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Abstract 

Helmet mounted display systems (HMDs) are high-performance display devices for modern aircraft. We propose a 
novel method combining event-related potentials (ERPs) and BubbleView to measure cognitive load under different 
HMD interfaces. The distribution of the subjects’ attention resources is reflected by analyzing the BubbleView, and the 
input of the subjects’ attention resources on the interface is reflected by analyzing the ERP’s P3b and P2 components. 
The results showed that the HMD interface with more symmetry and a simple layout had less cognitive load, and 
subjects paid more attention to the upper portion of the interface. Combining the experimental data of ERP and Bub-
bleView, we can obtain a more comprehensive, objective, and reliable HMD interface evaluation result. This approach 
has significant implications for the design of digital interfaces and can be utilized for the iterative evaluation of HMD 
interfaces.
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1  Introduction
Helmet mounted display systems integrate advanced 
electronic display and head tracking systems. Through 
microdisplay technology, information about the flight 
system and aircraft situation is projected directly in front 
of the pilot, allowing him to acquire what he needs at 
any time, thereby significantly improving the aircraft’s 
operational effectiveness [1–5]. A reasonable HMD 
interface improves the pilot’s awareness of the situa-
tion and ensures his accurate cognitive judgment under 
highly tense conditions. However, the HMD interface of 
modern aircraft brings convenience to pilots and also a 

vast amount of information. The pilot needs to prompt, 
capture, track and eventually lock onto the off-axis tar-
get through the HMD interface in flight. The pilot must 
quickly and accurately extract information from the 
HMD interfaces during this process. If the “symbol sys-
tem” of the mask on the helmet is difficult to recognize, 
the helmet will be unable to fully meet the requirements 
of the aircraft, resulting in an unmanageable cognitive 
load for the pilot and causing the pilot to be unable to 
work properly. Therefore, evaluating and reducing the 
cognitive load of pilot caused by HMD interface is very 
important to achieve normal adequate operation effi-
ciently in flight [2].

Eye tracking records the distribution process of the 
user’s interaction attention to evaluate the graphical 
interface [6, 7]. Eye tracking refers to the tracking of 
eye movement by measuring the position of the eye’s 
gaze point or the eye’s movement relative to the head. 
Eye tracking is regarded as an effective HMD interface 
evaluation technique because it can correctly depict 

*Correspondence:
Junsong Zhang
zhangjs@xmu.edu.cn
1 Department of Artificial Intelligence, Xiamen University, Xiamen 361005, 
Fujian, China
2 National Engineering Laboratory for Educational Big Data, Central China 
Normal University, Wuhan 430079, Hubei, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40708-023-00187-7&domain=pdf


Page 2 of 12Wei et al. Brain Informatics            (2023) 10:8 

how visual channels are processed in time and space [8]. 
However, eye tracking experiments cannot be used out-
side the lab since professional eye tracking equipment is 
pricey and requires testing prior to the experiment (e.g., 
EyeLink, ISCAN) [9]. BubbleView replaces eye tracking 
with mouse clicks and is not limited by the experimen-
tal environment. In addition, BubbleView can simulate 
the blurred visual edge and a constrained tiny area of 
the human visual fovea [9], which can slow down users’ 
exploration of images and aid in our understanding of 
the cognitive rules of users. However, the brain will show 
apparent changes in the process of interface evaluation 
with further information processing. When evaluating 
graphical interfaces, eye tracking methods such as Bub-
bleView cannot directly disclose the brain’s workings.

To this purpose, ERP [10, 11] can be used to investi-
gate the internal workings of the user’s brain to assess the 
graphical interface. The electroencephalogram (EEG)-
based research technique known as ERP is well-liked in 
various domains. Jia et  al.[8] use ERP to investigate the 
brain electrophysiological characteristics induced by 
users in the process of interface cognition and evaluation 
of different similarities. It reveals the cognitive rules of 
users for the different graphic interfaces through attrib-
ute variations of the acquired brain physiological indica-
tors. Eye tracking is less accurate in reflecting the brain’s 
internal workings than ERP technology. Combining ERP 
with eye tracking can explore the complete cognitive 
evaluation process from input to allocating attention 
resources.

