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Abstract 

Error-based learning is one of the basic skill acquisition mechanisms that can be modeled as a perception–action 
system and investigated based on brain–behavior analysis during skill training. Here, the error-related chain of mental 
processes is postulated to depend on the skill level leading to a difference in the contextual switching of the brain 
states on error commission. Therefore, the objective of this paper was to compare error-related brain states, measured 
with multi-modal portable brain imaging, between experts and novices during the Fundamentals of Laparoscopic 
Surgery (FLS) “suturing and intracorporeal knot-tying” task (FLS complex task)—the most difficult among the five psy-
chomotor FLS tasks. The multi-modal portable brain imaging combined functional near-infrared spectroscopy (fNIRS) 
and electroencephalography (EEG) for brain–behavior analysis in thirteen right-handed novice medical students and 
nine expert surgeons. The brain state changes were defined by quasi-stable EEG scalp topography (called microstates) 
changes using 32-channel EEG data acquired at 250 Hz. Six microstate prototypes were identified from the combined 
EEG data from experts and novices during the FLS complex task that explained 77.14% of the global variance. Analysis 
of variance (ANOVA) found that the proportion of the total time spent in different microstates during the 10-s error 
epoch was significantly affected by the skill level (p < 0.01), the microstate type (p < 0.01), and the interaction between 
the skill level and the microstate type (p < 0.01). Brain activation based on the slower oxyhemoglobin (HbO) changes 
corresponding to the EEG band power (1–40 Hz) changes were found using the regularized temporally embedded 
Canonical Correlation Analysis of the simultaneously acquired fNIRS–EEG signals. The HbO signal from the overlying 
the left inferior frontal gyrus—opercular part, left superior frontal gyrus—medial orbital, left postcentral gyrus, left 
superior temporal gyrus, right superior frontal gyrus—medial orbital cortical areas showed significant (p < 0.05) differ-
ence between experts and novices in the 10-s error epoch. We conclude that the difference in the error-related chain 
of mental processes was the activation of cognitive top-down attention-related brain areas, including left dorsolateral 
prefrontal/frontal eye field and left frontopolar brain regions, along with a ‘focusing’ effect of global suppression of 
hemodynamic activation in the experts, while the novices had a widespread stimulus(error)-driven hemodynamic 
activation without the ‘focusing’ effect.
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1  Introduction
Error-based learning is one of the basic skill acquisition 
mechanisms involving error detection, error correction, 
and subsequent performance adjustments [85]. Here, 
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individual differences in the error perception and atten-
tion reorientation for corrective action are postulated to 
differ between experts and novices. Notably, the error 
can be preemptively corrected by a predictive mecha-
nism based on a forward model [103] that is postulated 
to improve with expertise. The brain can be considered 
an information processing system during skill acquisi-
tion. In that case, the investigation of the error-related 
states of the system in the experts and novices can pro-
vide insights into how the error event drives the atten-
tion reorientation for skilled corrective action. Notably, 
a distinction can be made between “internal monitoring” 
of error based on a predictive forward modeling frame-
work [103] and “external monitoring” of error based on 
the action in the environment. In our prior work [46], we 
presented a perception–action model for brain–behav-
ior analysis of laparoscopic surgical skill training. We 
showed the importance of the efference copy informa-
tion from the motor cortices to the prefrontal cortex for 
postulated left-lateralized perceptual decision-making to 
reduce behavioral variability. Figure  1a shows the pro-
posed perception–action link [46], where our optode 
montage (shown in Fig.  1b) captured the dorsal stream 
for action starting from action selection in the dorsolat-
eral prefrontal cortex (PFC) to action sequencing in the 
supplementary motor area (SMA) to action performance 
in the primary motor cortex (PMC). Then, the efference 
copy information from the PMC is transmitted to the 
SMA and PFC, whereas the corollary discharge from 
the SMA is sent to the PFC. Then, any conflict (“inter-
nal monitoring” of error) with the sensory reafference is 
monitored by the angular gyrus for a subjective sense of 
agency [38]. The ventral stream for the perception of the 
sensory feedback (“external monitoring” of error) from 
the environment at the primary sensory cortex flows to 
the sensory association cortex and then to the poste-
rior association cortex (e.g., supramarginal gyrus), lead-
ing to conscious error perception in the ventrolateral 
PFC (VLPFC). Here, the PFC interacts through recipro-
cal and reentrant connections with different areas of the 
posterior association cortex [27], including the superior 
parietal lobule (SPL) and supramarginal gyrus (SMG), to 
integrate the information from multiple sensory inputs 
and motor actions [54] for action perception [53]. These 
multiple visual streams are increasingly being established 
in humans via functional connectivity and diffusion trac-
tography [81].

We postulate that the frontoparietal interactions can 
be divided into controlled goal-directed attention from 
the frontal eye field (FEF) to the SPL and unexpected 
stimulus(error)-driven attention from SPG to the VLPFC 
[17], which is crucial for error-based learning. Figure 1c 
shows the sensitivity profile of our optode montage, 

where automated anatomical labeling (AAL) [82] of 
the brain regions with Montreal Neurological Institute 
(MNI) coordinates is presented in Table 1. Here, we pos-
tulate that the left-lateralized perceptual decision-making 
is crucial for ‘bottom-up’ error perception. Then, cogni-
tive, ‘top-down’ attention reorientation and right dor-
solateral ‘top-down’ cognitive monitoring [91], e.g., in 
experts, when compared to ‘bottom-up’ control of atten-
tion reorientation, e.g., in novices, is proposed to be sub-
served by the dorsal posterior parietal and frontal regions 
of the brain [14] during the laparoscopic surgical task 
(Fig. 1d).

In the current study, we followed the Fundamentals of 
Laparoscopic Surgery (FLS) which is a common educa-
tion and training module designed for medical residents, 
fellows, and physicians to provide them with a set of 
basic surgical skills necessary to conduct laparoscopic 
surgery successfully. The FLS training is a joint education 
program between the Society of American Gastrointes-
tinal Endoscopic Surgeons and the American College of 
Surgeon to establish box trainers (physical simulators) 
in standard surgical training curricula [8]. It was intro-
duced to systemize training and evaluation of cognitive 
and psychomotor skills required to perform minimally 
invasive surgery. FLS certification in general surgery in 
the USA uses five psychomotor tasks with increasing task 
complexity: (i) pegboard transfers, (ii) pattern cutting, 
(iii) placement of a ligating loop, (iv) suturing with extra-
corporeal knot tying, and (v) suturing with intracorporal 
knot tying. Therefore, understanding the brain–behavior 
relationship during error-based learning is necessary for 
informed training and assessment [19]. In the current 
study, we investigated the FLS “suturing and intracorpor-
eal knot-tying” task, which is the most difficult among 
the five psychomotor tasks that surgeons must pass as 
part of the board certification process. This skill ena-
bles surgeons to provide a wide range of advanced sur-
gical procedures [3], however, acquiring this skill needs 
protracted training. The skilled behavior can be charac-
terized as a coordinated spatio-temporal 3D movement 
using 2D camera feedback with the interaction between 
the body and the environment within a restricted surgical 
volume. FLS “suturing and intracorporeal knot-tying” is 
a complex motor task requiring high precision hand–eye 
coordination, depth perception in the 2D view and tool 
control for optimal performance [39]. Here, an investiga-
tion of the brain state changes following an error event 
during perturbations in the performance, i.e., one of the 
basic principles of motor skill acquisition [20], may pro-
vide insights into the error-related brain–behavior rela-
tionship in experts and novices.

