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Abstract 

Brain network analysis based on structural and functional magnetic resonance imaging (MRI) is considered as an 
effective method for consciousness evaluation of hydrocephalus patients, which can also be applied to facilitate 
the ameliorative effect of lumbar cerebrospinal fluid drainage (LCFD). Automatic brain parcellation is a prerequisite 
for brain network construction. However, hydrocephalus images usually have large deformations and lesion ero-
sions, which becomes challenging for ensuring effective brain parcellation works. In this paper, we develop a novel 
and robust method for segmenting brain regions of hydrocephalus images. Our main contribution is to design an 
innovative inpainting method that can amend the large deformations and lesion erosions in hydrocephalus images, 
and synthesize the normal brain version without injury. The synthesized images can effectively support brain parcel-
lation tasks and lay the foundation for the subsequent brain network construction work. Specifically, the novelty of 
the inpainting method is that it can utilize the symmetric properties of the brain structure to ensure the quality of the 
synthesized results. Experiments show that the proposed brain abnormality inpainting method can effectively aid the 
brain network construction, and improve the CRS-R score estimation which represents the patient’s consciousness 
states. Furthermore, the brain network analysis based on our enhanced brain parcellation method has demonstrated 
potential imaging biomarkers for better interpreting and understanding the recovery of consciousness in patients 
with secondary hydrocephalus.
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1  Introduction
Hydrocephalus refers to an excessive accumulation of 
cerebrospinal fluid (CSF) in the ventricle system and/or 
the subarachnoid space, which is a common complica-
tion of traumatic brain injuries. When hydrocephalus is 
critically aggravated, the structure of cortical cells may 
be destroyed progressively [1], affecting the level of con-
sciousness and even leading to disorders of conscious-
ness (DOC). Cerebrospinal fluid (CSF) shunt operations 
are the most used method to treat hydrocephalus. Shunt 
procedures can address pressure on the brain caused 
by hydrocephalus and relieve some symptoms, but fail 
to completely restore neurological dysfunction in some 
cases even if deformations of ventricle can be restored. 
In clinical practice, lumbar cerebrospinal fluid drainage 
(LCFD) [2–5] is recommended to apply for hydroceph-
alus patients with the consciousness evaluation using 
JFK Coma Recovery Scale-Revised (CRS-R), which can 
be used to determine if placing a shunt can benefit on 
recovery of consciousness. Based on the CRS-R, DOC 
patients can be further diagnosed into different states 
of consciousness ranging from unresponsive wakeful-
ness syndrome (UWS) (also named vegetative state, 
VS) to minimally conscious state (MCS) and emergence 
from minimally conscious state (EMCS). Despite its 
wide acceptance, the application of LCFD has bottle-
neck in applications as conventional CRS-R assessment is 
highly subjective, recent studies reported that 37–43% of 
patients were misdiagnosed due to the use of untrained 
physicians and spontaneous fluctuation within patients 
[6].

Due to the above-mentioned limitations, new con-
sciousness evaluation approaches are critical for the 
clinical treatment of patients with hydrocephalus. Mag-
netic resonance imaging (MRI) has emerged as the pri-
mary noninvasive and effective technique to observe 
in  vivo neural structures and functions. Many attempts 
for measuring hydrocephalus patients’ consciousness 
using different modalities of MRIs have been developed 
to facilitate clinical treatment [7–10]. For example, func-
tional connectivity (FC) in the default mode network 
(DMN) is significantly correlated with the prognosis of 
consciousness [7]. Moreover, in a diffusion tensor imag-
ing (DTI) study, patients with NPH exhibited significantly 
different fractional anisotropy (FA) values in the corpus 
callosum and corticospinal tract compared with healthy 
controls [9]. In previous studies, we developed a novel 
machine-learning-based method to track the changes in 
CRS-R scores based on multimodal (T1 and DTI) images 
before and after LCFD. Based on the collected T1 images, 
there were 5 single-region of interest (ROI) features that 
correlated with CRS-R scores. The thalamus region was 
one of the 5 ROIs. In addition, there are 3 scalar features 

related to the IC based on the DTI images; these features 
have a significant correlation with the patient’s change in 
consciousness level. This suggests the importance of the 
IC in assessing CRS-R scores and evaluating the effect 
of LCFD. With the proposed model, we can predict the 
CRS-R scores for an unseen patient before and after 
LCFD [11].

In this study, we further investigate brain network 
analysis using resting-state fMRI (rs-fMRI) images 
of hydrocephalus patients, and conducted a compre-
hensive study of the brain network in correlation with 
consciousness status. Generally, brain network analysis 
based on rs-fMRI is implemented through the follow-
ing major steps: 1. brain parcellation based on the pro-
vided atlas template; 2. blood oxygen level-dependent 
(BOLD) signal extraction based on the parcellation 
results to segment all the necessary brain regions in 
the rs-fMRI; 3. extraction of FC information based on 
the Pearson’s correlation computation of BOLD signal 
information between each brain region; and 4. con-
struction of the brain network. Therefore, brain par-
cellation of hydrocephalus patients plays an important 
role in whole-brain network analysis, which lays the 
foundation for subsequent processes.

Given that it is generally impractical to prepare for 
manual brain parcellation, the development of an accu-
rate and automatic segmentation method that can per-
form in an unsupervised manner is critical. Normally, 
this automated technique is implemented using the 
single-atlas registration method due to its simplicity; 
specifically, the label map of the target brain image is esti-
mated by spatially aligning the atlas template using a cer-
tain image registration method [12]. Considerable effort 
has been devoted to this field, and many of these efforts 
focus on developing and incorporating registration meth-
ods, such as Demons [13], HAMMER [14], FNIRT [15], 
LDDMM [16], SyN [17], etc. Recently, deep-learning-
based methods, such as VoxelMorph [18] have also been 
developed; these methods can obtain more accurate reg-
istration results with much faster computation times. 
In addition, Wang et  al. proposed LT-Net [19] which 
combines segmentation and registration tasks to further 
improve parcellation performance.

