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Abstract 

Addiction in the brain is associated with adaptive changes that reshape addiction-related brain regions and lead 
to functional abnormalities that cause a range of behavioral changes, and functional magnetic resonance imag-
ing (fMRI) studies can reveal complex dynamic patterns of brain functional change. However, it is still a challenge to 
identify functional brain networks and discover region-level biomarkers between nicotine addiction (NA) and healthy 
control (HC) groups. To tackle it, we transform the fMRI of the rat brain into a network with biological attributes and 
propose a novel feature-selected framework to extract and select the features of addictive brain regions and identify 
these graph-level networks. In this framework, spatial attention recurrent network (SARN) is designed to capture the 
features with spatial and time-sequential information. And the Bayesian feature selection(BFS) strategy is adopted to 
optimize the model and improve classification tasks by restricting features. Our experiments on the addiction brain 
imaging dataset obtain superior identification performance and interpretable biomarkers associated with addiction-
relevant brain regions.
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1  Introduction
Neuroscience is stepping into a period marked by large 
amounts of complex neural data obtained from large-
scale neural systems [1]. Most of these large data are 
presented in the form of data from networks covering 
the relationships or interconnections of elements within 
different types of large-scale neurobiological systems, for 
example, connections and anatomical projections of neu-
ral circuitry between brain regions and patterns of neu-
ral signals in brain regions associated with spontaneous 
and task-induced brain activities. Brain networks are seg-
mented by anatomical structures that partition different 
brain regions and connect them together, and functional 

brain networks display complex neuronal communica-
tion and signaling patterns.

Moreover, neuroimaging [2] is a bridging field that 
integrates medical imaging computing and neuroscience 
and has been evolving in recent years. Brain imaging 
[3] is a powerful tool for studying neuroscience, diag-
nosing and treating brain disorders through qualitative 
and quantitative analysis of two- and three-dimensional 
images [4], and using imaging methods to explain the 
anatomical structure and activity of the brain [5], as well 
as to address unanswered questions in the field of neu-
roscience [6, 7]. Addiction is a brain dysfunction charac-
terized by abnormal behavior, and addicts are driven by 
an overwhelming compulsion to seek and consume drugs 
constantly. Drug addiction treatment is difficult [8], and 
its biological mechanisms have not been fully illumi-
nated. Meanwhile, imaging studies have revealed neuro-
chemical and functional changes in the brains of addicted 
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individuals, providing new insights into the mechanisms 
of addiction.

Owing to advances in modern imaging techniques and 
advanced medical image analysis methods [9], patterns of 
such complex neural signals can be analyzed from func-
tional images, which reveal their association with neu-
ronal activity [10], such as behavior and cognition, as well 
as brain diseases [11]. However, few computational brain 
imaging methods use functional MRI to investigate the 
relationship between nicotine addiction and altered neu-
ronal activity patterns throughout the brain [12], identify 
these patterns and detect regional neuroimaging bio-
markers. Therefore, brain imaging studies of the neural 
mechanisms and supporting diagnoses associated with 
nicotine and other drug addiction have become increas-
ingly critical.

Functional magnetic resonance (fMRI) [13] has been 
used to study nicotine dependence’s neural basis and 
develop smoking cessation strategies. Resting-state func-
tional magnetic resonance imaging (rs-fMR) is the most 
powerful non-invasive functional imaging technique. 
It has the potential to radically revolutionize research-
ers’ understanding of the physical basis of the brain and 
provide valuable tools for clinical and research purposes 
[14]. Because the neurological and behavioral effects of 
acute drug administration are often of short duration, 
the temporal pattern of change over a short time is criti-
cal. Such dynamic alterations can be detected by fMRI, 
which can reflect average values over shorter periods. 
fMRI studies reveal a complex dynamic pattern of brain 
changes during drug intoxication, with different temporal 
patterns, with some regions activated and others blocked. 
Functional connectivity in brain networks is commonly 
generated by analyzing fMRI time series, and functional 
brain networks characterize the statistical correlation 
patterns between neuronal regions. In the last decade, 
the significant progress has been made in using fMRI 
data for brain functional network analysis [15]. Altera-
tions in functional connectivity between brain regions 
have been extensively studied in the field of brain disor-
ders, as well as the association between cognitive impair-
ment [16] and degenerative neurological and psychiatric 
disorders [17].