The error-related brain–behavior relationship can be 
investigated using an integrated approach to perception 
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Fig. 1  a Perception action system for error-related mental processes during laparoscopic surgical training. Portable neuroimaging allowed 
investigation of the brain regions based on the optode montage (see Fig. 1b) and its sensitivity profile (see Fig. 1c) that included ventrolateral 
prefrontal cortex (VFC), superior parietal lobule (SPL), supramarginal gyrus (SMG), angular gyrus (AG), dorsolateral prefrontal cortex (DLPFC), frontal 
eye field (FEF), premotor and primary motor cortex (PMC). A distinction is made between the unexpected stimulus (error) driven attention and the 
controlled goal directed attention in the frontoparietal network system. b Multi-modal (fNIRS–EEG) sensor montage including short-separation 
(labelled SS in light blue ellipses) channels. The red filled circles are the fNIRS sources, the green filled circles are the fNIRS detectors, the grey 
filled circles are the EEG electrodes, the violet lines are the optode pairs for the fNIRS channels. c Probe sensitivity values in the 0.01 to 1 range are 
displayed logarithmically as − 2 to 0 in log10 units in the color bar (left panels). The projection of the fNIRS channels on the cortex are shown with 
black arrows (left panels) along with the Automated Anatomical Labelling (AAL) of the brain regions in color (right panels). Table 1 shows the AAL of 
the cortical areas underlying fNIRS channels (source #–detector # pair). d Experimental setup in the laboratory with the subject performing the FLS 
"suturing and intracorporeal knot-tying" task (FLS complex task)
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Fig. 1  continued
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and action [34] that we presented in our prior work [46]. 
Relying on the sensory error feedback (“external monitor-
ing” of error) does not allow preemptive error correction 
that is expected in skilled behavior so a forward (inter-
nal) model is expected to make sensory error predictions 
(“internal monitoring” of error) that can be used to con-
tinually update forthcoming motor commands [85] for 
error correction. In addition, the adaptive internal model 
of the body and the environment is continuously learned 
from sensory prediction errors (Shadmehr et  al., 2010) 
to perform goal-directed action ‘expertly’ using noisy 
and delayed sensory feedback. However, error correc-
tion requires reorientation from ongoing goal-directed 
attention subserved by intraparietal sulcus (IPS)/supe-
rior parietal lobule (SPL) and frontal eye field (FEF) to 
error-stimulus-driven attention subserved by inferior 
frontal gyrus (IFG)/middle frontal gyrus (MFG) and tem-
poroparietal junction (TPJ), where switching may have 
an implicit cost for the brain [84]. Therefore, brain state 
changes following the error event can provide insights 
into attention reorientation necessary for deliberate prac-
tice [23] despite the cost. Indeed, an increased speed of 
action selection at the expense of cognitive flexibility [74, 
94] to adapt the internal model can lead to automaticity 
despite the residual error that will be detrimental to lapa-
roscopic surgery training.

In the current study, we postulate that the error-related 
brain response will involve contextual switching of the 
brain state necessary for error perception and corrective 

action [7]. We further postulate that this contextual 
switching of the brain state can be captured by micro-
states [64] that are global patterns of quasi-stable (60–
120  ms) scalp potential topographies of the large-scale 
brain networks [59]. For example, brain response related 
to post-error slowing vis-à-vis perceptual processing and 
post-error corrective action [70] can be considered con-
textual switching on error commission, where the scalp 
topographies have been found to reflect the role of the 
prefrontal cortex in error perception and the role of the 
premotor areas in the post-error adjustments [70]. Here, 
we postulate that the subjective error awareness or per-
ception is critical [102], i.e., in the absence of error per-
ception (“external monitoring” of error at the VLPFC, 
see Fig.  1a), the perception–action cycle for post-error 
adjustments will be missing [32] in those subjects. In 
addition, anterior cingulate/medial frontal cortex asso-
ciated “internal monitoring” of error, e.g., error-related 
negativity, is postulated to be crucial for motor skill 
learning, where anterior cingulate/medial frontal cortex 
activity is known to scale with motor error [85]. The scalp 
potential topography for error-related negativity signal 
has a prominent fronto-central radial voltage distribution 
[102] that is postulated to be generated due to the nega-
tive reinforcement signal to the anterior cingulate cortex 
via the mesencephalic dopamine system [41]. Then, the 
negative reinforcement signal at the anterior cingulate 
cortex (“internal monitoring”) and/or the left-lateralized 
error perceptual (“external monitoring”) decision-making 

Fig. 1  continued
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Table 1  Automated anatomical labeling (AAL) and Montreal Neurological Institute (MNI) coordinates of the cortical areas underlying 
fNIRS channels (source #–detector # pair) when projected on the cortex in AtlasViewer using its default head model [1]

Source # Detector # Channel 
coordinates (MNI)

AAL label names Regions

1 1 − 30 56–7 Frontal_Inf_Orb_L Inferior frontal gyrus, orbital part left hemisphere

1 15 − 9 64–8 Frontal_Sup_Orb_L Superior frontal gyrus, orbital part left hemisphere

1 16 − 11 57–5 Frontal_Sup_Orb_L Superior frontal gyrus, orbital part left hemisphere

2 2 − 17 26 48 Frontal_Sup_L Superior frontal gyrus, dorsolateral left hemisphere

2 3 − 21 34 28 Frontal_Mid_L Middle frontal gyrus left hemisphere

2 17 − 13 45 38 Frontal_Sup_L Superior frontal gyrus, dorsolateral left hemisphere

3 1 − 35 45 to 2 Frontal_Inf_Orb_L Inferior frontal gyrus, orbital part left hemisphere

3 3 − 30 33 20 Frontal_Mid_L Middle frontal gyrus left hemisphere

3 5 − 36 8 13 Frontal_Inf_Oper_L Inferior frontal gyrus, opercular part left hemisphere

4 1 − 38 55 to 2 Frontal_Mid_Orb_L Superior frontal gyrus, medial orbital left hemisphere

4 3 − 37 48 14 Frontal_Inf_Tri_L Inferior frontal gyrus, triangular part left hemisphere

4 15 − 16 61 0 Frontal_Sup_Orb_L Superior frontal gyrus, orbital part left hemisphere

5 2 − 47 12 53 Frontal_Mid_L Middle frontal gyrus left hemisphere

5 3 − 47 24 31 Frontal_Mid_L Middle frontal gyrus left hemisphere

5 4 − 47 to 9 41 Postcentral_L Postcentral gyrus left hemisphere

5 5 − 58 11 28 Precentral_L Precental gyrus left hemisphere

6 4 − 46 to 23 34 Postcentral_L Postcentral gyrus left hemisphere

6 5 − 57 to 11 15 Temporal_Sup_L Superior temporal gyrus left hemisphere

6 6 − 37 to 34 16 Rolandic_Oper_L Rolandic operculum left hemisphere

6 18 − 63 to 19 18 SupraMarginal_L Supramarginal gyrus left hemisphere

7 2 − 27 to 4 63 Frontal_Sup_L Superior frontal gyrus, dorsolateral left hemisphere

7 4 − 50 to 22 63 Postcentral_L Postcentral gyrus left hemisphere

7 7 − 18 to 34 57 Postcentral_L Postcentral gyrus left hemisphere

8 4 − 46 to 30 47 Postcentral_L Postcentral gyrus left hemisphere

8 6 − 52 to 49 34 SupraMarginal_L Supramarginal gyrus left hemisphere

8 7 − 32 to 47 54 Parietal_Inf_L Inferior parietal, but supramarginal and angular gyri left hemisphere

8 19 − 29 to 43 40 Parietal_Inf_L Inferior parietal, but supramarginal and angular gyri left hemisphere

9 8 41 57 to 8 Frontal_Mid_Orb_R Middle frontal gyrus, orbital part Right hemisphere

9 15 15 67 to 11 Frontal_Sup_Orb_R Superior frontal gyrus, orbital part right hemisphere

9 20 21 54 to 1 Frontal_Sup_R Superior frontal gyrus, dorsolateral right hemisphere

10 8 47 47 to 2 Frontal_Inf_Orb_R Inferior frontal gyrus, orbital part right hemisphere

10 9 51 37 18 Frontal_Inf_Tri_R Inferior frontal gyrus, triangular part right hemisphere

10 13 55 14 10 Frontal_Inf_Oper_R Inferior frontal gyrus, opercular part right hemisphere

10 21 44 19 8 Frontal_Inf_Tri_R Inferior frontal gyrus, triangular part right hemisphere

11 9 23 36 32 Frontal_Sup_R Superior frontal gyrus, dorsolateral right hemisphere

11 10 33 34 56 Frontal_Sup_R Superior frontal gyrus, dorsolateral Right hemisphere

12 8 42 53 to 1 Frontal_Mid_Orb_R Middle frontal gyrus, orbital part right hemisphere

12 9 49 56 16 Frontal_Mid_R Middle frontal gyrus Right hemisphere

12 15 18 62 to 1 Frontal_Sup_Orb_R Superior frontal gyrus, orbital part right hemisphere

13 9 53 24 32 Frontal_Inf_Tri_R Inferior frontal gyrus, triangular part right hemisphere

13 10 45 9 47 Precentral_R Precental gyrus right hemisphere

13 12 57 to 7 46 Precentral_R Precental gyrus right hemisphere

13 13 58 9 26 Precentral_R Precental gyrus right hemisphere

13 22 48 6 38 Precentral_R Precental gyrus Right hemisphere

14 12 63 to 20 36 SupraMarginal_R Supramarginal gyrus Right hemisphere

14 13 43 to 8 18 Insula_R Insula right hemisphere

14 14 46 to 35 18 Temporal_Sup_R Superior temporal gyrus right hemisphere

15 10 36 to 7 64 Frontal_Sup_R Superior frontal gyrus, dorsolateral right hemisphere
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can trigger right-lateralized executive control of atten-
tion [17] that activates the premotor areas for post-error 
adjustments [41, 70]. Here, post-error adjustments in 
experts are postulated to be preemptive (based on “inter-
nal monitoring”) subthalamic nucleus (STN)-mediated 
hyper direct stopping with global suppressive effects 
[29] followed by the activation of motor semantics [77] 
accompanied by the implicit activation of corrective 
motor representations (van Elk et al. 2009).