However, due to the large deformations and lesion 
erosions in the brain images of post-traumatic hydro-
cephalus patients (shown in Fig.  1), it is much more 
challenging to perform brain parcellation tasks for these 
patients than the normal patients when directly using 
the single-atlas registration method. In addition, few 
studies of brain parcellation for images of hydrocepha-
lus patients can be found in the literature. Pertinently, 
Ledig et al. [20] proposed a fully automatic segmentation 
method based on expectation–maximization. This form 
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of segmentation outperformed the state-of-the-art meth-
ods on normal subjects, but the authors reported failed 
cases when parcellating the images of hydrocephalus 
patients. In addition, Ren et  al. [21] combined registra-
tion and segmentation based on deep learning as a two-
stage parcellation framework, and Qiao et al. [22] further 
proposed an end-to-end framework for further improv-
ing parcellation performance. However, their works were 
not focused on whole-brain parcellation and were imple-
mented in a supervised manner, which required manually 
annotated brain images to construct the segmentation 
models and is generally impractical to prepare.

In this study, we intended to develop an unsupervised 
brain parcellation method, which can achieve whole-
brain segmentation of hydrocephalus images and aid 
the subsequent brain network analysis. To resolve the 
above-mentioned challenges, we introduced a novel 
brain abnormality inpainting method that can restore 
the deformed or lesion-erosion parts to normal, and con-
structed an inpainted normal brain corresponding to its 
hydrocephalic version. In this way, the brain parcellation 
process can be implemented by first registering the atlas 
template to the inpainted images, and then normalizing it 
to the original input images. The intermediate step using 
the inpainted images can greatly reduce registration dif-
ficulty and therefore lead to improvements in parcel-
lation tasks. Recent developments in image inpainting 
were generally based on convolutional neural networks 
[23] and generative adversarial networks (GANs) [24] 
The aim was to restore the damaged image parts while 
ensuring that the synthesized images have perceptual 
similarity to the original images. For example, Pathak 
et al. [25] proposed a context encoder that adopts a CNN 
and adversarial learning to achieve image inpainting, and 
Yang et al. [26] further extended their work by incorpo-
rating neural patches [27] to synthesize high-resolution 
results. Liu et  al. [28] also improved convolution in the 
image inpainting process and proposed a partial convo-
lution operation that can conduct inpainting for irregu-
lar missing parts. In this paper, we further investigated 

the properties of the images of hydrocephalus patients 
and designed our brain abnormality inpainting method 
to ensure the robustness of the inpainting performance. 
To our knowledge, this is the first work in the literature 
to conduct inpainting on images of such complicated 
abnormal parts of the brain that suffer from both lesion 
erosion and large deformations.

The main contributions of our work are as follows: (1) 
we developed a novel abnormality inpainting method 
that can generate synthesized and inpainted images of 
hydrocephalus patients; these images can be utilized for 
brain parcellation and lay the foundations for subsequent 
brain network analysis. (2) Using the obtained rs-fMRI 
images, we performed a comprehensive study of the con-
structed FC network with each patient’s CRS-R scores 
using the small-world network analysis and a least abso-
lute shrinkage and selection operator (LASSO) regression 
method. We also conducted experiments to demonstrate 
the validity of our proposed inpainting method, its effec-
tiveness in brain network construction, and its efficacy in 
the evaluation of consciousness in clinical practice.

Fig. 1  Exemplary T1 images of the brains of post-traumatic hydrocephalus patients with brain lesions and large deformations

Table 1  Demographic and clinical information of all the 
recruited patients with secondary mild hydrocephalus

The patients were classified into two categories: “favorable” indicates patients 
whose CRS-R scores increased after LCFD and whose consciousness levels 
improved after LCFD, and “unfavorable” indicates patients whose CRS-R scores 
did not improve after LCFD. For more information about the CRS-R scores and 
the diagnosis of the states of consciousness, see Additional file 1: Table S1

Category Favorable Unfavorable p value

Age (year): mean ± std 47.53 ± 13.48 45.09 ± 14.61 0.6547

Gender: male/female 14/3 7/4 0.2639

CRS-R scores before LCFD: 
mean ± std

11.71 ± 6.00 16.27 ± 7.99 0.0960

CRS-R scores after LCFD: 
mean ± std

15.82 ± 5.03 16.27 ± 7.99 0.8560
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2 � Materials and methods
2.1 � Participants
This study included 28 patients with secondary mild 
hydrocephalus treated at Huashan Hospital, Fudan Uni-
versity from January 2013 to March 2018. The patients 
included 20 men and 8 women (age range, 18–78 years; 
average age, 47.44 years). The demographic information 
and the clinical characteristics are shown in Table 1. All 
patients underwent MRI scans before LCFD, and fol-
low-up scans were performed after 3 days of LCFD. The 
concurrent CRS-R scores were evaluated by a trained 
neurosurgeon before the MRI scan was performed to 
determine the level of consciousness. Clinicians classi-
fied patients with improved CRS-R scores (several times 
independent assessments from 6 neurosurgeons) after 
LCFD into the "favorable" group, whereas the remain-
der of the patients were classified into the "unfavorable" 
group. The patients were further diagnosed into different 
states of consciousness based on the CRS-R scale: UWS 
present moments of arousal, during which they open 
their eyes and produce complex behavior reflexes without 
any signs of intentional behavior; MCS- was defined by 
the presence of low-level behavioral responses (i.e., vis-
ual pursuit, localization of noxious stimulation or other 
contingent behavior such as emotional smiling or crying); 
MCS+ was defined as the presence of command follow-
ing, intelligible verbalization or any yes/no responses; 
EMCS was defined as patients who recover the ability of 
functionally communication. (Additional file 1: Table S1) 
Informed consent was obtained from all patients for the 
use of their information, medical records, and MRI data.