2 � Related work
Machine learning techniques have been widely applied 
in recognition of medical scenes [18]. In brain image 
computing, machine learning-based artificial intelli-
gence approaches powerful capabilities to drive brain 
image analysis technology forward [19, 20], effectively 
refining physicians’ diagnoses and improving the accu-
racy of disease prediction. Recent advances in machine 
learning, particularly in deep learning, contribute to 

identifying, classifying and quantifying brain images 
[21]. Deep learning-based brain image analysis meth-
ods [22, 23] for brain disease research can explore the 
disease’s mechanism and understand the brain disorder 
process. The core of these advances is the capability to 
automatically generalize hierarchical features [24] from 
data rather than manually discovering and designing 
features [25] depending on specific knowledge.

Because of the improvement of deep learning, the 
performance of several neuroscience applications has 
concurrently increased dramatically [26]. Deep learning 
techniques are a novel and efficient way of processing 
and extracting low-dimensional information from high-
dimensional brain imaging data. For example, con-
volutional neural network (CNN) approaches reduce 
medical image data dimensionality to identify patterns 
in brain imaging [27]; generative adversarial networks 
(GAN) methods [28, 29] are frequently employed in 
medical image fields, which are built on variational 
inference methods. Generative adversarial techniques 
can simulate the actual distribution of data to decrease 
noise interference and improve model resilience [30].

For the past few years, deep learning medical image 
analysis methods based on graph neural networks have 
yielded successful results in the fields of disease clas-
sification and marker detection [31]. Graph neural net-
works are learning models that combine attributes and 
structural features into a single graph for processing. 
In contrast to traditional graph methods, graph neural 
networks can automatically propagate information car-
ried by neighboring nodes, which can then be used to 
analyze patterns of brain disorders.

However, processing network-structured data to 
obtain interpretable and determinable biomarkers is 
still challenging by existing methods. Traditional sta-
tistical-based methods require complex and redundant 
computational operations on image data. In contrast, 
by adopting common deep learning methods, the high 
dimensionality and small sample size of fMRI image 
data lead to difficult training, and complex features 
result in low identification accuracy. To address these 
issues, we develop a novel learning framework with 
feature selection techniques and make the following 
contributions: 

1.	 Spatial attention recurrent network (SARN) is 
designed to identify effective patterns of addiction-
related brain networks from fMRI data, which can 
learn the spatial structure and sequential informa-
tion.

2.	 A Bayesian feature selection approach is utilized 
to obtain effective and interpretable brain network 
embeddings for better identification performance.
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3.	 The feature-selected brain regions can be considered 
addiction-related biomarkers verified by our experi-
ments and neuroscience knowledge. And the discov-
ery of these brain regions will help research addiction 
mechanisms.

This work extends a preliminary version of the paper 
presented at the 2022 International Conference on Brain 
Informatics [32]. We build on the work of that paper by 
supplementing analyses and expanding the encoder with 
a novel recurrent network that can better handle the tem-
poral information of dynamic brain networks.

3 � Method
As shown in Fig. 1, the detailed architecture of the pro-
posed framework is demonstrated. Our framework com-
prises three main components: 1) SARN encoder consists 
of graph positional attention layers and sliding-window 
attention recurrent layers; 2) a feature selector with 
Bayesian feature selection strategy; and 3) a classifier for 
identifying addiction-related brain network embeddings.