We evaluated a portable brain–behavior approach 
based on functional near-infrared spectroscopy (fNIRS) 
in conjunction with electroencephalogram (EEG) [49] 
during FLS skill training using the FLS Trainer Box 
device [24] to capture brain responses subserving error 
processing during the FLS “suturing and intracorpor-
eal knot-tying” task (henceforth, the FLS complex task). 
Here, the change in the EEG scalp topography during 
error processing after error commission is analyzed as a 
sequence of "microstate" during which the scalp potential 
field remains semi-stable [64]. Microstate analysis lever-
ages the excellent temporal resolution of EEG [64] and 
a meta-criterion on global field power [89], favoring the 
highest signal-to-noise ratio [16]. The proposed compu-
tational circuit mechanisms [37] have presented selec-
tive attention [15] as cortical excitability alterations by 
the thalamus [43] acting as a “spotlight,” which is postu-
lated for the error-related brain state changes [44]. Here, 
the microstate approach for a brain state correlates of the 
response [73] to error has a crucial a priori assumption 
that only one spatial topography map entirely defines the 
relevant global state of the brain at each moment in time 
and the residuals are considered noise.

Microstate analysis has been validated based on rest-
ing-state functional magnetic resonance imaging (fMRI), 
showing a close relationship of the microstates with 
resting-state brain networks [64]. Since fMRI is challeng-
ing [55, 101], during the FLS complex task, therefore, we 
combined EEG with fNIRS—a non-invasive optical imag-
ing technique [95] that exploits neurovascular coupling 
(like fMRI) to measure cortical activity. Combining fNIRS 
with EEG is beneficial, since EEG can measure neuronal 
activity at a high temporal resolution for microstate 

analysis. In contrast, fNIRS can uncover cortical cor-
relates of microstates under the neurovascular coupling 
phenomenon [49, 88, 90]. Microstate prototypes were 
selected from the excellent temporal resolution of EEG 
[64] and the meta-criterion for global field power (GFP) 
[16]. Then, the EEG band power changes correspond-
ing to the oxyhemoglobin (HbO) concentration changes 
from fNIRS data were found using regularized temporally 
embedded Canonical Correlation Analysis (tCCA). This 
allowed analysis of the cortical activation based on HbO 
changes at the brain regions associated with the localized 
EEG scalp “hot spots” in the experts and novices. While 
EEG detected fast changes under the limitations of vol-
ume conduction (addressed with surface Laplacian [48]), 
fNIRS provided a corresponding hemodynamic response 
over a longer timeframe with better localization due to 
its limited spatial sensitivity. Here, human error process-
ing [41] is proposed to be different in experts and nov-
ices due to their differences in the error-related mental 
processes measured in this study with simultaneously 
acquired EEG and fNIRS signals. Given each modality’s 
different characteristics and physiological information, 
simultaneously acquired EEG and fNIRS signals are pos-
tulated to provide mechanistic insights into the brain 
state changes during error processing.

2 � Materials and methods
2.1 � Subjects and task
Thirteen right-handed healthy novice medical students 
and nine right-handed expert surgeons were recruited 
after written consent for the study. The study was 
approved by the Institutional Review Board of the Uni-
versity at Buffalo, USA. All study procedures were per-
formed according to the local human subjects’ research 
regulations. The experts (attending surgeons and resi-
dents) had greater than 1-year experience with laparo-
scopic tasks, whereas the novices (medical students) had 
never experienced the laparoscopic task. All the subjects 
were instructed verbally with a standard set of instruc-
tions on completing the FLS “suturing and intracorporeal 
knot-tying” task to the best of their capacity. Participants 
were provided with two laparoscopic needle drivers, one 

Table 1  (continued)

Source # Detector # Channel 
coordinates (MNI)

AAL label names Regions

15 11 39 to 38 76 Postcentral_R Postcentral gyrus right hemisphere

15 12 41 to 22 52 Precentral_R Precental gyrus right hemisphere

16 11 42 to 49 57 Parietal_Sup_R Superior parietal gyrus right hemisphere

16 12 51 to 33 49 SupraMarginal_R Supramarginal gyrus right hemisphere

16 14 45 to 46 34 Angular_R Angular gyrus Right hemisphere

16 23 35 to 46 42 Angular_R Angular gyrus right hemisphere
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suturing scissors, and a needle with a suture of 15 cm in 
length. In this FLS complex task, a Penrose drain with 
marked targets is placed on the Velcro strip inside the 
FLS Trainer Box. The subject has to tie three throws of 
a knot intracorporeally using two needle drivers, where 
the last two knots are single throws followed by a dou-
ble throw, which closes the slit in the Penrose drain 
[79]. The task involves inserting the suture through two 
marks in a Penrose drain and then tying a double-throw 
knot followed by two single-throw knots using two nee-
dle graspers operated by both hands. The FLS complex 
task starts when the subject picks up the suture and the 
needle driver on the ‘start’ command and ends when the 
subject cuts both ends of the suture, where the task com-
pletion is limited to 10 min (600 s). The task was repeated 
three times along with 2 min of the rest period, and the 
’start’ and ’stop’ triggers for the FLS task were manually 
registered with the data acquisition software. The experi-
menter labeled using the FLS box camera view of the 
error events at the “needle drop” and “incorrect needle 
insertion,” as shown in Fig. 2a–d, respectively. The mul-
timodal imaging system using simultaneously acquired 
EEG and fNIRS signals recorded concurrent electrophys-
iological and hemodynamic brain responses, while the 
subject performed the FLS complex task that included 
error events.

2.2 � Synchronized multimodal portable brain imaging
A customized montage consisting of EEG electrodes and 
fNIRS optodes was used to record synchronized multi-
modal brain activation signals. 32-channel EEG signals 
were recorded using a wireless LiveAmp system (Brain 
Vision, USA). EEG recordings were obtained at 500  Hz 
using active gel-electrodes. 32-channel fNIRS signals 
and 8-channel short-separation channels were recorded 
at a 5 Hz sampling rate with NIRSPORT2 (NIRx, USA). 
A 1 Hz hardware trigger signal implemented the fNIRS–
EEG synchronization, and the multimodal data were 
aligned and epoched in 1-s time windows. The optical 
probes and electrodes were located following standard 
10–5 montage (see Fig.  1b), with fNIRS probe sensitiv-
ity [1] shown in Fig. 1c. The probes were carefully placed 
on the subject’s head to avoid hair interference and to not 
hinder the subject’s mobility during the mobile brain–
behavior study (see Fig.  1d). Table  1 (from AtlasViewer 
software using its default head model) lists the labels of 
the fNIRS cortical region of interest (ROIs) that are based 
on the Automated Anatomical Labelling atlas [82], 3) and 
Montreal Neurological Institute coordinate space [1].

2.3 � fNIRS–EEG data preprocessing
The simultaneously recorded EEG and fNIRS signals 
were preprocessed and analyzed offline. The EEG sig-
nals were preprocessed using the open-source EEGlab 

Fig. 2  a, b Image sequence showing “needle drop” error event from (a) to (b) during task performance. C, d Image sequence showing “incorrect 
needle insertion” error event from (c) to (d) during task performance
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toolbox (https://​sccn.​ucsd.​edu/​eeglab/​index.​php) for the 
microstate analysis [64]. Specifically, the data were down-
sampled to 250 Hz and high-pass filtered at 1 Hz. Then, 
the line noise was removed using the ’cleanline’ func-
tion, followed by the ‘clean_rawdata’ function to reject 
bad channels. The bad channels were interpolated using 
spherical splines [71] in ‘clean_rawdata’ function fol-
lowed by re-referencing to the global average. Artifact 
subspace reconstruction (ASR) was performed using the 
default settings in EEGlab, followed by re-referencing to 
the global average. ASR is an automated method based 
on a user-specified parameter that can effectively remove 
transient EEG artifacts [11]. We used the default ASR 
parameter value of 20, while the optimal value is between 
20 and 30 to balance between removing non-brain signals 
and retaining brain activities [11].

