) from the 
same subjects may yield a more reliable segmentation. 
FreeSurfer’s developers have worked to allow the amyg-
dala and hippocampal subdivision routines to accept 
high-resolution T2-weighted volumes, and this should be 
investigated in future work. Third, the sample is a rather 
homogenous group of individuals and may not represent 
the greater population. All participants were recruited 
from the University of Amsterdam, with limited racial 
and ethnic variability. Similarly, all participants were 
neurotypical young adults in a constrained age range 
(Mean = 22.08 ± 1.88). Additional work considering reli-
ability of the method in a diverse set of populations (e.g., 
pediatric, elderly, mild cognitive impairment) would be 
helpful in ascertaining how well these findings general-
ize outside of our sample population. Finally, this analy-
sis focused on the reliability of FreeSurfer 7.1, since this 
reflects a more current version of the software. Future 
work could consider comparing segmentations derived 
from current FreeSurfer versions with past versions of 
this software to facilitate our understanding across extant 
and emerging literature. Recently published work reflects 
an analogous endeavor for non-segmented brain regions 

Fig. 5 Amygdala Dice coefficient values for all Amygdala subnuclei. Error bars represent 1 standard deviation above and below the mean
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(e.g., the whole amygdala), highlighting key anatomical 
areas that were less compatible across FreeSurfer soft-
ware versions 5.3, 6.0, and 7.1 [30]. These authors found 
good-to-excellent reliability across software versions 
for subcortical regions (including the hippocampus and 
amygdala) and reported that FreeSurfer version 7.1 was 
generally advantageous over earlier versions.

Limitations notwithstanding, our work extends the 
information provided by previous publications regard-
ing the reliability of FreeSurfer’s subcortical seg-
mentation for the hippocampus, amygdala, and their 

respective subregions. To our knowledge, this is the 
first work to directly investigate the test—retest reli-
ability of the amygdala nuclei algorithm in FreeSurfer 
7. The strengths of our work include a large sample 
size, the use of FreeSurfer’s more robust longitudinal 
pipeline, and the report of mathematically rigorous 
measures of reliability. Our work provides additional 
confidence in interpreting those regions with high 
reliability and a necessary caution in interpretation of 
those with poorer results.

Fig. 6 Graphic representations showing magnified depictions of Amygdala subregions with low and high Dice coefficients (i.e., spatial reliability) 
from repeated scans (Scan 1 shown in Red; Scan 2 shown in Purple, Scan 3 shown in Yellow). The anatomical (T1w) image underlaid is the unbiased 
subject template from an example participant. The top panel A represents the paralaminar nucleus, an area with low spatial reliability across scans, 
and the bottom panel B represents the lateral nucleus, and area with high spatial reliability. Slices move right to left from medial to lateral. Multiple 
slices are depicted left to right, moving anterior to posterior
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Table 3 Correlation coefficients for bivariate correlations between hippocampal subfield Dice coefficients and subject-level 
covariates: MRI quality (difference score; MRIQ), sex, and age

These were completed for left hemisphere LH and right hemisphere RH

Correlations with p < 0.05 are highlighted in Italic

Subfield Abbreviations include: Cornu Ammonis CA, Granule Cell and Molecular Layer of Dentate Gyrus GC-ML-DG, Hippocampus-Amygdala-Transition-Area HATA, 
Hippocampal Parcellation HP

Region MRIQ r Dice Sex r Dice Age r Dice

LH RH LH RH LH RH

Parasubiculum − 0.13 − 0.08 − 0.03 − 0.09 0.00 − 0.05

Presubiculum head − 0.12 − 0.16 − 0.05 − 0.10 − 0.04 − 0.04

Presubiculum body − 0.14 − 0.15 − 0.08 − 0.08 − 0.03 0.01

Subiculum head − 0.11 − 0.16 − 0.06 − 0.09 − 0.03 − 0.05

Subiculum body − 0.09 − 0.10 − 0.06 − 0.09 0.01 − 0.04

CA1 head − 0.12 − 0.14 − 0.07 − 0.12 − 0.06 − 0.05

CA1 body − 0.03 − 0.07 − 0.08 − 0.13 0.01 − 0.06

CA3 head − 0.09 − 0.07 − 0.09 − 0.12 0.00 − 0.06

CA3 body − 0.05 − 0.08 − 0.09 − 0.10 0.01 − 0.02

CA4 head − 0.08 − 0.12 − 0.08 − 0.09 − 0.04 − 0.08

CA4 body − 0.04 − 0.11 − 0.08 − 0.09 0.01 − 0.04

GC ML DG head − 0.10 − 0.11 − 0.07 − 0.10 − 0.03 − 0.08

GC ML DG body − 0.06 − 0.10 − 0.08 − 0.10 0.01 − 0.05

Molecular layer HP head − 0.13 − 0.14 − 0.06 − 0.11 − 0.05 − 0.07

Molecular layer HP body − 0.06 − 0.10 − 0.08 − 0.10 0.02 − 0.05

Fimbria − 0.11 − 0.17 − 0.01 − 0.05 0.02 − 0.02

Hippocampal fissure − 0.10 − 0.17 − 0.08 − 0.14 − 0.04 − 0.05

hippocampal tail − 0.06 − 0.14 − 0.10 − 0.11 − 0.04 − 0.01

HATA − 0.08 − 0.10 − 0.09 − 0.12 0.00 − 0.04

Table 4 Correlation coefficients for bivariate correlations between hippocampal subfield Dice coefficients and subject-level 
covariates: MRI quality (difference score; MRIQ), sex, and age