Raw fMRI data are firstly fed as input and preproc-
essed into network data with structural information and 
attributes. Generally, in the encoder(E), self-attention 
mechanism is adopted to transform the time series of 
brain regions X = {xn}

N
n=1 ∈ R

N×D and dynamic brain 

functional connections 
{

At
}T

t=1
 into the embeddings 

Z = {zn}
N
n=1 ∈ R

N×d . Moreover, in the feature selector, 
the latent binary random vectors B = {bn}

N
n=1 are cre-

ated to infer the posterior probability distribution and 
select more efficient brain regional features. Therefore, 
the encoder is trained with double objectives: a Bayesian 
feature selection loss considered as the feature sparsity 
penalty and a classification loss for identifying nicotine 
addiction. After sufficient training, the model in the 
framework can finally output addiction probability scores 
of specific brain regions and addiction brain network 
identification results.

3.1 � Graph spatial attention network
The graph spatial attention encoder aims to embed the 
regional brain imaging features aggregated with dynamic 
brain network attributes into a low-dimensional latent 
space. The proposed layer that composes the encoder is 
based on the graph attention networks (GAT) [33] with 
the addition of spatial encoding. It allows each regional 
brain node to focus adaptively on other nodes according 
to the spatial information of the graph-structure connec-
tivities in the brain networks.

Therefore, the attention coefficient, which is combined 
a shared attentional mechanism and spatial encoding for 
brain connectivities, can be expressed as:

where hl(i) is a hidden representation for brain node i at 

lth layer, Wl ∈ R
dl×dl+1 is a parameterized weight matrix 

considered as the graph convolutional filter, cl is a weight 
vector that can be learned in the train phase, and Sψ(xi ,xj) 
is a scalar that can be learned and is indexed by ψ(xi, xj) 
with positional information. It indicates the spatial 
encoding and is accessible throughout all layers.

Formally, let hl+1
(i)  represent the output representation 

at lth layer, our graph spatial attention layer is given as 
follows:

In Eq. 2, the feature propagation mechanism aggregates 
the effects across overall neighboring brain nodes and 
attaches spatial encoding information from dynamic 
brain network connectivity 

{

At
}T

t=1
.

3.2 � Sliding‑window attention recurrent network
As is known, the sliding-window technique [34] is com-
monly used for capturing dynamic changes of functional 
brain imaging and extracting efficient time courses. 
Inspired by this basic approach and attention mechanism 
[35], sliding-window attention network is designed for fur-
ther processing network embeddings and extracting the 
time sequential representation of dynamic functional attri-
butions. Sliding-window attention recurrent layer consists 
of individual units in series; the structural details of the unit 
are shown in Fig. 2. In this network, the data input is the 
brain network embedding from the former layer at differ-
ent time steps, and the output is the brain network repre-
sentation of the whole time series. We consider previous 
memory state Mt−1 = [Ht−1,Ht−2, ...,Ht−w] as the time 
window interest of the dynamic brain networks within w 
time steps. At step t, the output embeddings of graph spa-
tial attention network Zt become the original input of this 
recurrent unit, and the input query matrix of self-attention 
Q = Zt , key and value matrices are K ,V = [Zt ,Mt−1] . To 
implement self-attentions, the weighted coefficients etm and 
attention coefficients atm are calculated as given below:

(1)

αl
(i,j) =

exp
(

tanh
([

h
l
(i)W

l ,hl(j)W
l
]

· cl + sψ(xi ,xj)

))

∑

j∈N (i) exp
(

tanh
([

h
l
(i)W

l ,hl(j)nW
l
]

· cl + sψ(xi ,xj)

)) ,

(2)h
l+1
(i) = σ





�

j∈N (i)

αl
(i,j)h

l
(j)W

l



.
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Fig. 1  Proposed spatial attention recurrent network with Bayesian feature selection for identifying brain addiction. The top part of the figure is the 
raw fMRI preprocessing and brain network construction, the middle is the designed encoder, and the bottom is the Bayesian feature selector and 
addiction classifier
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The intermediate hidden state Ht−1 is updated as Ht , and 
Mt is updated by adding HT to Mt−1 . The calculation 
that occurs during the update is shown in the following 
equations:

We finally get Ht containing the spatial and temporal 
features after this network. Although it is similar to sim-
plified LSTM [36] or GRU with attention [37], the differ-
ences are that it only retains the forget gate to reduce the 
redundancy of the model and combines sliding-window 
and self-attention mechanisms to obtain better temporal 
features under the time window.