The preprocessed EEG data from 13 novices and eight 
experts were used for the microstate analysis, since we 
rejected one expert subject to keep the maximum num-
ber of bad channels for any subject less than five. Then, 
the Laplacian spatial filter was applied to remove the 
volume conduction from the subcortical sources while 
keeping the cortical sources that corresponded with 
the hemodynamic response measured with fNIRS. The 
fNIRS data were processed using the standard open-
source HOMER3 package (https://​github.​com/​BUNPC/​
Homer3). The fNIRS preprocessing pipeline consists of 
the following: first, the intensity was converted to opti-
cal density, and then motion artifacts were detected and 
filtered with the help of the Savitzky–Golay filtering 
method [45] with default parameters in HOMER3. Then, 
the optical density was bandpass filtered in the neuro-
vascular coupling band, 0.01–0.1 Hz, and then converted 
to chromophore (HbO) concentration with unit partial 
pathlength factor.

2.4 � Error‑related fNIRS–EEG microstates analysis
Microstate analysis was performed using the EEGlab 
toolbox [76] after aggregating EEG data during the FLS 
complex task from all the experts and novices. First, we 
identified EEG microstate prototypes based on modi-
fied K-means clustering available in the EEGlab toolbox. 
The candidate EEG prototypes are extracted with a high 
signal-to-noise ratio from the peaks of the global field 
power (GFP)[64]:

where EEGi(t) refers to the EEG signal at ith electrode 
and timepoint ’t’, and 

−
EEG(t) is the average EEG signal 

across all the electrodes at the time ’t’. The EEG micro-
state prototypes are then found from topographical 

GFP =

√

√

√

√

(

1

N

N
∑

i=1

(

EEGi(t)−
−

EEG(t)

)2
)

clustering, where the scalp topography within clusters 
has the highest spatial similarity. Hierarchical clustering 
(such as Atomize and Agglomerate Hierarchical Cluster-
ing and Topographic Atomize and Agglomerate Hier-
archical Clustering) has been shown to deliver similar 
performance to the K-means clustering [97]. In this study, 
the modified K-means clustering was used based on the 
goodness of fit of the microstate segmentation deter-
mined from the global explained variance (GEV) and the 
cross-validation (CV) criterion to select an appropriate 
number of clusters or microstates:

where EEG(t) is the EEG topography map at the time ’t’, 
EEGm(t) is the assigned microstate at the time ’t’, Corr() 
is the spatial similarity between the two topography 
maps, and the L is the total number of timepoints for the 
analysis:

where σ 2 is the estimator of the variance in the residual 
noise, C is the number of EEG channels, and K is the 
number of clusters or microstates [76].

Here, the GEV criterion should theoretically become 
monotonically larger with the increasing number of clus-
ters, while the CV criterion should reach a minimum for 
an appropriate number of clusters or microstates [76]. In 
this study, the modified K-means clustering in the EEGlab 
toolbox found topographical maps of polarity invariant 
microstate prototypes [76] from the spontaneous EEG 
data acquired during the FLS complex task (including 
rest periods in between the trials). The GFP peaks were 
used to segment the spontaneous EEG time series with 
the minimum peak distance set at 10  ms (default), and 
1000 randomly selected peaks (default) per subject were 
used for the segmentation. Then, we rejected the GFP 
peaks that exceeded one time the standard deviation of 
all the GFPs of all maps and segmented the EEG data 
into a predefined number (2 to 8) of microstates. Here, 
the goal is to maximize the similarity between the EEG 
samples and the prototypes of the microstates they are 
assigned to using the modified K-means algorithm [76]. 
The modified K-means algorithm also sorts the micro-
state prototypes in decreasing GEV. We had set 100 
random initializations and 1000 maximum number of 
iterations for the modified K-means algorithm with the 
1e-6 (default) as the relative threshold of convergence 
[76]. These microstates provided the prototypes for the 
subsequent FLS complex task-related and error-related 
microstate analysis.

GEV =
∑

L

t=1 (Corr(EEG(t),EEGm(t)) ∗ GFP(t))2
∑

L

t=1GFP(t)
2

CV = σ 2

(

C − 1

C − K − 1

)2

https://sccn.ucsd.edu/eeglab/index.php
https://github.com/BUNPC/Homer3
https://github.com/BUNPC/Homer3
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Microstate labels were applied to the EEG samples 
based on topographical similarity, called ’backfitting’, 
using the EEGlab toolbox to quantify the dynamic brain 
states during the start of the FLS complex task and the 
error epochs. The topographical similarity was found 
using the global map dissimilarity (GMD), which is a dis-
tance measure that is invariant to the strength of the EEG 
signal [76]. GMD measure quantifies how similar the 
topographical maps look:

 where EEG(t) is the EEG topography map at the time ‘t’, 
EEGm(t) is the candidate microstate for backfitting at the 
time ‘t’, and C is the number of EEG channels.

The error epochs were defined for the 10-s duration fol-
lowing the error commission at the needle drop or incor-
rect needle insertion. Notably, a long enough duration of 
10 s for the error epoch was chosen for the error evoked 
fNIRS–EEG response to capture the hemodynamic 
response function corresponding to the EEG band power 
(1–40 Hz) changes, since the maximum fNIRS frequency 
is 0.1 Hz in the neurovascular coupling band (i.e., a time 
period of 10 s). In addition, prior work [60] showed that 
the HbO concentration peaked in the time range of 3–9 s 
for complex motor action, so a 10-s duration was consid-
ered adequate for the hemodynamic response function 
in the error epoch as well during the 10 s at the start of 
the FLS complex task. The statistical properties of the 
EEG microstates were computed following temporal 
smoothing, since short periods of unstable EEG topog-
raphies can occur. The statistical properties of the EEG 
microstates were used to compare error-related cortical 
activation between the experts and the novices, e.g., aver-
age GFP, average GEV, average spatial Correlation, as well 
as the temporal properties, Occurrence, i.e., the average 
number of times per second a microstate is dominant, 
the Duration, i.e., the average duration of a given micro-
state (in milliseconds), and the Coverage, i.e., the fraction 
of time a given microstate is active.

The correspondence between the fNIRS HbO changes 
and the EEG band power (1–40 Hz) changes was found 
based on the General Linear Model (GLM) and regu-
larized Canonical Correlation Analysis with temporal 
embedding in HOMER3 [96]. The evoked hemodynamic 
signal is typically reconstructed with a weighted set of 
temporal basis functions in HOMER3 [96]; however, 
we reconstructed the HbO response from multi-chan-
nel EEG band power (1–40 Hz signals. Here, the design 
matrix consisted of all the regressors for GLM that are 
solved with a least-squares approach for each regressor’s 

GMD =
�EEG(t)
GFP(t)

− EEGm(t)
GFP(t)m

�
√
C

contribution based on their coefficients [96]. The GLM 
approach also captures systemic artefacts with short-
separation (SS) fNIRS channels as regressors and a 3rd 
order polynomials to model drift. Therefore, the SS 
fNIRS channels served as the nuisance regressors for the 
systemic artefact in the design matrix [96], and the coeffi-
cients of the EEG band power (1–40 Hz) regressors were 
used to reconstruct the corresponding hemodynamic 
signal (HbO time series). Identification of the EEG band 
power (1–40  Hz) regressors from multi-channel EEG 
data was performed using the ‘hmrR_tCCA’ function in 
HOMER3 to find the neurovascular coupling in the latent 
space [78] between the HbO time series at all the long-
separation (LS) fNIRS channels and the simultaneously 
acquired EEG band power (1–40 Hz) signals from all the 
EEG electrodes. Here, we selected 15 regressors from 
simultaneously acquired EEG band power (1–40 Hz) sig-
nals with a canonical correlation greater than the thresh-
old, 0.99 (= param.ct in the function, ’rtcca’). Therefore, 
regularized Canonical Correlation Analysis with tempo-
ral embedding (tCCA) found fifteen regressors (shown 
in Additional file  1) from EEG band power (1–40  Hz) 
signals to reconstruct the corresponding fNIRS HbO 
signal from the LS channels using the GLM method in 
HOMER3 while regressing out the SS HbO signal repre-
senting systemic artefacts. The flowchart of the process-
ing pipeline is shown in Fig. 3.