In this work, we take the HMD interface as the spe-
cific research object and combine ERP and BubbleView 
to evaluate the HMD interface. Unlike previous work, 
which only uses one of the methods to evaluate the cog-
nitive load under the interface, either with ERP or with 
eye tracking, making it impossible to evaluate cogni-
tive load thoroughly. The input of the subjects’ attention 
resources on the interface is revealed by analysis of the 
ERP’s P3b and P2 components. The distribution of the 
subjects’ attention resources is reflected by recording the 
number of mouse clicks in BubbleView and analyzing the 
produced visual importance heatmap. This enables us to 
get a more thorough, impartial, and trustworthy evalua-
tion of the HMD interface.

2 � Related work
Cognitive load theory was first proposed by John Sweller 
in 1988 [12], based on the early research of Miller et al. 
Cognitive load is closely related to the difficulty of cog-
nitive tasks. Thus, the quality of digital interface can be 
evaluated by measuring the cognitive load of the inter-
face [13–15]. Existing approaches to measuring cognitive 
load and evaluating digital interface mainly include eye 

tracking, ERP, etc. We mainly review the methods closely 
related to our research.

Eye tracking can demonstrate the area of users’ visual 
interest [16] and assist us in comprehending subjects’ eye 
gaze patterns and attentional allocation. Wu et  al. [17] 
applied eye movement tracking technology to the usabil-
ity evaluation of smartwatch interface and quantitatively 
analyzed the internal differences between interfaces. Açik 
et al. [18] evaluated two different surgical interfaces (SI) 
by recording the eye movements of doctors and partici-
pants without medical expertise during interaction with 
an SI that directs a simulated robotic cryoablation task. 
However, most eye tracking equipment is pricey and 
requires complicated calibration, making it challenging 
to use in large-scale investigations outside lab settings.

Using cameras on simple personal portable devices 
[19–21] can be a more economical eye tracking method. 
Although this method is simple and cost-effective, it has 
yet to be widely adopted because of the poor accuracy of 
eye tracking data, and the camera calibration and light 
conditions must be set before use. Therefore, there are 
cursor-based visual attention tracking methods making 
use of the connection between the eye fixation point and 
the cursor fall point, greatly simplifying the parameters 
that must be set during the data acquisition process and 
providing a viable alternative to traditional eye tracking 
studies [20, 22–25]. BubbleView is a cursor-based, win-
dow-moving method [9, 26], which replaces eye gaze by 
collecting the user’s mouse clicks on static images. Bub-
bleView shows the user a blurred image and asks them 
to click it to expose a small circular bubble area [27, 28], 
that is, restore the blurred area to its original resolution. 
This purpose is to simulate human vision—the edge blur 
area in the fovea and the limited area where the fovea is 
in focus. BubbleView effectively slows down cognitive 
processing, since it takes longer for the user to move the 
mouse around the interface and decide where to click 
than for the human eye to glance at it. The click data of 
BubbleView are extremely close to human eye movement 
data when respondents were asked to describe informa-
tion visualization images like icons and tables under the 
descriptive task. Combining the original image with the 
BubbleView mouse click data creates a “visual impor-
tance heatmap ”, which can describe the images’ salient 
regions that attract the most visual attention and use it to 
analyze HMD interface instead the eye movement heat-
map. Similar to eye movement, we can also analyze the 
user’s visual perception and cognitive process through 
the mouse click data of BubbleView. The average time it 
takes to click the mouse will be shorter if the HMD inter-
face is simpler to understand.

ERP reflects the cognitive processing of information 
[29–31], which can make up for the deficiency of eye 
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tracking on reflecting information processing inside the 
brain.