3.3 � Bayesian feature selector
To find the most effective features for identification from 
many regional brain features and to acquire a set of fewer 
but discriminative biomarkers to reduce classification 
error, we employ the Bayesian feature selector. We define 
H = {Ho

1 , ...,H
o
n} and Y = {y1, ..., yn} as the output fea-

tures from the encoder and labels of addiction or not. By 

(3)etm =
WqQ · (WkKm)

T

√

dk
,

(4)
atm = SelfAttn(Zt

, [Zt
,Mt−1], [Zt

,Mt−1])

=
exp(etm)

∑w
m=0 exp(e

t
m)

.

(5)f t =σ(Wf Z
t +Uf a

tV + bf ),

(6)H̃ t =tanh(WhZ
t +Uha

tV + bh),

(7)Ht =f t ⊙Ht−1 + (1− f t)⊙ H̃ t .

introducing binary masking matrix B to achieve the goal 
of selecting features, the expected posterior distribution 
is denoted as p(B | H,Y) and an approximate distribu-
tion is represented as q(·) . In order to improve the iden-
tification performance and the accuracy of the model in 
discriminating features, in the view of variational method 
[38] and Bayesian inference, we optimize the model by 
minimizing the KL divergence between the posterior dis-
tribution and the approximate distribution:

In Eq.  8, the first term corresponds to a binary cross-
entropy loss for identification task where the input fea-
tures H are masked by B , and the second term becomes 
a loss for learning the probability scores z which is used 
to compute the binary matrix B by Bernoulli sampling 
method:

where un is sampled from a uniform distribution from 
0 to 1, and r is the relaxation parameter of Bernoulli 
sampling.

3.4 � Classifier and loss function
To integrate the information of each node for the graph-
level identification, we utilize a readout function to clus-
ter node features together by simply averaging them:

where σ is nonlinear activation function. The readout 
function is similar to the graph pooling operation. Other 
graph pooling methods can be used to replace it. The 
selected and readout features are delivered to a multi-
layer perceptron (MLP) to derive the final identification 
of predicted labels ŷ.

The total loss function is the interpretation of Eq. 8:

The first term is used to guide the MLP in the classifica-
tion of the selected features. Furthermore, the second 
term is applied for training the selector to learn the prob-
ability mapping to the feature mask. Here, Ber(s) is a 

(8)
argmin

q(·)

KL(q(B)�p(B | H,Y)) =

− Eq[log (p(B | H,Y))]+ KL(q(B)�p(B)).

(9)

bn = σ

(

log (z)− log (1− z)+ log (un)− log (1− un)

r

)

,

(10)R(H) = σ

(

1

N

N
∑

i=1

hi

)

,

(11)

L(X,A) = −

N
∑

n=1

(

yn log
(

ŷn
)

+
(

1− yn
)

log
(

1− ŷn
))

+ KL(Ber(z)�Ber(s)).

Fig. 2  The detailed unit of sliding-window attention recurrent 
network
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binary random vector that contains sparse elements for 
the purpose of complying with sparsity.

4 � Experiments
In this section, we first evaluate the capability of the pro-
posed framework in identification performance through 
an ablation study and comparison experiment. And 
we utilize four kinds of binary classification metrics to 
measure the experiment results of dynamic brain net-
work identification. Then, we analyze the scores of the 
other framework output to detect addiction-related brain 

regions. These identified brain regions are visualized and 
validated as interpretable biomarkers. 