2.2 � Image acquisition and preprocessing
All MRI data were acquired on a 3  T SIEMENS MR 
scanner at Huashan Hospital, Fudan University. Two 
structural modalities, i.e., T1 and rs-fMRI, were used 
in this research. For T1 images, the scanning param-
eters were slices = 176, slice thickness = 1 mm, no inter-
slice gap, repetition time (TR) = 2300  ms, echo time 
(TE) = 2.98  ms, inversion time = 900  ms, noninterpo-
lated voxel size = 1 × 1 × 1  mm3, flip angle (θ) = 9°, and 
field of view (FOV) = 240 × 256  mm2. For rs-fMRI, TR/
TE/θ = 2000  ms/35  ms/90°, FOV = 256 × 256  mm2, 
matrix size = 64 × 64, slices = 33 with 4  mm thickness, 
gap = 0 mm, and scans = 200.

The collected T1 and rs-fMRI images were preproc-
essed as follows. For T1 images, histogram equaliza-
tion and N4 Bias correction were implemented using 
the FMRIB Software Library (FSL) toolkit [29] to ensure 
image quality. For fMRI images, we used DPARSFA [30] 
software in MATLAB 9.2 for preprocessing. The first 10 
time points for each subject were discarded to ensure the 
stability of the collected data. Other preprocessing tasks 

were completed as follows: time correction, head move-
ment correction (translation on X-, Y-, Z-axes < 2  mm; 
rotation < 2°), spatial standardization, and spatial smooth-
ing using a Gaussian kernel (full width at half maxi-
mum = 8  mm). We also obtained the mean echo-planar 
imaging (EPI) data from the preprocessed rs-fMRI data 
and estimated the transformation matrix to align the T1 
image to the mean EPI data using FLIRT in FSL, which 
is used in the brain parcellation procedure described in 
Sect. 2.3.1.

Note that apart from the collected hydrocephalus 
brain image dataset mentioned above, we also used 
other images as auxiliary data for aiding the registra-
tion and image inpainting tasks. For example, we adopt 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset [31], which contains normal MRI brain images 
without hydrocephalus symptoms. The aim was to train 
the inpainting model, which is further introduced in 
Sect. 2.3.1. Specifically, we randomly selected 20 images 
from the ADNI dataset for our study and employed the 
same preprocessing procedure as that used for the hydro-
cephalus dataset, such as histogram equalization and N4 
Bias correction. The images were then cut into 2D slices, 
resulting in 3500 slices for training. In addition, we used 
the Automated Anatomical Labeling (AAL) [32] atlas 
template, including the T1 template image and 90 brain 
regions excluding the cerebellum. The template image 
was utilized in the process described in Sect.  2.3.1 for 
our brain atlas to achieve brain parcellation and was pre-
processed by histogram matching to ensure parcellation 
performance.

2.3 � Methods
In this section, we introduce our framework of FC net-
work analysis based on hydrocephalus brain images, 
which includes two main steps: image processing for 
network construction and network analysis with cor-
relations to consciousness status. As previously men-
tioned in Sect. 1, brain network construction requires a 
brain parcellation process, of which the overall pipeline 
is illustrated in Sect. 2.3.1. The details of the abnormal-
ity inpainting method are introduced in Sect. 2.3.2. After 
image parcellation and brain network construction were 
performed based on the patients’ fMRI data, we further 
investigated the clinical assessments of hydrocepha-
lus patients based on the obtained FC information. In 
Sect. 2.3.3, we present the small-world network analysis, 
which represents the global characteristics of the brain 
connectivity network. In Sect. 2.3.4, we focus on the indi-
vidual FC information for the estimation of conscious-
ness level.
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2.3.1 � Hydrocephalus brain parcellation
The overall pipeline of the hydrocephalus brain par-
cellation is presented in Fig. 2, and our main goal was 
to parcellate fMRI images based on the provided atlas 
template to obtain their corresponding label maps. 
Generally, image parcellation consists of several major 
registration steps. First, we performed abnormality 
inpainting and skull stripping to obtain the brain image 
of the original T1 data and the inpainted results. The 
details are further presented in Sect.  2.3.2. Here, the 
original T1 image is designated IT , and the inpainted 
normal image is designated IN . Note that before the 
brain image was fed into the abnormality inpainting 
network, we manually erased the irregular structure of 
the brain where large deformation and lesion regions 
occur, which was restored by the inpainting process. 
Given that IN indicates the restored anatomical struc-
ture of a normal brain image, we can apply the classical 
skull-stripping tool BET in the FSL toolkit [29] to gen-
erate its brain mask MN . Next, we conducted nonrigid 
registration from IN to IT  and obtained a deformation 
field φIN→IT . Then, we warped MN using the defor-
mation field φIN→IT to obtain MT  , which is the brain 
mask of IT  . We used the mask MT  to strip the skull 
and obtain the stripped hydrocephalus brain image IST  . 
The nonrigid registration and warping processes were 
implemented using the Advanced Normalization Tools 
(ANTs) toolkit [33].

Next, we used the AAL template [32] IA with 90 brain 
regions LA , which is introduced in Sect. 2.2 as our brain 
atlas. We performed a total of two nonrigid registra-
tions and one rigid registration, as shown in Fig.  2, 
which were also achieved using the ANTs toolkit. Then, 

we performed nonrigid registration from IA to ISN and 
another nonrigid registration from ISN to IST  to obtain 
the deformation fields φIA→ISN

 and φISN→IST
 . By superim-

posing the above two deformation fields, we can obtain 
the deformation field from IA to IST  denoted as φIA→IST

 . 
We also estimated the segmentation result LT  of the 
input T1 image by warping LA using φIA→IST

 . Then, we 
performed rigid registration to obtain the transforma-
tion matrix φIST→IF

 from the input T1 brain image to the 
corresponding fMRI image. We finally warped LT  using 
the transformation matrix to estimate the label map of 
the fMRI image LF . In this way, we can construct the 
brain FC network for the subsequent analysis based on 
the obtained LF.