P300 is one of the components of ERPs, which 
reaches its maximum amplitude about 300ms after the 
stimulus is presented. P300 is an essential indicator of 
task difficulty [32–34]. Since P300 component was dis-
covered, research has shown that P300 component is 
composed of two sub components, P3a and P3b [35]. 
P3a is produced in response to the processing of sen-
sory stimuli with frontal lobe activation from attention-
driven working memory changes. P3b is produced as a 
result of temporal/parietal lobe activation from mem-
ory and context updating operations and subsequent 
memory storage, has somewhat longer latency, and is 
less sensitive to habituation than P3a [14]. To eliminate 
the habituation factor, we only adopted the P3b com-
ponent rather than combining P3a and P3b to measure 
cognitive load in our experiment.

There are typically two different experimental methods 
that can produce P3b. The first is a dual-task paradigm, 
which examines how much of the individuals’ attention 
is still focused on the primary task. The research adopts 
a dual-task paradigm because vision and auditory share 
cognitive resources [36, 37]. Complex tasks consume 
much of the cognitive resource, reducing the amount of 
cognitive resource allocated to tasks other than the cur-
rent one [38, 39]. So when subjects are under high cogni-
tive load in primary tasks, they would be less responsive 
to additional stimuli of secondary tasks such as sound 
stimuli [40–42]. The other is the visual oddball paradigm, 
in which recognizing a target stimulus includes work-
ing memory, attention, stimulus evaluation and pattern 
matching [43]. A target stimulus significantly induces 
P3b. Instead of using the dual-task paradigm in our study, 
we directly adopted the visual oddball paradigm to test 
the attention resources devoted to the current activity. 
Therefore, the P3b component can intuitively measure 
the relationship between interface layout factors and cog-
nitive load.

In addition, many researchers have found that some 
other ERP components correlate with task difficulty 
using the adaptive cognitive load paradigm [32, 44, 45]. 
For example, P2 is a crucial index to assess users’ cogni-
tive load since it is sensitive to changes in cognitive load 
[33]. From the perspective of cognition, P2 reflects a 
pre-attention-alertness mechanism, which can improve 
the participants’ awareness of stimuli. The amplitude of 
P2 is directly related to the complexity of visual stimuli 
[46], indicating that P2 reflects a low level of cognitive 
difficulty information related to the physical properties of 
visual stimuli. The P3b component mainly reflects a high 
level of cognitive difficulty in information synthesizing 
high-level semantics. Combining P2 and P3b can more 

accurately measure users’ cognitive load from two differ-
ent cognitive levels.

In ERP study, we studied the cognitive load of sub-
jects from two different levels, namely low-level physical 
attribute meaning of stimulus and high-level semantic 
meaning of stimulus, and measured users’ cognitive load 
under different HMD interfaces by analyzing P2 and P3b 
components in combination with the oddball paradigm. 
If the HMD graphical user interface is harder to remem-
ber and recognize, the latency and amplitude of P2 and 
P3b will be longer and larger.

3 � Methods
3.1 � ERP experiment
3.1.1 � Participant
A total of 19 undergraduates and postgraduates of Xia-
men University were recruited to participate in the paid 
experiment (10 males and 9 females, ages 19–26 years, 
average age 22.6, standard deviation 2.2), all of them were 
right-handed, with normal naked eye vision or corrected 
normal vision. All signed an informed consent form.

3.1.2 � Dual stimulus “oddball” task
The oddball paradigm is one of the commonly used para-
digms in ERP experiments. It refers to the random pres-
entation of two stimuli of the same sensory channel in an 
experiment, and the probability of occurrence of the two 
stimuli is very different. The high-probability stimulus is 
called the standard stimulus, which is the background 
of the whole experiment. The low-probability stimulus 
is called deviant stimulus. The probability of the devi-
ant stimulus is around 20% and the probability of the 
standard stimulus is around 80%. If the subject is asked 
to respond to the deviant stimulus, the deviant stimulus 
becomes the target stimulus at this time.

In this work, the stimulus was the four different HMD 
interfaces shown in Fig.  1. The experiment was divided 
into four groups, and each participant completed all four 
groups of experiments.