4.1 � Dataset and preparation
An fMRI dataset on the addiction animal model is 
adopted for our experiments. It contains 8 normal con-
trol fMRI, addiction-irrelevant samples, and 16 addic-
tion-related fMRI samples, each of which has 800 time 
points. The quality of these image data is strictly con-
trolled, with the signal-to-noise ratio as large as possible. 
To transform fMRI data into the dynamic brain network 
data, the following preprocessing is implemented. Func-
tional data are aligned and unwarped to account for 
head motion, and the mean motion-corrected imaging 
is coregistered with the higher resolution anatomical T2 
imaging. Then the preprocessing images are smoothed by 
an isotropic Gaussian kernel with a 3-mm full-width at 
half-maximum. With the Wistar rat brain atlas [39], 150 
rat brain regions are defined and fixed in the normalized 
space. We assessed the functional connection between 
regional time series by calculating the Pearson correla-
tion coefficient, resulting in a 150× 150 adjacent matrix 
for each time step, and we divided the whole time series, 
800 time points, into 4 time steps equally. The adjacency 
matrix and the temporal properties of brain regions at all 
time steps form the dynamic brain network data as the 
input dataset. Besides, the major part of the preprocess-
ing steps is done with the assistance of toolboxes, includ-
ing Statistical Parametric Mapping 12 (SPM12) [40] and 
Graph Theoretical Network Analysis (GRETNA) [41].

4.2 � Implementation detail
The PyTorch backend was used to implement FGSAN. 
One Nvidia GeForce RTX 3080 Ti was used to speed up 
the network’s training. During training, the learning rate 
was set at 0.001, and the training epoch was set to 1000. 
Adam was used as an optimizer with a weight decay of 
0.01 to reduce overfitting. The proposed SARN encoder 
is composed of three graph spatial attention layers and 
one sliding-window attention recurrent layer. All tri-
als are repeated ten times, and the results are averaged. 
The regularization value was set to 0.5 for all datasets and 
techniques.

4.3 � Metrics
Evaluation of binary classification performance is based 
on quantitative measures in four key metrics: (1) accu-
racy (ACC); (2) precision (PREC); (3) recall; and (4) 
F1-score. Our proposed method is evaluated by fourfold 
cross-validation.

Fig. 3  Identification experiments on comparative methods. The red 
box represents our method, and the green and the yellow are DGI 
and GCN methods. The maximum, minimum, mean, and quartiles are 
shown in the box plot

Table 1  Ablation study for assessing the efficiency of the 
encoder and feature selection

The bold values indicate that the best performance is obtained by SARN with 
feature selection

Encoder Feature 
selection

Metrics

ACC​ PREC Recall F1-score

GAT​ � 67.75 73.33 72.67 73.00

SARN × 75.50 77.83 80.25 79.02

SARN � 81.25 79.50 83.33 81.37
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4.4 � Ablation study of identification performance
As indicated in Table 1, we conducted ablation research 
on identification to evaluate the effectiveness of our pro-
posed encoder and Bayesian feature selector, and two sig-
nificant results are achieved:

1) In the comparison to the baseline encoder, GAT 
showed impressive performance on the binary addiction-
related classification. This is due to the fact that the spa-
tial encoding enables the self-attention mechanism to get 
more positional information and achieve better graph 
embeddings, and the recurrent network learns more 
effective representations in the temporal dimension;

2) The Bayesian feature selector comprehensively 
improves performance of the identification methods. It 
represents that feature selection plays its role as an auxil-
iary to identifying the graph-structure patterns, and task-
involved embeddings are selected to make the model 
perform better on the classification.