2.3.2 � Brain abnormality inpainting for images from patients 
with hydrocephalus

The hydrocephalus inpainting method described here 
was developed based on the GAN framework, which 
consists of a generator and a discriminator. The gen-
erator was used to produce the inpainted version of the 
input images, while the discriminator was employed to 
ensure the validity of the inpainted results and provide 
feedback to the generator to further improve inpainting 
performance. The framework is shown in Fig.  3, where 
the UNet-like structure was used as the generator and 
the encoder in the lower right corner was used as the 
discriminator.

To ensure the effectiveness of the abnormality inpaint-
ing process, we utilized the symmetric properties in the 
anatomical structure of the human brain and designed 

Fig. 2  Hydrocephalus brain parcellation framework with the aid of the abnormality inpainting method. The three major registration steps are 
designed to warp the label map from the atlas template (left) to the mean EPI of the fMRI image (right)
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a novel inpainting framework with the corresponding 
data augmentation strategy for training data preparation. 
Normally, the training data for abnormality inpainting 
are collected by randomly generating erase masks that 
are applied to the intensity image. Then, the erase mask 
with the erased image is concatenated as a two-channel 
pair to be fed into the network for training. Here, we 
imposed the constraint that the normal images are gener-
ally symmetric in anatomical structure, and the input of 
our abnormality inpainting network is the original con-
catenation of the erased image with its flipped version. 
Using this method, it was easier for the network to learn 
the brain structure of the erased part based on the input 
of the flipped version and the similarity of the two out-
puts from the network.

Next, the two sources were concatenated after a partial 
convolution layer and fed into the inpainting network, 
which was designed as an end-to-end UNet framework, 
including encoders and decoders, where all convolu-
tion layers are replaced by partial convolution. Com-
pared with the convolution layer, the input of the partial 
convolution layer consists of the erased image and cor-
responding binary mask; additionally, the calculation 
process includes a partial convolution operation and 
mask updating step, which demonstrated effectiveness in 
natural image restoration [28]. In the partial convolution 

operation, the input image first undergoes element-
wise multiplication with the corresponding binary mask 
before convolution. In the mask updating step, the pixel 
value is set as 1 if the output of the partial convolu-
tion operation has values in that location. By continu-
ously stacking the partial convolution layers, the input 
erase mask eventually becomes 1, and the erased part in 
the image can also be filled. After the operations of the 
encoder and decoder of the UNet-like generator, the 
image with the erased part is inpainted.

Once the inpainting network outputs the inpainted 
result and its flipped version, they are then concatenated 
as the input of the discriminator. After the encoder of 
multiple convolution layers, the outputs of the discrimi-
nator represent the possibility that the discriminator 
interprets the inputs to be true images. Similarly, the raw 
image is also used as input to the discriminator to train 
the recognition ability of the discriminator.

The output of the network is constrained by a series of 
loss functions that contain pixel-level accuracy (ACC) 
and context-level smoothness to improve the reliability 
of the inpainting process. The loss functions used in the 
training stage are noted as follows:

Fig. 3  The overall pipeline of the brain abnormality inpainting method for images from hydrocephalus patients. The framework consists of a 
UNet-like generator and a discriminator. The input of UNet is the concatenation of the random erased image with its erase mask and the flipped 
version
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where the first two items are L1 loss in the network out-
put for the erased pixels and non-erased pixels and the 
input pixel in the erased part is zero; therefore, the coef-
ficient of Lerase is greater than Lvalid . The perceptual loss 
Lperceptual computes the L1 distance between the high-
level features of output and ground truth using the VGG-
16 [34] model (pretrained using ImageNet dataset [35], 
which is written as follows:

where V  represents the feature extractor of the pre-
trained VGG-16 model. To ensure the consistency of 
styles between the output and the ground truth to make 
the inpainted image more realistic, the style-loss term 
performs an autocorrelation on the high-level feature as 
follows:

where C represents the channel number of V (Iout) . The 
last loss item is the total variation (TV) loss Ltv , which is 
the smoothing penalty for the output image.

To ensure the robustness of the brain abnormality 
inpainting process, we adopted some supervision priors 
to guide the training of the inpainting model. Specifically, 
we used L1 loss to constrain the gap between the result 
of the raw image Iout and the result of the flipped image 
Ioutflip:

In this way, the total loss for inpainting includes the 
inpainting loss of raw image Linpainting , the inpainting loss 
of flipped image LFinpainting and the L1 loss of flipping Lflip:

Once the inpainted images were produced using the 
generator, we also designed a corresponding discrimina-
tor in an encoder manner for generative adversarial train-
ing. The discriminator’s input is the generative image 
from the inpainting model and the ground truth, whereas 
the output is the probability that represents the input 
image as the ground truth. In this way, the binary cross-
entropy loss function is used to train the discriminator:

(1)

cLinpainting = Lvalid + 6Lerase + 0.05Lperceptual

+ 120
(

Lstyleout
+ Lstylecomp

)

+ 0.1Ltv

(2)Lperceptual =
1

NIout
�V (Iout)− V (Igt)�1,

(3)
Lstyle =

1
C2 �V (Iout)

TV (Iout)− V (Igt)
TV (I

gt
)�

1
,

(4)Lflip = 1
NIout

�Iout − Ioutflip�1.

(5)Ltotal = Linpainting + LFinpainting + Lflip.

(6)LD = −
(

log
(

1− D
([

Iout, Ioutflip
]))

+ log
(

D
([

Igt, Igtflip
])))

.

Given that the purpose of the generator is to produce 
synthesized images that make the discriminator difficult 
to distinguish from real images, we added another loss 
function for the generator, defined as:

Note that we used ADNI datasets [31] as our training 
datasets, which were first preprocessed to normalize the 
image domains of ADNI data to the target hydrocephalus 
datasets, preventing the potential domain shift issues in 
the inpainting process. Details of the preprocessing work 
are presented in Sect. 3.1. During the training stage, we 
alternately trained the generator and the discriminator, 
where the loss function of the generator is Ltotal + 0.1LG 
and the loss function of the discriminator is LD . In the 
end, a balance was reached between the discriminator 
and the generator, and the generator can produce high-
quality inpainting results.