At the beginning of the experiment, an indicating inter-
face was presented (Fig. 2) which defines target stimulus 
and standard stimulus in each group. After participants 
confirmed that they remembered the difference between 
target stimulus and standard stimulus, they pressed the 
blank space key to enter the next step. The target stimu-
lus and the standard stimulus will randomly appear in the 
middle of the screen. Each group of experimental target 
stimulus randomly appears 40 times (the probability is 
0.2), the standard stimulus appears 160 times (the prob-
ability is 0.8), and the stimulus presentation time is 1000 
ms. Subjects were asked to click the left mouse button as 
soon as they see the target stimulus. When the standard 
stimulus appeared, subjects will not need to make any 
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response. From last stimulus disappear until next stimu-
lus present, time interval length was 500ms. During this 
period, subjects were asked to gaze at the fixation cross 
presented in the middle of the screen.

Since the difference between the target stimulus and 
standard stimulus will directly affect P3b and P2 ampli-
tude, each group of the experimental target stimulus 
and standard stimulus was different. To directly com-
pare and analyze interface A and B, interface C and D, 
we exchanged the target and standard stimulus of the 
first and the third group, and set up the second and the 
fourth group of experimental. Table 1 shows the stimulus 
in each group.

The stimulus was presented in the center of the DELL 
P2314H LCD display on a black background with a 
refresh rate of 60 fps. We used psychology software 
E-prime 2.0 to control the presentation of the stimuli. 
The eyes of the subjects were fixed 70  cm away from 
the monitor. The horizontal and vertical angles of the 

stimulus relative to the subject’s field of view were both 
less than 6◦.

At the same time, there will be a rest after the comple-
tion of each group to avoid excessive fatigue of the sub-
jects. The subjects must keep their head stable and close 
their eyes for rest. The subjects can define their own 
break time. There was a training stage before the formal 
experiment that aims to familiarize subjects with the task 
process. After the training stage, the formal experiment 
will begin and last about 25 min.

3.1.3 � Procedure
The experiment was conducted in a closed, soundproof 
room with standard indoor lighting. Each subject sat on 
chair in front of the monitor, and the head was placed 
on the bracket of the 66vt-yt2b slit lamp table to main-
tain stability. Before the beginning of the experiment, 
the guide words appeared on the screen and the subjects 
were asked to read it carefully. They were asked to blink 

(a) Interface A (b) Interface B

(c) Interface C (d) Interface D
Fig. 1  Combining the classical aircraft HMD interface with flight simulation software FlightGear, determined the flight parameters and shape of our 
HMD interface element and designed four different HMD interfaces. The only difference between interface A, B lies in the location of azimuth icon. 
The only difference between interface C, D is the location of icon “M 2.0”, “AGL 7”, “G 1.0”, “GS: 35kts
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naturally during the experiment. After placing the elec-
trodes and the researchers left, subjects pressed the space 
bar to begin the experiment.

3.1.4 � EEG signals recording and preprocessing
Neuroscan 4.5 (http://​www.​neuro​scan.​com/) was used 
for data recording and analysis. A 64-channel EEG elec-
trode cap of an international 10–20 system was used for 

data collecting. The ground electrode was FPz and the 
reference electrode was from the nose tip. Vertical eye 
movements were recorded with electrodes placed on 
the supraorbital and infraorbital ridges of the left eye. 
The horizontal eye movements were recorded with elec-
trodes placed laterally to the outer canthi of both eyes. 
The impedance of all electrodes was kept lower than 5 k� 
during recording, and the sampling rate was 1000Hz. The 
EEG and electrooculogram (EOG) signals were ampli-
fied using a band-pass of 0.05–100Hz. After continuous 
EEG recording, the data were processed offline. Automa-
tized artifact rejection was used to eliminate trials during 
which detectable eye movements, blinks, muscle poten-
tials, or amplifier blocking occurred. Then, EEG waves 
were filtered for each subject with a band-pass Gauss-
ian filter (0.15–30Hz) to reduce residual high-frequency 
artifacts in the waveform. We selected the period from 
200 ms before the appearance of target stimulus to 1000 
ms after the appearance of target stimulus as the EEG 
segmentation time. Trails in which the EOG or EEG 
exceeded ±100µv were excluded.