4.5 � Comparison of identification performance
We conduct comparative experiments to verify the supe-
riority of the method proposed in this part of the sec-
tion. It is compared with the methods with graph neural 
networks, including GCN [47] and DGI [48]. GCN is a 

Fig. 4  Comparison of identification results at different four time steps
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classical graph learning model for the graph-level classifi-
cation task. Based on GCN, DGI learns node embeddings 
in an unsupervised technique. And it can continuously 
optimize model results by maximizing the mutual infor-
mation between the local representation and the global 
representation. After our experimental verifications, it is 
found that the method of our framework is significantly 
better than contrastive methods on classification metrics. 
As shown in Fig.  3, SARN with BFS outperforms com-
pared with DGI and GCN in every indicator of the binary 
classification experiment. It is probable that our approach 

has a stronger capacity to identify patterns of addiction in 
the brain. Moreover, in order to explore the identification 
of the dynamic temporal properties, we perform different 
classification experiments according to the four divided 
time steps. And the results are shown in Fig. 4, where it 
can be observed that our model shows robustness and 
superior performance in the different time steps.

4.6 � Interpretable brain regional biomarkers
The brain regional features that are selected by our 
method have the corresponding selection probability 

Fig. 5  Visualization of top five addiction-related brain regions with the highest BFS-weighted scores
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frequency and scores, which are presented importance 
of brain regions and criteria for inferences. We weight 
these values cumulatively to make the statistics. As 
shown in Table 2, the five brain regions with the high-
est weights are Midbrain.R, Diagonal domain.R, Pri-
mary motor cortex.R, Hippocampal formation.L, and 
Insular cortex.L. The higher probability score not only 
means that the brain region is more deterministic in 
inferences, but also means that this feature is more 
implied to the differences caused by addiction, and the 

Table 2  TOP five regional brain biomarkers extracted by the 
FGSAN model.

No. ROI name of biomarkers References

1 Midbrain.L [42]

2 Diagonal domain.R [43]

3 Primary motor cortex.R [44]

4 Hippocampal formation.L [45]

5 Insular cortex.L [46]

Fig. 6  BOLD signal visualization of addiction-related brain regions in original imaging data
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corresponding brain region is more addiction-related. 
To validate these addiction-related brain regions are 
interpretable, we confirmed them in terms of neurosci-
ence-supported knowledge and imaging.

On one side, these five brain regions discovered by 
our method have been proven to be associated with 
nicotine addiction in previous research work. We col-
lect and categorize the relevant references of prior 
research on each brain region and also list them in 
Table 2. In addition, we visualized the locations of these 
five brain regions. As shown in Fig. 5, the locations of 
the five addiction-related brain regions found by the 
model in the rat brain are shown in axial, coronal, and 
sagittal directions.

On the other side, we observe the BOLD signal of the 
discovered addiction-related brain regions in the raw 
images, which indicates the functional activity of the 
brain, and find that the top five brain regions have signifi-
cant BOLD signal differences between the addiction and 
non-addiction animal models. In the same way, we visu-
alize these regions, respectively, in Fig. 6. It is verified as 
evidence for becoming the interpretable biomarkers from 
the raw image data.

5 � Conclusion
In this research, we propose a new framework, spatial 
attention recurrent network (SARN) with Bayesian fea-
ture selection, for discovering effective and interpret-
able regional brain biomarkers and utilizing features of 
these biomarkers to identify the addiction-related brain 
network patterns dynamically. Our model is investigated 
and discussed in detail through designed experiments to 
present the superiority of the encoder and feature selec-
tor in the proposed framework. We obtain better results 
than the comparative method by using the selected graph 
representations for classification, indicating an advan-
tage in graph feature extraction that may yield better 
graph embeddings in the latent space. More significantly, 
the importance of these regional features can be well 
explained in the neuroscience of addiction, and the direct 
support of the corresponding biomarkers can be found 
in the original image data. Delving into these addiction-
related brain regions and matching the interconnec-
tions between them to the different kinds of addiction 
mechanisms and studying such causal addiction circuits 
and mechanisms will be the direction of our continuing 
research in the future.
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