2.5 � Statistical analysis of the hemodynamic (HbO) 
response and the EEG microstates duration

The hemodynamic (HbO) response (10-s) during the FLS 
complex task and the error epoch was subjected to t test 
for each fNIRS channel to detect significant (p < 0.05) 
differences between experts and novices (i.e., skill level) 
after controlling for the false discovery rate (FDR). The 
Matlab function ‘hmrG_t_HRF_contrast2’ and ‘fdr_bh’ 
for t test and FDR are presented in the Additional file. 
Then, the visualization of the hemodynamic (HbO) 
response was performed using the AtlasViewer [1]. The 
Duration temporal property of the back fitted micro-
states, i.e., the proportion of the total time spent in each 
of the six microstates during the FLS complex task and 
the error epoch, was subjected to a two-way analysis of 
variance (ANOVA) with factors, skill level (expert, nov-
ice) and microstate types, after testing for normality 
with Shapiro Wilks Test. The significance level was set at 
α = 0.05.

3 � Results
We selected six EEG microstate prototypes based on 
the GEV and the CV criterion, as shown in Fig. 4a. The 
CV criterion, pointing to the best clustering solution at 
its smallest value, reached the minimum value for six 
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microstates that explained 77.14% of the global variance. 
The six microstates in the decreasing order of their GEV, 
18.96%, 15.71%, 14.64%, 9.84%, 9.77%, and 8.22%, are 
shown in Fig. 4b. The topographically similar microstates 
from Brechet and colleagues [9] are shown in the Addi-
tional file 1: Fig. S3. The six microstate prototypes were 
back fitted to the EEG for the 10-s duration at the start 
of the FLS complex task and during the error epoch, as 
shown in Fig. 5, for an expert and a novice.

The backfitting of the microstate prototypes (shown in 
Fig. 5b) to all the data points during 10 s at the start of 
the FLS complex task explained 64.29% GEV in novices 
and 73.64% GEV in the experts, while backfitting of the 
microstate prototypes to all the data points during 10 s 
in the error epoch explained 58.98% GEV in novices and 
65.96% GEV in the experts. Figure 5a, b shows the GFP 
of the active states from 0 to 10000 ms at the start of the 
FLS complex task for a novice and expert, respectively, 
while Fig. 5c, d shows the GFP of the active states from 
0 to 10000 ms during the error epoch of a novice and an 
expert, respectively. The first microstate at the start of the 
FLS complex task for a novice and expert is microstate 1. 
Then, microstate 2 was only present in the novice, while 
microstate 4 was only present in the expert during the 
initial 10 s of the FLS complex task. Then, the first 10 s of 
error processing-related brain states were captured in the 
expert (Fig.  5d) by microstate 1, followed by microstate 
4, microstate 3, and microstate 5. At the same time, the 
novice (Fig. 5c) activated microstate 5 followed by micro-
state 2, microstate 1, and microstate 3 during the 10 s of 
error processing.

The statistical properties of the 6 microstates at the 
group level during the 10 s at the start of the FLS com-
plex task for experts were, average GEV: 37.49%, 3.73%, 
14.12%, 2.28%, 3.28%, 0.53%; average GFP: 2.73, 2.33, 
2.18, 2.02, 1.99, 2.09; average spatial Correlation: 0.66, 
0.54, 0.57, 0.49, 0.52, 0.45; Occurrence: 0.07, 0.05, 0.09, 
0.05, 0.07, 0.02; Duration: 4566.58, 1862.80, 3512.15, 
2103.03, 1791.79, 1485.93; Coverage: 0.34, 0.09, 0.33, 
0.09, 0.12, 0.03. Here, microstate 1 accounted for the 
highest GEV during the 10 s at the start of the FLS com-
plex task for experts. Then, the statistical properties of 
the 6 microstates at the group level during the 10 s at the 
start of the FLS complex task for novices were, average 
GEV: 0.10%, 5.49%, 15.72%, 4.16%, 8.74%, 4.22%; average 
GFP: 1.92, 2.15, 2.37, 2.81, 2.48, 2.41; average spatial Cor-
relation 0.60, 0.56, 0.59, 0.48, 0.54, 0.48; Occurrence: 0.11, 
0.07, 0.10, 0.04, 0.07, 0.04; Duration: 2712.02, 1944.020, 
2582.80, 1898.35, 2056.34, 2020.87; Coverage: 0.29, 0.14, 
0.27, 0.08, 0.14, 0.08. Here, microstate 3 accounted for 
the highest GEV during the 10 s at the start of the FLS 
complex task for novices. Then, the statistics on the tran-
sition probabilities between microstate classes during the 
10 s at the start of the FLS complex task at the group level 
are shown in Fig. 5e, f for the novices and experts, respec-
tively. Here, transition probabilities from microstate 1 to 
microstate 3 and from microstate 3 to microstate 1 (0.38 
and 0.39, respectively) were top two in novices, while the 
transition probabilities from microstate 2 to microstate 
3 and from microstate 5 to microstate 3 (0.41 and 0.40, 
respectively) were top two in experts (actual values are 
provided in the Additional file 1).

Fig. 3  Flowchart of the steps for fNIRS–EEG preprocessing in 
HOMER3 and EEGlab, respectively, and the fNIRS post-processing 
using the EEG regressors and the short-separation HbO regressors in 
HOMER3
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The statistical properties of the 6 microstates at the 
group level during the 10 s of the error epoch for experts 
were, average GEV: 11.25%, 0%, 25.16%, 1.37%, 8.81%, 
2.89%; average GFP: 2.20, NaN, 2.75, 1.99, 3.82. 3.62; 
average spatial Correlation: 0.64, NaN, 0.57, 0.47, 0.57, 
0.47; Occurrence: 0.10, 0, 0.14, 0.06, 0.04, 0.02; Duration: 
2916.80, 0, 3601.14, 1496, 1716, 2268; Coverage: 0.29, 0, 
0.50, 0.09, 0.07, 0.05. Here, microstate 2 is not present, 
while microstates 1 and 3 have the top two high GEV, 
with microstate 3 higher GEV than microstate 1, during 
the 10 s of the error epoch for experts. Then, the statis-
tical properties of the 6 microstates at the group level 
during the 10 s of the error epoch for novices were, aver-
age GEV: 14.84%, 4.22%, 12.73%, 2.11%, 5.21%, 4.10%; 
average GFP: 2.54, 2.22, 2.88, 2.54, 2.46, 2.79; aver-
age spatial Correlation: 0.57, 0.56, 0.57, 0.48, 0.54, 0.46; 
Occurrence: 0.11, 0.09, 0.10, 0.03, 0.07, 0.07; Duration: 
3112.73, 1500.44, 2021.60, 2496, 1880, 1624; Coverage: 
0.34, 0.14, 0.20, 0.08, 0.13, 0.11. Here, microstates 1 and 

3 have the top two high GEV, with microstate 1 higher 
GEV than microstate 3, during the 10-s error epoch for 
novices. Then, the statistics on the transition probabili-
ties between microstate classes during the 10 s of the 
error epoch are shown in Fig. 5g, h for the novices and 
experts, respectively. Here, transition probabilities from 
microstate 3 to microstate 1 and from microstate 4 to 
microstate 1 (0.44 and 0.67, respectively) were the top 
two in novices, while the transition probabilities from 
microstate 5 to microstate 3 and from microstate 6 to 
microstate 1 (0.99 and 0.99, respectively) were top two 
in experts (actual values are provided in the Additional 
file 1).