3.2 � BubbleView experiment
3.2.1 � Participant
As described by Kim et al. [9], participants about 15 peo-
ple are enough to obtain a good result for descriptive 
BubbleView experiment. 20 participants took part in the 
study (including 9 males and 11 females, aged 19 to 26 
years, with an average age of 24, the standard deviation 
of 2.1), all were right-handed, naked eye eyesight or cor-
rected vision was normal, and no subjects had psycho-
logical disorders.

3.2.2 � Mouse clicks and picture description task
In this task, four pictures were presented in random 
order. The experiment required users to reveal the pic-
ture by clicking and describe the picture as thoroughly as 
possible during the exploration of the picture. There was 
no time limit for this task. The blur radius was set to 10 
pixels, the bubble radius was set to 30 pixels.

3.2.3 � Data recording and preprocessing
We used JavaScript to write the BubbleView page (Fig. 3) 
and published it on the local server for receiving data. 
Data obtained from the BubbleView page is of two types: 
mouse click data (including the click position of the 
mouse and the number of mouse clicks) of the subject 
under different HMD interfaces, and text description of 
the current HMD interface. When the user clicked “sub-
mit” button, the data were sent to the local server and 
stored locally as a txt file. Our requirement for the data 
was that the subjects reveal the whole image as com-
pletely as possible while providing accurate and detailed 

(a) Target stimulus

(b) Standard stimulus
Fig. 2  Indicating interface in the experiment. Target stimulus means 
that when subjects see the interface, they should click the left mouse 
button as soon as possible. Standard stimulus means that subjects 
do not have to react when they see the interface. The interface is 
only used as instruction at the beginning, and the corresponding text 
information will not appear during the experiment

Table 1  Standard stimulus and target stimulus in each group

Standard stimulus Target 
stimulus

First group A B

Second group B A

Third group C D

Fourth group D C

http://www.neuroscan.com/
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textual descriptions. Therefore, we checked the mouse 
click range and analyzed the text description to delete 
some invalid data, and obtained 15 subjects’ valid data 
at last. Specifically, for the mouse click range, we visual-
ized a binary mask image with the mouse click position 
as the center and a radius of 30 pixels (the bubble radius) 
to check if there are any unexplored areas. We filtered 
the text description one by one according to whether 
the description matched the interface information. For 
example, a circle will be seen if the picture is uncovered 
in the center. If the text description at this position does 
not have this key information, it will be considered inva-
lid. We used Matlab to visualize the mouse click position 
and click times of 15 subjects under the four different 
HMD interfaces, and generated the visual importance 
heatmap of the corresponding interface [9].

3.3 � Statistics and analysis
When analyzing the experimental results, we com-
pared the results of the first group and the second 
group, call it the first comparison group, and com-
pared the results of the third group and the fourth 
group as the second comparison group. The statisti-
cal analyses of 2× 4 repeated measures ANOVAs were 
used to analyze the amplitude and latency of target 
stimulus P2 response including factors of interfaces 
([interface A vs. interface B] or [interface C vs. inter-
face D]) and electrodes ([Fz, FCz, Cz, Pz]) [47]. We 
took 200ms to 275ms after the stimulus onset as the 
peak detection window of P2 component and calcu-
lated the average amplitude of P2 after stimulus onset 
from 205ms to 290ms [48].

The statistical analyses of 2× 3× 3 repeated meas-
ures ANOVAs were used to analyze the amplitude and 
latency of P3b response including factors of interfaces 
([interface A vs. interface B] or [interface C vs. interface 
D]) and horizontal electrodes’ location (central parietal 
vs. parietal vs. occipital) and vertical electrodes’ loca-
tion (left vs. central vs. right) [49]. CP1, CPz, and CP2 
(Fig. 4) are included in the central parietal. P3, Pz, and 
P4 are included in the parietal lobe. PO3, POz, and 
PO4 are included in the occipital. P3, PO3, and CP1 
are included on the left. CPz, Pz, and POz are included 
in central. CP2, P4, and PO4 are included on the right. 
We took the 300ms to 800ms after stimulus onset as 
the peak detection window of P3b component and cal-
culated the average amplitude of P3b according to the 
350ms to 800ms after stimulus onset [50].