2.3.3 � Small‑world network analysis
After implementing brain parcellation and obtaining the 
label map of the fMRI image, we can extract node time 
courses of fMRI signals within the ROIs from the pre-
processed fMRI image. Pearson’s correlation coefficients 
between every connected node were estimated to con-
struct the FC network, which is presented as a symmet-
ric matrix with a size of 90 × 90. Then, we applied the 
threshold to the correlation matrix and eliminated the 
weak correlation to obtain the binary adjacency matrix A , 
where Ai,j is 1 when the correlation of node i and node j is 
greater than the threshold. In our study, we chose 10 dif-
ferent thresholds to apply to the connectivity matrix and 
obtained 10 different binary adjacency matrices for each 
sample.

Small-world networks have a shorter characteristic 
path length than regular networks but greater local inter-
connectivity than random networks. Some studies have 
shown a correlation between small-world characteristics 
of the brain based on brain networks and consciousness 
[36, 37], especially in DOC patients [38]. Two charac-
teristics are primarily used to measure the network: the 
characteristic path length, L, and the clustering coef-
ficient, C . L is the average path length of all node pairs 
in the network, and C is the mean value of the aggrega-
tion coefficient of all nodes, where the aggregation coef-
ficient of a node is the score value obtained by dividing 
the actual number of edges by the maximum possible 
number of edges. These network characteristics are fur-
ther normalized by comparing their counterpart of the 
random network and can be defined using the following 
equation:

(7)LG = −log
(

D
([

Iout, Ioutflip
]))

.
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where Lrandom and Crandom are the averages of L and 
C calculated from 10 different random networks. Given 
that random networks have short L and low C values, and 
small-world networks have short L and high C values, we 
can obtain an approximate range of the above three char-
acteristics: λ ≈ 1, γ > 1, and σ>1 [39].

To compare the difference in the small-world network 
before and after LCFD, we calculated the small-world 
characteristics for each patient at two time points. The 
small-world analysis was performed before and after 
LCFD for patients in both favorable and unfavorable 
groups. For the adjacency matrix under 10 different 
thresholds, we performed 10 rounds of significant dif-
ference analysis and compared the difference between 
favorable and unfavorable groups. All the above opera-
tions were implemented using GRETNA V2.0 [40].

2.3.4 � LASSO for CRS‑R score regression
Some studies have shown that certain correlations exist 
between brain FCs and the patient’s consciousness sta-
tus [36, 37]. Here we further explore the relationship 
between FCs and the CRS-R scores by applying a LASSO 
regression for feature selection and CRS-R score regres-
sion based on FCs, for the expectation of using the brain 
FCs to objectively evaluate the level of consciousness 
in patients with DOC. The LASSO method implement 
regression based on the following equation:

where matrix X represents the feature set from all 
patients, the size of one patient is 90 × 89/2 = 4005 
according to the region numbers of the AAL atlas tem-
plate, y is the column vector of the CRS-R scores, and w 
is the estimated efficient vector. L-1 regularizer is added 
to enforce sparse learning of the features, which can be 
used for selecting the most significant features for the 
CRS-R score.

2.4 � Evaluation methodologies
In this paper, we intend to evaluate the effectiveness of 
our proposed consciousness evaluation method for 
hydrocephalus patients, which includes the abnormal 
brain inpainting method and the brain network analy-
sis. For the inpainting method, we follow the widely 
recognized evaluation protocols on natural images, and 
calculate the peak signal–noise ratio (PSNR), struc-
tural similarity (SSIM), L1 and L2 errors between the 
real ADNI brain images and the inpainted ADNI brain 
images. Corresponding visualized results between the 

(8)� = L
Lrandom

, γ = C
Crandom

, σ =
γ
�
,

(9)min
w

J (w) = �y− Xw�22 + k�w�1,

baseline (without the flipping-guidance strategy) and the 
proposed inpainting methods are also presented for fur-
ther demonstrating the improvements of the proposed 
inpainting method.

Evaluation of brain parcellation and brain network 
analysis is slightly more complicated. As previously stated 
in the Introduction section, given that manual brain 
parcellation of hydrocephalus brain images is generally 
impractical, the evaluation of our segmentation results 
cannot be implemented by simply comparing them with 
the provided ground truth. Therefore, we aimed to dem-
onstrate whether better brain parcellation with abnormal 
inpainting can facilitate subsequent brain network analy-
sis and result in better consciousness assessments than 
those without abnormal inpainting.

We used nested cross-validation to conduct regression 
and categorization experiments. Specifically, we estab-
lished two nested loops in the leave-one-out cross-vali-
dation settings. First, each patient was selected as the test 
set and used to verify the ACC of the regression model, 
and the other patients were used as the training set. Sec-
ond, in the training stage, each patient was chosen in turn 
to validate the performance of the regression model. The 
parameters were determined by all validation cases using 
grid searching. After the parameters were determined, 
they were adopted for regression on all training datasets. 
After training, the test set was predicted by the trained 
model, and the predicted results before and after LCFD 
were compared with the ground truth. Note that in the 
regression experiments, we used mean square errors 
(MSEs) to evaluate the ACC of the regression model 
according to the CRS-R scores.

3 � Results
Our experimental results for the evaluation of are pre-
sented in threefold: first, we demonstrated the validity 
of our novel brain abnormality inpainting method for 
patients with brain lesions and the application of this 
method in the brain parcellation task. The inpainted nor-
mal images were visualized to demonstrate the effective-
ness of the inpainting works. Second, we constructed the 
FC network based on the results of brain parcellation 
and further conducted brain network analysis to inves-
tigate small-world characteristics. We also applied the 
LASSO model to regress the CRS-R score based on the 

Table 2  Quantitative comparison between the baseline 
inpainting method without flipping and the proposed inpainting 
method

Method PSNR SSIM L1 error L2 error

Inpainting without flipping 21.42 0.8756 0.0971 0.0466

Proposed inpainting with flipping 25.02 0.9355 0.0611 0.0103
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FC information from the neuroimaging data and show 
that our abnormality inpainting method can significantly 
improve the quality of brain parcellation, which greatly 
helps the performance of subsequent processes, such 
as CRS-R score estimation. We also used the LASSO 
method to identify the most discriminative features that 
are highly correlated with the consciousness level in 
hydrocephalus patients.