A two-way ANOVA revealed that the propor-
tion of the total time spent in the microstates during 
the 10-s duration at the start of the FLS complex task 
was statistically significantly affected by the skill level 
(F(1,120) = 7.58,p = 0.0068) and the interaction between 
the skill level and the microstate (F(5,120) = 2.51, 

Fig. 4  a Measures of fit plotted for the different microstate segmentations based on the global explained variance (GEV) and the cross-validation 
criterion (CV). b Selected six microstate prototypes based on the GEV and the CV criterion that are sorted in decreasing GEV
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Fig. 5  Illustrative figure of the GFP of active microstates dynamics, (a) during 0 to 10,000 ms at the start of the FLS complex task of the EEG of a 
novice, (b) during 0 to 10,000 ms at the start of the FLS complex task of the EEG of an expert, (c) during 10,000 ms of the error epoch of the EEG 
of a novice, (d) during 10,000 ms of the error epoch of the EEG of an expert. The statistics on the transition probabilities between microstate (MS) 
classes at the group level, (e) during the 10 s at the start of the FLS complex task in novices, (f) during the 10 s at the start of the FLS complex task 
in experts, (g) during the 10 s in the error epoch in novices, (h) during the 10 s in the error epoch in experts. In the transition probability matrix, the 
rows denote the ‘from’ microstate and the columns denote the ‘to’ microstate
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p = 0.338). In addition, two-way ANOVA revealed 
that the proportion of the total time spent in micro-
states during the 10-s error epoch was statistically sig-
nificantly affected by the skill level (F(1,120) = 22.29, 
p < 0.001), microstate (F(1,120) = 18.33, p < 0.001), and 
the interaction between the skill level and the microstate 
(F(5,120) = 30.66, p = 0.338).

The image of the changes in the HbO absorption coef-
ficient in the cortex was computed in the AtlasViewer [1] 
from the EEG band power (1–40 Hz)-related changes in 
the LS HbO signals using GLM with SS regression fol-
lowing regularized temporally embedded Canonical Cor-
relation Analysis [96] in the HOMER3. The correlation 
coefficient of the GLM fit to the fNIRS data in HOMER3 
(Huppert et al., 2009, 3) is shown in the Additional file 1: 
Tables S1 and S2 for novices and experts, respectively. 
Then, AtlasViewer [1] provided the image of the corre-
sponding changes in the HbO absorption coefficient in 
the cortex during the 10-s duration at the start of the FLS 
complex task and during the error epoch that is shown in 
Fig. 6 for experts and novices at the group level.

While microstate prototypes were computed from EEG 
data with a high temporal resolution, the corresponding 
fNIRS (HbO) activity is a low-pass filtered version (under 
neurovascular coupling phenomenon) shown in Fig. 6 as 
changes in the HbO absorption coefficient in the cortex. 
A significant difference (p < 0.05) in the hemodynamic 
(HbO) response between the novices and the experts 
across fNIRS channels (listed in Table  1) during 0 to 
10 s at the start of the FLS complex task and in the error 
epoch is shown in bold with ‘*’ in Table  2. During the 
FLS complex task, HbO signal from the fNIRS channels 
overlying left postcentral gyrus and right superior fron-
tal gyrus—orbital part from AAL showed a significant 
(p < 0.05) difference, whereas HbO signal from the fNIRS 
channel overlying left inferior frontal gyrus—opercular 
part, left superior frontal gyrus—medial orbital, left post-
central gyrus, left superior temporal gyrus, right superior 
frontal gyrus—medial orbital part from AAL showed a 
significant (p < 0.05) difference in the error epoch.

4 � Discussion
In this study, EEG-based microstate analysis provided 
insights based on the changes in the scalp topography, 
as shown by an illustrative example of the GFP of the 
active microstate dynamics in Fig.  5. We analyzed the 
EEG microstates at the group level, since single-subject 
EEG microstate characteristics can be reliably unique 
while possessing abundant inter-individual variability 
[61]. Therefore, EEG-based microstate analysis needs 
to account for this inter-individual variability when dis-
criminating experts from novices. At the group level, we 
found that microstates 1 and 3 were the most dominant 

(high GEV) across all conditions, and microstate 2 was 
found missing in the experts during 10 s at the error 
epoch. Microstate 2 is most topographically similar 
to Brechet and colleagues [9] microstate A (see Addi-
tional file 1: Fig. S3) that showed left-lateralized activity 
in the superior temporal gyrus (STG), the medial pre-
frontal cortex (MPFC), and the occipital gyri (OCG). In 
addition, microstate 2 is most topographically similar 
to Custo et  al.’s [16] microstate A, which represents the 
left middle and superior temporal lobe activity, which is 
postulated to be associated with the exploration of both 
object-related and space-related information [47]. Here, 
the missing microstate 2 in experts indicated a lack of 
exploratory motor behavior in the error epoch. Then, 
during 10 s at the start of the FLS complex task, micro-
state 1 accounted for the highest GEV for experts, while 
microstate 3 accounted for the highest GEV for nov-
ices. In addition, during 10 s at the error epoch, micro-
state 3 accounted for the highest GEV for experts, while 
microstate 1 accounted for the highest GEV for novices. 
Microstate 3 is topographically similar to Brechet and 
colleagues [9] microstate D (see Additional file  1: Fig. 
S3), where the sources showed main activity bilaterally 
in the inferior frontal gyrus (IFG), dorsal anterior cingu-
late cortex (dACC), and superior parietal lobule (SPL)/
intraparietal sulcus (IPS). Then, microstate 1 is most 
topographically similar to Brechet and colleagues [9] 
microstate C (see Additional file  1: Fig. S3), where the 
sources showed sources located bilaterally in the lateral 
part of the parietal cortex, including both the supramar-
ginal gyrus (SMG) and angular gyrus (AG). Here, we 
postulate that the activation of SMG and AG during the 
FLS complex task indicated ventral attention, while the 
activation of SPL/IPS indicated the dorsal attention sys-
tems relevant to reorienting of visuospatial attention [98] 
from perception to action. ANOVA revealed a significant 
effect of skill level (expert, novice) on the proportion of 
the total time spent in the microstates during the 10-s 
duration at the start of the FLS complex task and error 
epoch. Microstate 3 can also be topographically related 
to the canonical microstate D from the combined EEG–
fMRI recording of the resting state published by Britz 
et al. [10]. Microstate D, published by Britz et al. [10], was 
shown by a behavioral manipulation study by Milz et al. 
[66] that reflected reflexive aspects of attention, focus 
switching, and reorientation [64], which is necessary for 
error-related switching of the mental state.

The HbO response and the image of the average 
changes in HbO absorption coefficient in the cortex 
during the 10-s epoch are shown in Fig.  6. Here, HbO 
response captured the slower hemodynamic activity of 
the brain due to neurovascular coupling during a longer 
10-s epoch. Statistical testing of the HbO hemodynamic 
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Fig. 6  Image of the changes in HbO absorption coefficient in the cortex at the group level (left panel) along with the Automated Anatomical 
Labelling (AAL) of the brain regions in color (right panels). A During 0 to 10 s at the start of the FLS complex task of the novices, (B) during 0 to 10 s 
at the start of the FLS complex task of the experts, (C) during 0 to 10 s during the error epoch of the novices, (D) during 0 to 10 s during the error 
epoch of the experts
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Fig. 6  continued
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Fig. 6  continued
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Fig. 6  continued
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Table 2  Difference (p value) in the hemodynamic (HbO) response across all fNIRS channels between the novices and the experts 
during 0 to 10 s at the start of the FLS complex task and in the error epoch. Automated anatomical labelling (AAL) of the cortical areas 
underlying fNIRS channels (source #–detector # pair) are also listed based on AtlasViewer’s default head model [1]

Source # Detector # Regions FLS complex 
task—p value

Error 
epoch—p 
value

1 1 Inferior frontal gyrus, orbital part left hemisphere 0.78 0.35

1 15 Superior frontal gyrus, orbital part left hemisphere 0.95 0.69

1 16 Superior frontal gyrus, orbital part left hemisphere 0.64 0.79

2 2 Superior frontal gyrus, dorsolateral left hemisphere 0.35 0.77

2 3 Middle frontal gyrus left hemisphere 0.59 0.78

2 17 Superior frontal gyrus, dorsolateral left hemisphere 0.45 0.17

3 1 Inferior frontal gyrus, orbital part left hemisphere 0.45 0.27

3 3 Middle frontal gyrus left hemisphere 0.17 0.67

3 5 Inferior frontal gyrus, opercular part left hemisphere 0.14 0.03*
4 1 Superior frontal gyrus, medial orbital left hemisphere 0.84 0.04*
4 3 Inferior frontal gyrus, triangular part left hemisphere 0.19 0.56