We used the result of Mauchly’s test of sphericity 
to determine whether there are correlations between 
repeated measurement data, if so, the Greenhouse–
Geisser will be used to correct the result. Paired sam-
ple t-test was used to analyze the significant difference 
in reaction time, accuracy and the mouse click times of 
subjects under different HMD interfaces. All statistical 
analysis operations were completed in IBM SPSS Sta-
tistics 21, and the statistical analysis threshold of α was 
set as p < 0.05.

4 � Result
4.1 � Behavior result
Average reaction time and accuracy under different inter-
faces are shown in Table 2. Response time under interface 
A is significantly slower than interface B (t = −3.303, p = 

Fig. 3  BubbleView experiment interface. The experiment requires users to reveal the picture by clicking (left), and describe the picture as 
thoroughly as possible during the exploration of the picture (right). The region included in the red circle means the subject has noticed this area
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0.001). Response time under interface C is significantly 
slower than interface D. There is no significant difference 
in the two comparison groups on accuracy (the first com-
parison group: t = 1.157, p = 0.262; the second compari-
son group: t = 1.533, p = 0.143).

4.2 � ERP result
4.2.1 � P3b
ERP waves elicited by target stimulus are shown in 
Figs. 5, 6. In the first comparison group, there is no sig-
nificant difference on the latency of P3b (p = 0.071), P3b 
amplitude of interface B ( amplitude = 8.84µV ) is sig-
nificantly higher than interface A ( amplitude = 2.12µV ), 
and the horizontal electrodes’ location has a signifi-
cant impact on the P3b amplitude ( P = 0.033 ), the 
central parietal lobe ( amplitude = 6.58µV ) > pari-
etal lobe ( amplitude = 5.47µV ) > occipital lobe 
( amplitude = 4.79µV ), vertical electrodes’ loca-
tion also has significantly influence on the amplitude 

( P = 0.045 ), the central ( amplitude = 5.93µV ) > right 
( amplitude = 5.84µV ) > left ( amplitude = 5.17µV ). In 
the second comparison group, there is no significant dif-
ference in the latency of P3b ( p = 0.067 ) and no signifi-
cant difference in amplitude ( p = 0.074).

4.2.2 � P2
ERP waves elicited by target stimulus are shown in 
Fig.  7. In the first comparison group, there is no sig-
nificant difference in the latency of P2 ( p = 0.374 ), 
and the amplitude of P2 induced by interface B 
( amplitude = 1.00µV ) is significantly higher than inter-
face A ( amplitude = −0.71µV ). The interaction effect 
between the experimental group and the electrodes’ loca-
tion is significant ( p = 0.003 ), but the effect of electrodes’ 
location on the amplitude is not significant ( p = 0.309 ). 
In the second comparison group, there is no significant 
difference in the latency ( p = 0.472 ) and the amplitude 
( p = 0.472 ) of P2. By calculating the correlation between 
the amplitude of P2 and P3b, it can be found that they 
have a positive correlation (Pearson correlation is 0.57, 
p = 0.005).

4.3 � BubbleView result
We use the mouse click data to generate the weight 
map and then superimpose the weight map and the 
original picture to generate the visual importance heat-
map (Fig. 8). The color more bright, the more attention 
resources the participants allocate in this area. In the 
first comparison group, the mouse clicks of interface B 
are significantly more than interface A ( p = 0.019 ). The 
second comparison group has no significant difference 
( p = 0.174).