These were completed for left hemisphere LH and right hemisphere (RH)

Correlations with p < 0.05 are highlighted in Italic

Region MRIQ r Dice Sex r Dice Age r Dice

LH RH LH RH LH RH

Lateral nucleus − 0.11 − 0.18 − 0.10 − 0.11 0.01 − 0.03

Basal nucleus − 0.05 − 0.10 − 0.05 − 0.06 − 0.03 − 0.07

Central nucleus − 0.04 0.01 0.04 0.01 − 0.03 − 0.10

Medial nucleus − 0.08 − 0.01 − 0.09 − 0.06 0.00 − 0.01

Cortical nucleus 0.00 − 0.04 − 0.06 − 0.04 0.04 − 0.02

Accessory basal nucleus − 0.04 − 0.07 − 0.05 − 0.03 − 0.03 − 0.08

Paralaminar nucleus − 0.03 − 0.07 − 0.01 − 0.04 − 0.02 − 0.02

Corticoamygdaloid transition − 0.10 − 0.10 − 0.07 − 0.07 − 0.03 − 0.06

Anterior amygdaloid area − 0.07 − 0.13 − 0.09 − 0.06 − 0.03 − 0.05
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40708- 023- 00189-5.

Additional file 1: Table S1: Intraclass Correlation Coefficients (ICC), 
Dice Coefficients, Bland–Altman bias as a portion of a volume’s structure 
(Bias as POV), and Bland-Altman biasranges for Hippocampal Subfields 
for left and right hemisphere regions (e.g., ICC LH =Intraclass Correla-
tion Coefficients for left hemisphere; Dice RH = Dice Coefficient forright 
hemisphere). Color coding is in accordance with excellent [green], good 
[yellow], poor [red] scores for ICCs and Dice Coefficients (ICC: 0.90-1.00 
[excellent], 0.75-0.89 [good], 0.00-0.74 [poor]; Dice Coefficients: 0.70-1.00 
[excellent], 0.50-.69 [good], 0-0.49 [poor]). We have also highlighted 
regions with >1% bias as a portion of a volume’s structure in yellow. Sub-
field Abbreviations include: Cornu Ammonis (CA), Granule Cell and Molec-
ular Layer of Dentate Gyrus (GC-ML-DG); Hippocampus-Amygdala-Tran-
sition-Area (HATA); Hippocampal Parcellation (HP). Values were derived 
using Freesurfer 7 longitudinal processing stream. Table S2: Intraclass Cor-
relation Coefficients (ICCs), Dice Coefficients, Bland–Altman bias as a por-
tion of a volume’s structure (Bias as POV), and Bland-Altman bias ranges 
for Amygdala Subnuclei for left and right hemisphere regions (e.g.,ICC 
LH = Intraclass Correlation Coefficients for left hemisphere; Dice RH = 
Dice Coefficient for right hemisphere). Color coding is in accordance with 
excellent [green], good [yellow], poor [red] scores for ICCs and Dice Coef-
ficients (ICC: 0.90-1.00 [excellent], 0.75-0.89 [good], 0.00-0.74 [poor]; Dice 
Coefficients: 0.70-1.00 [excellent], 0.50-.69 [good], 0-0.49 [poor]). We have 
also highlighted regions with >1% bias as a portion of a volume’s structure 
in yellow. Values were derived using Freesurfer 7 longitudinal processing 
stream. Table S3: Correlation coefficient for bivariate correlations between 
Hippocampal Subfield Dice Coefficients and subject-level covariates: MRI 
Quality (Difference Score; MRIQ), Sex, and Age. These were completed for 
left hemisphere (LH) and right hemisphere (RH). Correlations with p<0.05 
are highlighted in yellow. Subfield Abbreviations include: Cornu Ammonis 
(CA), Granule Cell and Molecular Layer of Dentate Gyrus (GC-ML-DG); 
Hippocampus-Amygdala-Transition-Area (HATA); Hippocampal Parcella-
tion (HP). Values were derived using Freesurfer 7 longitudinal processing 
stream. Table S4: Correlation coefficient for bivariate correlations between 
Hippocampal Subfield Dice Coefficients and subject-level covariates: MRI 
Quality (Difference Score; MRIQ), Sex, and Age. These were completed for 
left hemisphere (LH) and right hemisphere (RH). Correlations with p<0.05 
are highlighted in yellow. Values were derived using Freesurfer 7 longi-
tudinal processing stream. Table S5: Mean and standard deviation (SD) 
volume estimates across three scans for each Hippocampal Subfield (LH 
= Left Hemisphere, RH = Right Hemisphere) in millimeters cubed (mm3). 
Subfield abbreviations include: Cornu Ammonis (CA), Granule Cell and 
Molecular Layer of Dentate Gyrus (GC-ML-DG); Hippocampus-Amygdala-
Transition-Area (HATA); Hippocampal Parcellation (HP). Volume estimates 
derived using the FreeSurfer 7 longitudinal processing pipeline Table S6: 
Mean and standard deviation (SD) volume estimates across three scans for 
Amygdala Subnuclei (LH = Left Hemisphere, RH = Right Hemisphere) in 
millimeters cubed (mm3). Volume estimates derived using the FreeSurfer 
7 longitudinal processing pipeline.
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