3.1 � Brain parcellation
Here, we evaluated the performance of our constructed 
inpainting model, which was applied to the collected 
images of hydrocephalus patients and compared with 
the conventional inpainting method without the input 
of flipping. The quantitative and qualitative inpainting 
results comparison are presented in Table  2 and Fig.  4, 
respectively. In Table  2, the first row shows the results 
of the baseline inpainting method, and the second row 
shows the results of the proposed inpainting method. The 
experimental results reveal that the inpainting quality 
has been improved by a large margin due to the utiliza-
tion of the symmetry of human brains. Compared with 
the baseline method, the proposed inpainting method 
brings much performance gain in terms of all the evalua-
tion metrics.

In Fig.  4, we visualize several inpainting results on 
patients with hydrocephalus: the first row shows the 
original MRI scan, the second row shows the image with 
the lesion region erased, and the lesion mask is pre-
sented in row 3. The last two rows show the inpainting 

results excluding and including the prior guidance from 
the flipped images. Moreover, simply using the conven-
tional inpainting method cannot guarantee the quality of 
the reconstruction work, as the inpainted areas consist 
of only blurred and meaningless artifacts. On the other 
hand, our novel abnormality inpainting method utilized 
the priors from the flipped images, which can effectively 
restore the erased part of the image and produce realistic 
normal brain images instead.

After obtaining the inpainted brain image, we followed 
the pipeline shown in Fig. 2 and used the AAL template 
as our atlas to segment brain regions. The results are 
presented in Fig. 5. Note that all registration operations 
were implemented using ANTs [33]. In Fig.  5, the first 
column is the input raw image, the second column is the 
inpainting result and the third column is the segmenta-
tion result by inpainting. To further verify the effective-
ness of our method, we also conducted brain parcellation 
without including the inpainting process, in which we 
directly register from the template to the input T1 image 
and warp the label map using the registration field. The 
corresponding result is shown in the fourth column of 
Fig.  5. Significant differences in the brain parcellation 
results are noted between the third and fourth columns. 
In addition, the parcellation results in the fourth col-
umn are not aligned with the actual anatomical structure 
of the images, indicating that it is almost impossible to 
establish direct nonrigid registration from the template 
to the input hydrocephalus T1 images due to the large 
deformations and lesions. On the other hand, when 

Fig. 4  Exemplary brain inpainting results for the images from hydrocephalus patients. Row 1 shows the input images, and row 2 shows the input 
image without the lesion region (erase mask) presented in row 3. Rows 4 and 5 show the output of the inpainting network without and with the 
flipping priors
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using the inpainted normal images as an intermediate 
role for indirect registration, alignment can generally be 
implemented.

3.2 � Small‑world network analysis
Here, we constructed FC networks based on the brain 
parcellation results and further conducted the small-
world analysis to explore whether the differences in FC 
networks correlate with the improvements in CRS-R 
scores after LCFD surgery. The dataset was divided 
into two groups (favorable and unfavorable), and each 
group had the small-world characteristics σ under 

different thresholds before and after LCFD. The results 
are shown in Fig.  6a (favorable) and Fig.  6b (unfa-
vorable). Note that ‘*’ denotes a significant difference 

Fig. 5  Segmentation result. From left to right are the input T1 images, inpainted results, and segmentation results with and without inpainting

Fig. 6  Small-world results. a and b are the σ distributions of patients in the favorable and unfavorable groups, respectively. c is the ∆σ distribution

Table 3  Distribution of average σ values

Before LCFD After LCFD p value

Favorable 1.3147 ± 0.2506 1.2515 ± 0.2463 0.4461

Unfavorable 1.2721 ± 0.2628 1.4339 ± 0.2856 0.0090
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in p-value (less than 0.05) between the two different 
groups of time points. We calculated the average value 
of σ under different thresholds for each sample, and 
the distribution of the average value for each group is 
shown in Table 3.

To compare the difference between patients in the 
favorable group and those in the unfavorable group, we 
calculate �σ = σafter − σbefore , which represents the dif-
ference in small-worldness before and after LCFD. The 
result is shown in Fig. 6c. The average value under dif-
ferent thresholds was also calculated, and the distribu-
tion is shown in Table 4.

3.3 � LASSO regression analysis
In this section, we train a LASSO regression model and 
obtain the parameters that minimize the loss function 
in Eq. 9. To evaluate the performance of the regression, 
we computed the Pearson’s correlation coefficient (CC) 
between the predicted and real CRS-R scores. Also, we 
computed the mean square errors (MSEs) between our 
CRS-R predictions and the real ones, and R2 score of the 
regression to quantify the degree of linear correlation 
between CRS-R predictions and the real ones.

To further validate the effectiveness of our brain par-
cellation process based on the proposed abnormality 
inpainting method, we compared the regression result 
using the label map from our method and the direct 
registration method without inpainting, which is shown 
in Table  5. The regression result is also depicted in the 
scatter plots in Fig. 7. The figure also demonstrates that 
the features obtained from the abnormality inpainting 
method can achieve better regression accuracy, which 
indicates the effectiveness of the abnormality inpainting 
model. The improvements can also be concluded from 
Table 5, where we computed Pearson’s correlation coef-
ficient (CC) and MSEs between the predicted and the 
real CRS-R scores. It is shown that the method using the 
inpainting approach greatly outperformed the one with-
out inpainting.