4 15 Superior frontal gyrus, orbital part left hemisphere 0.71 0.29

5 2 Middle frontal gyrus left hemisphere 0.59 0.54

5 3 Middle frontal gyrus left hemisphere 0.80 0.08

5 4 Postcentral gyrus left hemisphere 0.11 0.11

5 5 Precental gyrus left hemisphere 0.41 0.23

6 4 Postcentral gyrus left hemisphere 0.04* 0.04*

6 5 Superior temporal gyrus left hemisphere 0.37 0.01*
6 6 Rolandic operculum left hemisphere 0.77 0.44

6 18 Supramarginal gyrus left hemisphere 0.46 0.34

7 2 Superior frontal gyrus, dorsolateral left hemisphere 0.74 0.89

7 4 Postcentral gyrus left hemisphere 0.04* 0.48

7 7 Postcentral gyrus left hemisphere 0.18 0.42

8 4 Postcentral gyrus left hemisphere 0.16 0.23

8 6 Supramarginal gyrus left hemisphere 0.23 0.73

8 7 Inferior parietal, but supramarginal and angular gyri left hemisphere 0.14 0.44

8 19 Inferior parietal, but supramarginal and angular gyri left hemisphere 0.59 0.51

9 8 Middle frontal gyrus, orbital part right hemisphere 0.33 0.04*

9 15 Superior frontal gyrus, orbital part right hemisphere 0.04* 0.44

9 20 Superior frontal gyrus, dorsolateral right hemisphere 0.88 0.23

10 8 Inferior frontal gyrus, orbital part right hemisphere 0.34 0.11

10 9 Inferior frontal gyrus, triangular part right hemisphere 0.23 0.14

10 13 Inferior frontal gyrus, opercular part right hemisphere 0.80 0.09

10 21 Inferior frontal gyrus, triangular part right hemisphere 0.79 0.78

11 9 Superior frontal gyrus, dorsolateral right hemisphere 0.44 0.97

11 10 Superior frontal gyrus, dorsolateral right hemisphere 0.05 0.80

12 8 Middle frontal gyrus, orbital part right hemisphere 0.64 0.19

12 9 Middle frontal gyrus right hemisphere 0.32 0.15

12 15 Superior frontal gyrus, orbital part right hemisphere 0.47 0.32

13 9 Inferior frontal gyrus, triangular part right hemisphere 0.78 0.45

13 10 Precental gyrus right hemisphere 0.34 0.72

13 12 Precental gyrus right hemisphere 0.57 0.35

13 13 Precental gyrus right hemisphere 0.47 0.62

13 22 Precental gyrus right hemisphere 0.71 0.89

14 12 Supramarginal gyrus right hemisphere 0.34 0.59

14 13 Insula Right hemisphere 0.81 0.71
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response at the fNIRS channels identified underlying 
left postcentral gyrus and right superior frontal gyrus 
(SFG)—orbital part as significantly different between 
the experts and novices during 10 s at the start of the 
FLS complex task, while HbO hemodynamic response 
at the underlying left IFG—opercular part, left SFG—
medial orbital, left postcentral gyrus, left STG, right 
SFG—medial orbital were significantly different between 
experts and novices during the error epoch. Here, the 
postcentral gyrus contains the primary somatosensory 
cortex, and the right SFG—orbital part contributes to 
the proactive control of the impulses [42] relevant in the 
performance of the FLS complex task that was different 
between experts and novices. In addition, the activation 
of the left IFG—opercular part, left SFG—medial orbital 
can be related to higher cognitive functions [21], while 
the activation of the right SFG—medial orbital can be 
related to the proactive control of the impulses [42] both 
relevant in error processing that was different between 
experts and novices. Moreover, while the left postcentral 
gyrus is related to the motor action in the right-handed 
subjects, the STG can be related to the exploration [47] 
during error processing that was different between 
experts and novices, viz., we found microstate 2 that is 
related to the left middle and superior temporal lobe [16] 
missing in the experts. We showed the fusion of informa-
tion from simultaneously acquired EEG and fNIRS sig-
nals to provide mechanistic insight into the changes in 
the brain state during FLS complex task and error per-
ception/correction during FLS skill training. Notably, 
Fig.  6d shows the hemodynamic response during 0 to 
10 s during the error epoch of the experts demonstrated 
a global suppressive effect [29] that excluded left-hemi-
spheric frontopolar and dorsolateral prefrontal/frontal 
eye field brain regions. Such global suppressive effects 
can be associated with arousal-related cortical activity 
[6] that needs future investigation, e.g., using pupillom-
etry [63]. Specifically, the locus coeruleus norepinephrine 

(LC-NE) arousal system has strong projections to cortex 
for the modulation of the visual attention [86], where a 
‘focusing’ LC-NE effect on the hemodynamics for the 
fronto-parietal networks in skilled experts can be postu-
lated [36]. The video data from our study showed that the 
experts primarily had "incorrect needle insertion" error 
events that were skillfully stopped as soon as the needle 
emerged incorrectly from the Penrose drain, i.e., fast sen-
sorimotor inhibition on error visibility.

Statistics on the transition probabilities between 
microstate classes at the group level showed that the nov-
ices mostly transitioned between microstate 3 to micro-
state 1 during the 10 s at the start of the FLS complex 
task and from microstates 3,4 to microstate 1 in 10 s of 
the error epoch, where microstate 1 can be associated 
with posterior isoelectric point in the topographical map 
of the salience network [83] that is involved in attending 
to and responding to error (unexpected) stimuli. Here, 
microstate 4 is most topographically similar to Brechet 
and colleagues [9] microstate F (see Additional file 1: Fig. 
S3) showed the strongest activity in the right MPFC. In 
contrast, the experts mainly transitioned from micro-
states 2,5 to microstate 3 during the 10 s at the start of 
the FLS complex task and from microstate 5 to micro-
state 3, from microstate 6 to microstate 1 in the 10 s of 
the error epoch. Here, microstate 5 is topographically 
similar to Brechet and colleagues [9] microstate F (see 
Additional file  1: Fig. S3) shows bilateral activity in the 
MPFC. Then, microstate 6 is most topographically simi-
lar to Brechet and colleagues [9] microstate B (see Addi-
tional file 1: Fig. S3) showed main activity in OCG and in 
the medial part of the parietal cortex. Microstate 6 can be 
associated with spatial attention [10], so the transition to 
microstate 1 of the salience network [83] highlights visual 
error awareness and salience processing of error (unex-
pected) stimuli in the experts. Moreover, the transition 
of microstates 1,4,5 to microstate 3 with high (> 0.6, see 
Additional file 1: Fig. S2) transition probabilities illustrate 

Table 2  (continued)

Source # Detector # Regions FLS complex 
task—p value

Error 
epoch—p 
value

14 14 Superior temporal gyrus right hemisphere 0.40 0.77

15 10 Superior frontal gyrus, dorsolateral right hemisphere 0.17 0.45

15 11 Postcentral gyrus right hemisphere 0.05 0.54

15 12 Precental gyrus right hemisphere 0.85 0.14

16 11 Superior parietal gyrus right hemisphere 0.18 0.69

16 12 Supramarginal gyrus right hemisphere 0.83 0.86

16 14 Angular gyrus right hemisphere 0.59 0.82

16 23 Angular gyrus right hemisphere 0.57 0.23
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the learned reflexive aspects of attention, focus switch-
ing, and reorientation [64] in the experts during error-
related adjustments. Here, the microstate correlates of 
exploration–exploitation tradeoff, e.g., microstate 2 for 
motor exploration [47] and microstate 3 with SPL activ-
ity for planning and guiding movement relevant to motor 
exploitation, are postulated to differentiate experts and 
novices [72] during error-related adjustments that need 
further investigation in the future studies. Moreover, the 
microstate transitions can be related to a cortical trave-
ling wave [67] subserving the hierarchical sequencing 
of local brain regions in the perception action system 
(Fig. 1a) that needs further investigation in the future.