5 � Discussion
In ERP, the visual P2 can be found in the context of the 
visual priming paradigm, which seeks to understand how 
prior information shapes future responses. In the visual 

Fig. 4  P2/P3 analysis electrodes. Electrodes that are used to analyze 
P2 component are included in blue box. Electrodes that are used to 
analyze P3b component are included in the green box

Table 2  Data collected from two experiments under different HMD interfaces

(In parentheses is the standard deviation)

Data type Index A B C D

Behavior data Reaction time(ms) 464.55 (94.41) 450.36 (87.65) 487.49 (74.42) 461.77 (77.90)

Accuracy(%) 99.40 99.57 99.26 99.60

P3b Latency(ms) 495.41 (6.63) 481.26(7.22) 514.38(7.53) 496.62(12.80)

Amplitude(µV) 2.12 (1.05) 8.84 (1.00) 7.08(0.69) 4.95(0.81)

P2 Latency(ms) 255 (1.73) 250 (6.13) 247 (6.66) 251(3.16)

Amplitude(µV) – 0.71 (0.98) 1.00 (0.30) – 0.09 (0.39) – 0.24 (0.52)

BubbleView Average clicks 79.80 (44.70) 88.93 (50.07) 101.67 (70.34) 86.60 (44.57)
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priming paradigm experiment design, participants are 
briefly presented with an image or word, followed by a 
delay and a subsequent stimulus upon which partici-
pants must make a classification [51]. Researchers have 
used the visual search paradigm with stimulus arrays and 
found that target stimuli elicited larger anterior P2 com-
ponents than standards. This evidence suggests that top-
down information processing about feature classification 
affects processing at the visual perception stage. Thus, 
the P2 may index mechanisms for selective attention, 
feature detection (including color, orientation, shape, 
etc.), and other early stages of item encoding. Research-
ers found that 3D images induced P2 component with a 
larger amplitude than 2D images [46]. The amplitude of 
P2 component is sensitive to visual cognitive processing, 
which reflects the complexity of visual stimuli. Under the 
dual-task paradigm, the difficulty of the primary task is 
inversely proportional to the amplitude of P3b induced 
by the secondary task. When the primary task becomes 
more complex, there will allocate more attention 
resources or stimulus evaluation resources to the pri-
mary task, while more cognitive load and less attention 
resources will be allocated to the secondary task, and less 

P3b amplitude will be induced by the final secondary task 
[52]. Therefore, P3b amplitude directly reflects the diffi-
culty of the task. The more reasonable the layout of the 
HMD interface, the subjects will invest the fewer atten-
tion resources or stimulus evaluation resources in cog-
nitive recognition of the HMD interface. P2 component 
mainly reflects the evaluation process related to the phys-
ical attributes of stimulus images, which is a low-level 
evaluation process. In contrast, P3b component mainly 
reflects the evaluation process combining the overall lay-
out rationality, which is a high-level evaluation process.

The amplitudes of P2 and P3b induced by interface 
B were significantly higher than that of interface A in 
Table 2. Interface B is asymmetrical [53] compared with 
interface A, and the icons are more crowded in interface 
B. So users spend more attention resources on cognitive 
judgment and memory, and have higher cognitive load 
on interface B. In the second comparison group, there is 
no significant difference in the amplitude of P2 and P3b. 
By comparison, the difference between interface C and 
interface D is a slight change in the layout of multiple 
small icons, meanwhile the amplitude of P3b is affected 
by the change and difference between target stimulus and 

Fig. 5  ERP waves on CP1, CPz, CP2, P3, Pz, P4, PO3, POz, PO4 (electrodes that are used to analyze P3b component) of the first comparison group 
(first group and second group)
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Fig. 6  ERP waves on CP1, CPz, CP2, P3, Pz, P4, PO3, POz, PO4 (electrodes that are used to analyze P3b component) of the second comparison group 
(third group and fourth group)

Fig. 7  ERP waves on Fz, FCz, Cz (electrodes that are used to analyze P2 component) in each group
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standard stimulus [49], so there is no significant differ-
ence on the amplitude of P3b in the second comparison 
group. In addition, there is no significant difference in the 
latency of P2 and P3b for each interface, indicating that 
the evaluation of cognitive load by the latency of ERP in 
P2 and P3b is unreliable [49].