In the regression model, vector w represents the 
importance of the corresponding feature for CRS-R 
score regression. After the feature selection and regres-
sion, many elements in w were near zero, indicating that 

Table 4  Distribution of average ∆σ values

Favorable Unfavorable p-value

∆σ -0.0632 ± 0.3235 0.1618 ± 0.1584 0.04869

Table 5  Comparison of methods with and without inpainting in 
regressing CRS-R scores

CC MSE R2

w/o inpainting 0.8549 18.5792 0.5812

w inpainting 0.9333 9.3029 0.7903

Fig. 7  Regression results using the LASSO method. a Segmentation is implemented using the inpainting method. b The inpainting method is not 
used during segmentation
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the feature is negligible for regression. Here, we set the 
threshold as t = |w| . The features with absolute value 
coefficients |w| greater than the threshold were selected 
as important for CRS-R score regression. In our study, 
the features used in regression were all forms of FC infor-
mation between two brain regions, and 32 features were 
selected by w . The most discriminative features were 
illustrated in Fig.  8, where the color of the connecting 
line between 2 regions represents the value of |w| . Addi-
tional details of the selected FC information are summa-
rized in Table 6.

4 � Discussion
4.1 � Abnormality inpainting for hydrocephalus brain 

parcellation
Brain network analysis based on rs-fMRI data requires 
the prerequisite works of brain parcellation, which aims 
to locate and segment all the required brain regions 
in the fMRI images so that the BOLD signals corre-
sponding to these regions can be extracted. However, 
manual annotations of these brain regions are quite 
labor-intensive and impractical; therefore, an automatic 
brain parcellation method is in high demand. Due to 
the high complexity of anatomical structures in hydro-
cephalus brain images, it is challenging to achieve seg-
mentation tasks, especially for regions influenced by 
large abnormal deformities and lesion erosions.

In this paper, we proposed to develop a novel abnor-
mality inpainting method for aiding the brain image 
parcellation of hydrocephalus. The main idea was to 
generate an inpainted normal version of the input brain 

image of hydrocephalus, which can be used to reduce 
the difficulty in registering the given atlas template to 
the target, making it feasible for brain parcellation and 
FC network construction. We conducted experiments 
to show the effectiveness of the inpainting method in 
Sect. 3.1, and we also demonstrated that the inpainting 
method can greatly aid the estimation performance in 
subsequent processes, especially for brain parcellation 
and consciousness evaluations.

Fig. 8  Selected features based on w

Table 6  The list of the most discriminative features from LASSO, 
as well as their correlation with the CRS-R scores (*p < 0.05, 
**p < 0.01)

Region 1 Region 2 w CC p-value

Frontal_mid_orb_l Rolandic_Oper_R − 0.011 − 0.278 0.038*

Hippocampus_L Frontal_Sup_Orb_R − 0.001 − 0.146 0.283

Parahippocampal_l Frontal_mid_orb_l − 0.008 − 0.256 0.057

Amygdala_R Frontal_Sup_
Medial_R

− 0.009 − 0.225 0.096

Calcarine_r Frontal_Sup_R 0.013 0.424 0.001**

Lingual_L Frontal_mid_orb_l − 0.010 − 0.166 0.221

Lingual_L Calcarine_r 0.237 0.463 0.001**

Lingual_R Supp_motor_
Area_R

0.051 0.438 0.001**

Lingual_R Frontal_mid_orb_l − 0.009 − 0.117 0.390

Lingual_R Calcarine_L 0.052 0.355 0.007**

Lingual_R Calcarine_r 0.046 0.444 0.001**

Occipital_Sup_R ParaHippocampal_R 0.015 0.310 0.020*

Occipital_Inf_l Frontal_mid_orb_l − 0.017 − 0.197 0.145

Occipital_Inf_R Frontal_mid_orb_l − 0.007 − 0.134 0.325

Fusiform_L Occipital_Inf_l 0.057 0.378 0.004**

Parietal_Inf_l Frontal_mid_orb_l − 0.012 − 0.102 0.452

Parietal_Inf_r Cuneus_L − 0.007 − 0.392 0.003**

SupraMarginal_R Cuneus_L − 0.120 − 0.320 0.016*

Angular_L Frontal_mid_orb_l − 0.007 − 0.140 0.303

Angular_L Rectus_L − 0.004 − 0.291 0.029*

Angular_L SupraMarginal_R − 0.023 − 0.240 0.074

Angular_R Occipital_Sup_L − 0.257 − 0.348 0.009**

Angular_R Occipital_Sup_R − 0.044 − 0.327 0.014*

Precuneus_L Rectus_L − 0.037 − 0.333 0.012*

Caudate_R Hippocampus_L 0.137 0.270 0.044*

Caudate_R Occipital_Inf_R 0.004 0.260 0.053

Putamen_r Frontal_Inf_orb_l 0.014 0.248 0.066

Thalamus_R Occipital_mid_R 0.227 0.475 0.001**

Temporal_pole_
sup_L

Supp_motor_
Area_R

0.081 0.429 0.001**

Temporal_pole_
Mid_L

Frontal_mid_orb_l − 0.111 − 0.204 0.131

Temporal_pole_
Mid_L

Pallidum_r − 0.023 − 0.233 0.083

Temporal_pole_
Mid_R

Calcarine_r 0.028 0.402 0.002**
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4.2 � FC network with human consciousness
Based on the results of brain parcellation, brain network 
analysis for brain images of hydrocephalus was con-
ducted to investigate small-world characteristics. The 
small-world characteristics of the favorable and unfa-
vorable groups are significantly different. Thus, we can 
use small-world network analysis to predict the effective-
ness of VP shunts in patients with hydrocephalus. LCFD, 
as a traditional method of determining the effectiveness 
of VP shunt surgery, is invasive, and the results are only 
available after 3 to 7 days. Thus, the ideal time for disease 
diagnosis and treatment might be missed. A noninva-
sive, fast MR image-based small-world network analysis 
approach has the potential to change the treatment selec-
tion guidelines for patients with hydrocephalus.