Our brain activation results aligned with numer-
ous functional magnetic resonance imaging (fMRI) and 
fNIRS studies that have been published on skill learning 
[30, 31, 50, 56–58, 68, 80, 101]. Published fMRI stud-
ies have shown that a large-scale brain network encodes 
motor learning and transfer of learning from related 
past experiences [33, 40]. The prefrontal cortex (PFC) 
has been found to integrate the information necessary 
for action generation and perception (Raos and Savaki, 
2017) relevant to error processing during FLS task per-
formance. Specifically, FLS task performance is graded 
based on the speed and accuracy of the psychomotor 
skills [79], where speed–accuracy tradeoff during skill 
training can lead to automaticity when there is a greater 
focus on speed despite the residual error, i.e., an increased 
speed of action selection at the cost of cognitive flexibility 
[74, 94] affecting error processing. Indeed, not everyone 
can achieve proficiency [35], and we postulate that suc-
cessful skill acquisition needs cognitive flexibility [74, 94] 
for error-based motor learning despite a post-error slow-
ing of action selection [85]. Here, successful skill acqui-
sition leads to an internal forward model [104] that can 
simulate the perceptual consequences of the planned and 
executed motor commands. An intact action–perception 
coupling has been shown to depend on the integrity of 
the cerebellum [12] that underpins the internal model 
[22] and error-based learning [75]. Error-based senso-
rimotor learning also involves other brain areas, includ-
ing the parietal cortex, striatum, and anterior cingulate 
cortex [85]. Then, the hierarchy of the cognitive control 
during skill learning shows a rostrocaudal axis in the 
frontal lobe [5]), where a shift from posterior to anterior 
is postulated to mediate progressively abstract, higher 
order control expected with skill learning. In this study, 
the dorsolateral and ventrolateral PFC showed activa-
tion in Fig.  6a, b during the FLS complex task that can 
be related to attention control, cognitive control, feature 
extraction, and formation of first-order relationships [4, 
5, 13, 51]. Specifically, the dorsolateral PFC of the dorsal 
stream is more involved in the visual guidance of action 

in novices (see Fig. 6a) relevant in motor exploration [87]. 
In contrast, the ventrolateral PFC of the ventral stream is 
more involved in the recognition and conscious percep-
tion [65] in experts (see Fig. 6b) relevant to motor exploi-
tation [87]. Then, the supplementary motor area (SMA) 
and the premotor cortex are crucial for the coordination 
of bimanual movement [93], where SMA is crucial for 
complex spatiotemporal sequencing of movements [18, 
92] necessary in bimanual FLS complex task. In addi-
tion, the cingulate and pre-supplementary motor areas 
are the generator sites of error-related negativity that 
is time-locked to an erroneous response [85]. Here, the 
medial frontal cortex is known to serve a central role in 
performance monitoring [26] that is crucial for cognitive 
flexibility. In this study, the dACC activity was captured 
by microstate 3, one of the most dominant (high GEV) 
microstates across all conditions.

Future study needs to combine pupillometry with EEG 
microstate analysis which may elucidate the relationship 
of microstate 3 with the error-related pupil dilation or 
constriction during skill training vis-à-vis the significance 
of errors for adaptive behavioral adjustments [62]. Then, 
SMA is involved in planning complex motor sequence of 
finger tasks [69] that are critical in error correction [85]. 
Here, EEG microstates, e.g., related to the canonical sub-
jective interoceptive–autonomic processing [10], may 
be a marker of error-specific autonomic arousal mecha-
nisms that promote post-error adjustments [62] differen-
tially in fast versus slow learners. Then, brain–behavior 
monitoring of the error-related cortical activation and 
corrective action can allow appropriate error feedback 
for operant conditioning in future work that has been 
shown feasible in our prior application for stroke reha-
bilitation [52]. For example, novices may lack error per-
ception (e.g., lack of medial frontal cortex activation on 
errors [32]) that can disrupt their skill learning, which 
can be improved with non-invasive brain stimulation 
of the medial frontal cortex in conjunction with explicit 
error feedback in the medical simulator. Then, EEG 
topographies provide subject-specific correlates of motor 
control [73], where portable neuroimaging guided non-
invasive brain stimulation may be feasible [99] to enforce 
beneficial scalp topographies to facilitate perception and 
action that together form a functional system. The two 
crucial attributes of the perception–action cycle are per-
ceptual, and executive memory [28], and error sensitivity 
is postulated to depend on the memory of errors, i.e., the 
history of past consistent perceptual errors, e.g., error in 
depth prediction from a 2D view [75] or executive errors, 
e.g., “incorrect needle insertion” [2]. Then, early efferent 
error prediction can lead to preemptive adjustments in 
experts who know the action semantics, e.g., skilled typ-
ists execute errors with lighter keystrokes than novices. 
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Published studies have shown that the pre-supplemen-
tary motor area (pre-SMA) and the inferior frontal gyrus 
are involved in stop-signal task performance [85] that is 
necessary for immediate error-related adjustments. In 
addition, published fNIRS studies showed the involve-
ment of the inferior parietal cortex, PFC, occipital cortex, 
and the sensorimotor areas, including the premotor and 
primary motor cortex, during skill training. In contrast, 
the fMRI studies showed additional activation of deeper 
brain structures, including the basal ganglia and cerebel-
lum [80]. Future studies need to apply the perception–
action system based on brain–behavior analysis during a 
learning curve study [25], where the chain of mental pro-
cesses can depend on the task complexity [100], 707).

It is known from skill training studies that the hierarchy 
of cognitive control shows a rostrocaudal axis in the fron-
tal lobe, where a shift from posterior to anterior is pos-
tulated to mediate progressively abstract, higher order 
control. The current study used portable fNIRS with lim-
ited spatial and depth sensitivity (Strangman et al., 2013), 
so it could provide a partial view of the brain network. 
Therefore, the main limitation of our study includes a 
low-density fNIRS and EEG sensor montage that limited 
the spatial resolution to capture the complete hierarchy, 
as shown in Fig.  1a. Our multimodal imaging approach 
also limited the head cap space for each of the modali-
ties due to separate optodes and electrodes in the sensor 
montage, where an integrated "co-located" optode + elec-
trode (optrode) can be helpful [49] for high-density brain 
imaging in the future.

5 � Conclusion
We conclude that the error-related chain of mental pro-
cesses differs between experts and novices during the 
FLS intracorporeal suturing and knot tying task that can 
be associated with the contextual switching of the brain 
states on error commission. Specifically, novices did not 
demonstrate any prominent microstate transition prob-
abilities (top two 0.44 and 0.67 only) in the 10-s error 
epoch, whereas experts showed dominant microstate 
transition probabilities (top two 0.99 and 0.99) that can 
be associated with visual error awareness and salience 
processing of error (unexpected) stimuli in the 10-s error 
epoch. Furthermore, experts demonstrated HbO activa-
tion of controlled voluntary attention-related brain areas, 
including the left dorsolateral prefrontal/frontal eye field 
and left frontopolar brain regions, along with global sup-
pressive effects of the sensorimotor areas. In contrast, the 
novices showed widespread error-driven activation of the 
frontoparietal and the sensorimotor areas that are postu-
lated to be involuntary.
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Additional file 1: Figure S1. Illustrative plot of the 15 components or 
sources (greater than the correlation threshold, 0.99) in the tCCA latent 
space, where red are the EEG bandpower (1–40Hz) sources and the black 
lines are the corresponding HbO sources. The 15 EEG sources were used 
as the regressors along with short-separation nuisance regressors in the 
GLM to reconstruct the HbO signal. Figure S2. Statistics on the transition 
probabilities between microstate (MS) classes at the group level, (A) 
during the 10 s at the start of the FLS complex task in novices, (B) during 
the 10 s at the start of the FLS complex task in experts, (C) during the 10 
s in the error epoch in novices, (D) during the 10 s in the error epoch in 
experts. The rows denote the ‘from’ microstate and the columns denote 
the ‘to’ microstate. Figure S3. Six microstate prototypes shown in the top 
row and the topographically similar microstates from Brechet and col-
leagues (Bréchet et al., 2019) shown in the bottom row. In Brechet and col-
leagues (Bréchet et al., 2019), microstate A showed left-lateralized activity 
in the superior temporal gyrus (STG), the medial prefrontal cortex (MPFC) 
and the occipital gyri (OCG). Microstate B showed main activity in OCG 
and in the medial part of the parietal cortex. The sources of microstate C 
were located bilaterally in the lateral part of the parietal cortex including 
both the supramarginal gyrus (SMG) and angular gyrus (AG). The sources 
of microstate D showed main activity bilaterally in the inferior frontal 
gyrus (IFG), dorsal anterior cingulate cortex (dACC), and superior parietal 
lobule (SPL)/intraparietal sulcus (IPS). Strongest activity for microstate E 
was found in the right MPFC. Finally, microstate F showed bilateral activity 
in the MPFC. Table S1. R—the correlation coefficient of the GLM fit to the 
data (#Channels x HbO) in HOMER3 for the novices, N01–N13. Table S2. 
R—the correlation coefficient of the GLM fit to the data (#Channels x 
HbO) in HOMER3 for the experts, E01–E09.
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