In the BubbleView experiments, we can find that the 
subjects spend less visual attention resources on the bot-
tom half of the interface (Fig. 8), which is consistent with 
visual cognitive characteristics mentioned by [8]. There 
is a significant difference in the number of mouse clicks 
in the first comparison group. It shows that interface B 
has more information to process. There is no significant 
difference on the mouse clicks in the second compari-
son group. Also, no significant difference is found in the 
subjects’ accuracy under different HMD interfaces. This 
may be because the stimulus is presented for a long time 
(1000ms), and the interface is relatively simple.

ERP and BubbleView experiments both show that 
interface B has higher cognitive load than interface A. 

They also show that interface C and interface D have 
no significant difference on the amplitude, latency, and 
mouse clicks. The above analysis indicates that ERP and 
BubbleView have consistent evaluation results. However, 
the subjects’ reaction time on interface B is significantly 
faster than interface A (Table  2). The only difference 
between interface A and interface B is the location of 
the azimuth icon (interface A is below, and interface B 
is above). By analyzing the visual importance heatmap 
(Fig. 8), we find that the subjects’ attention resources are 
mainly concentrated on the top of the interface [8]. This 
indicates that although interface B has more information 
to process and a higher cognitive load, interface B is sim-
pler to recognize and processes information more quickly 
because attention resources are primarily distributed in 
the upper part, resulting in a shorter reaction time than 
interface A. ERP results reflect the amount of attention 
resources input by subjects under different interfaces in 
order to understand interfaces, and also reflect different 
levels of cognitive load [32–34, 44–46], but fail to reflect 

(a) mean clicks = 79.80 (b) mean clicks = 88.93

(c) mean clicks = 101.67 (d) mean clicks = 86.60
Fig. 8  Mean clicks under different HMD interfaces. The color more bright, the more attention resources the participants allocate in this area
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the distribution of attention resources under different 
interfaces. Through BubbleView experiments, we explore 
the attention resources invested by subjects on the HMD 
interface to the allocation, the whole research process 
more completely and objectively reflects how different 
HMD interfaces are perceived and evaluated by subjects.

From the above analysis, the combination of ERP and 
BubbleView can be used to evaluate the cognitive load 
of digital interfaces. This method can reflect the entire 
cognitive process from input to allocation of attention 
resources, and the evaluation results of ERP and Bub-
bleView for the cognitive load can be mutually verified. 
The BubbleView visual importance heatmap plays an 
essential role in explaining the significant differences in 
responses and the distribution of attention in the inter-
face layout. Also, when designing an HMD interface, we 
must consider symmetry and simplicity to reduce cogni-
tive load. In conclusion, combining ERP and BubbleView 
is an effective method to measure and evaluate the cogni-
tive load of the interface.

6 � Conclusion
This paper proposes a new method combining ERP and 
BubbleView to evaluate and measure the cognitive load 
on digital interfaces. We designed ERP and BubbleView 
experiments for HMD interfaces with different layouts. 
By extracting the P3b and P2 components of the ERP, we 
analyzed the input of the subjects’ attentional resources 
on different interfaces and analyzed the participants’ 
cognitive load in different interfaces from two levels 
(low-level visual–physical attributes and high-level visual 
semantic information). Through the BubbleView experi-
ment, we observed the allocation of subjects’ attention 
resources on the interface. Combining ERP and Bub-
bleView, we can analyze the entire cognitive process of 
attention resources from input to allocation, thus evalu-
ating the interface’s cognitive load. Experimental results 
show that HMD interfaces with a more symmetrical and 
concise layout have a less cognitive load, and subjects will 
pay more attention to the upper portion of the interface.

In future work, the interface evaluation method com-
bining ERP and BubbleView can be applied not only to 
HMD interfaces, but also to other digital interfaces made 
of icon elements ordered according to predefined rules. 
The results of BubbleView can also be used to measure 
cognitive load, in particular circumstances without ERP 
experimental conditions.
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