In previous studies, we proposed a novel machine 
learning method to find the most discriminative features 
from T1 and DTI neuroimages. Then, we built the regres-
sion model to regress CRS-R scores to quantify human 
consciousness [11]. Although DTI can capture the influ-
ence of hydrocephalus in white matter regions, it fails to 
quantify such variations in gray matter regions. There-
fore, here, we included the rs-fMRI data as the additional 
modality, which was designed to detect FC among dif-
ferent gray matter regions [41] and provide a more thor-
ough investigation of hydrocephalus symptoms in the 
whole brain.

Through the small-world network method, modular-
ity at the global level was found to be reduced in hydro-
cephalus patients compared to that in healthy controls, 
suggesting a disturbance in the optimal balance between 
segregation and integration networks. Clinically, proper 
treatment of hydrocephalus, such as LCFD, can effec-
tively restore cognitive dysfunction and enhance the level 
of consciousness. However, how does the organization of 
large-scale functional networks change during the treat-
ment of hydrocephalus and the recovery of conscious-
ness? Accordingly, we applied graph theory to investigate 
changes in the topological properties of whole-brain 
functional networks. Based on the results, we found a dif-
ferent trend of small-world topology between favorable 
and unfavorable outcomes during treatment. Patients in 
both groups showed classical small-worldness (σ > 1) at 
baseline. However, those in the favorable group exhibited 
decreased small-worldness at follow-up, whereas those in 
the unfavorable group exhibited increased small-world-
ness at follow-up. These differences in small-worldness 
resulted from the decrease in whole-brain integration 
and a reduced probability of high-degree nodes. Our 
findings are consistent with previous research on propo-
fol-induced loss of consciousness [36]. Propofol can dis-
rupt brain FC in both cortical and subcortical regions; 

therefore, the increase in small-worldness σ may be 
related to the random rewiring of a more locally con-
nected graph under pharmacological disruption and 
can sequentially cause more local and less globally inte-
grated information processing. Our findings indicated 
that surgical interventions can reverse the decrease in 
global integration and may suggest the restoration of 
brain organization. Moreover, network properties were 
altered in several regions that are associated with con-
scious processing (particularly in the medial parietal and 
frontal regions, as well as in the thalamus) [42]. Through 
small-world networks, Northoff et  al. [43] also demon-
strated temporal and spatial differences in brain network 
structure between conscious and unconscious people. 
While some may argue that the functional connectivity 
is derived from the BOLD signal which reflects hemo-
dynamic events other than directly reflects the neural 
activity like other electrophysiological assessments does, 
recent studies found strong correlation between EEG 
spectral measures and functional connectivity measures 
derived from resting-state fMRI, supporting the brain 
network analysis in DOC patients[53].

The sparse learning method has demonstrated a strong 
capability to select features to track CRS-R scores. Com-
pared with independent feature selection (e.g., princi-
pal component analysis (PCA)), LASSO has improved 
regression performance significantly by integrating 
feature selection and regression into a unified frame-
work. As shown in Table 6, we computed the correlation 
between each selected feature and the CRS-R score for all 
patients.

We identified 1 ROI feature of the thalamus that was 
correlated with CRS-R scores. The thalamocortical sys-
tem has long been crucial to human consciousness 
[44–48]. In those studies, for example, altered FA val-
ues between hydrocephalus patients and normal con-
trols were found in the thalamus before and after VP 
shunt surgery. Our findings provide more evidence that 
highlights the structural changes in the thalamus in the 
clinical assessment of consciousness. We also found 
the connections between visual perception and motor 
regions correlate with the level of consciousness by iden-
tifying the importance of the lingual gyrus and supple-
mentary motor area. This supports the theory that the 
higher-order sensorimotor circuit of the brain network is 
the infrastructure for consciousness [49].

Moreover, the temporal–parietal joint region (TPJ) and 
precuneus have been frequently discussed in the litera-
ture related to consciousness. Our previous work dem-
onstrated that the strength of FC between the posterior 
medial cortex (PMC, including posterior cingulate cor-
tex and precuneus) and TPJ varied significantly between 
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DOC patients and normal controls, and the strength of 
cross-functional connectivity between the hemispheres 
of the PCC-TPJ was further found to be significantly cor-
related with the level of consciousness [50]. The strength 
of FC between PMC and the left lateral parietal cortex, 
which is part of the TPJ, was significantly associated with 
patient outcomes [7] 7. In our work, 7 scalar features 
were selected and then related to both TPJ and precuneus 
(including the supramarginal gyrus and angular gyrus), 
which suggests the importance of the TPJ in assessing 
CRS-R scores and evaluating the effect of LCFD.

4.3 � Limitations and potential future research
Admittedly, some factors were present that limited our 
work, and these limitations can be addressed in future 
work. First, the current work was based on a relatively 
small number of subjects. Although we have demon-
strated our work in the current collected hydrocephalus 
dataset, more subjects need to be recruited for further 
validation. Second, the current inpainting method is 
based on 2D slices of MRI scans. The development of a 
3D abnormality inpainting method can produce better-
synthesized results; however, more training data and 
computational resources would be required to achieve 
this task. Third, no external validation of the level of 
consciousness from other modalities, especially the 
evidence from electrophysiological tests such as EEG, 
SEP or ABR. The correlation between our fMRI results 
and electrophysiological assessments of consciousness 
should be investigated in our future research.

5 � Conclusions
In this paper, we developed a novel abnormality 
inpainting method that can generate synthesized and 
inpainted images for hydrocephalus patients. To our 
knowledge, we are among the first to conduct brain FC 
network analysis for hydrocephalus brain images. Spe-
cifically, we can conduct small-world network analysis 
and LASSO to perform brain FC network analysis and 
consciousness assessment; moreover, we can identify 
optimal FC features that are highly correlated to pre-
dicting CRS-R scores. The proposed brain network 
construction and analysis solution for consciousness 
assessment of hydrocephalus patients can achieve 
promising estimations and has high potential in clinical 
practice. In future studies, we will continue developing 
brain segmentation methods (e.g., [22, 52]) for hydro-
cephalus brain images and focus on utilizing the brain 
functional network to further explore the applications 
of consciousness assessments in clinical studies.
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