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Abstract 

How to capture the temporal evolution of synaptic weights from measures of dynamic functional connectivity 
between the activity of different simultaneously recorded neurons is an important and open problem in systems neu-
roscience. Here, we report methodological progress to address this issue. We first simulated recurrent neural network 
models of spiking neurons with spike timing-dependent plasticity mechanisms that generate time-varying synaptic 
and functional coupling. We then used these simulations to test analytical approaches that infer fixed and time-vary-
ing properties of synaptic connectivity from directed functional connectivity measures, such as cross-covariance and 
transfer entropy. We found that, while both cross-covariance and transfer entropy provide robust estimates of which 
synapses are present in the network and their communication delays, dynamic functional connectivity measured via 
cross-covariance better captures the evolution of synaptic weights over time. We also established how measures of 
information transmission delays from static functional connectivity computed over long recording periods (i.e., several 
hours) can improve shorter time-scale estimates of the temporal evolution of synaptic weights from dynamic func-
tional connectivity. These results provide useful information about how to accurately estimate the temporal variation 
of synaptic strength from spiking activity measures.
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1  Introduction
Neurons in biological networks are sparsely connected 
by directed, plastic synapses, with communication delays 
that can vary across different pairs of cells [1–3]. The pat-
terns of synaptic connectivity have a profound influence 
on the computations and functions of neural circuits [4–
6]. Importantly, such synaptic connectivity is not static. 
The strength of each synapse can change over different 
time scales—ranging from milliseconds to days—due to 
processes including synaptic potentiation and depression 
[7]. Such changes in synaptic weights are thought to be 
neural-activity dependent and driven by local Hebbian 

mechanisms of plasticity such as spike timing-dependent 
plasticity (STDP). In these mechanisms, the potentiation 
and depression of synaptic weights depends on the pre-
cise temporal relationship between pre- and post-synap-
tic spikes [8].

It is challenging to directly measure time changes of 
synaptic weights in vivo. One possible approach to study 
in vivo changes in synaptic strength is to simultaneously 
record the spiking activity of several neurons within a 
network and estimate changes in their functional con-
nectivity with the statistical analysis of simultaneous 
recordings. Though the relationship between fixed struc-
tural connectivity and “static” time-averaged functional 
connectivity (FC), in which FC is computed over long 
time intervals, has been studied extensively [9–11], how 
changes in synaptic and functional connectivity relate at 
different time scales remains unclear.
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Understanding the relationship between changes in 
synaptic and functional connectivity is relevant to a range 
of neuroscientific questions, such as the role of sleep in 
synaptic homeostasis and memory formation. Several 
theories and experimental findings posit that non-REM 
sleep is accompanied by profound changes in anatomical 
synaptic connectivity, including the general down-scaling 
of synaptic connectivity related to homeostasis [12–14] 
as well as context-specific upscaling in synaptic connec-
tivity, such as sleep-dependent dendritic spine formation 
after motor learning [15]. The anatomical and theoreti-
cal evidence for changes in synaptic strength in sleep 
have been accompanied by evidence for changes in FC, as 
observed across the motor network during motor learn-
ing [16, 17]. It remains challenging to relate the evidence 
for structural and functional changes during sleep [18, 
19], as robust methods to relate dynamic functional con-
nectivity (DFC) to the underlying temporal evolution of 
synaptic connectivity are not yet established.

Neural network models are a powerful tool to relate 
structural and functional connectivity, as the former is 
known because it is put into the model’s equation by the 
modeler, and the latter can be computed by activity gen-
erated by the model [9, 20]. Previous studies have utilized 
network models of Izhikevich neurons [1] to investigate 
the relationship between FC measures and synaptic con-
nectivity because these models are generated by simple 
equations that can produce firing patterns resembling 
several types of cortical neurons in  vivo [21, 22]. These 
studies highlighted that static bivariate FC measures, 
such as cross-covariance and transfer entropy, provide 
robust estimates of the underlying fixed structural syn-
aptic connectivity in simulated networks. However, they 
did not examine the temporal evolution of functional and 
synaptic connectivity within spiking networks incorpo-
rating STDP.

Here, we relate the temporal evolution of synaptic con-
nectivity to DFC in a neural network model. We exam-
ined the performance of several different DFC methods 
in estimating the temporal dynamics of synaptic weights 
(termed dynamic synaptic connectivity or DSC) from up 
to 180  min of spiking activity in simulated spiking net-
works whose synaptic strength changed over time due 
to STDP. We first determined the performance of static 
FC measures in inferring fixed structural properties of 
the simulated networks (such as presence or absence of 
pairwise synaptic connectivity and the associated com-
munication delays). We then applied these measures 
with a sliding time window approach to compute DFC 
and quantify its relationship with DSC. We found cross-
covariance outperformed other DFC measures in captur-
ing the evolution of synaptic weights over time. We also 
established how to use the information obtained from the 

static, time-averaged analysis of the network, to enhance 
the estimate of DSC from DFC.

Part of this work has been presented at the 15th Inter-
national Conference of Brain Informatics and published 
as a conference paper [23].

2 � Simulated spiking network and inference 
pipeline

To investigate the relationship between DSC and DFC, 
we simulated a sparsely connected recurrent spik-
ing neural network with heterogeneous synaptic delays 
across pairs of neurons (Fig.  1a) and synaptic weights 
evolving over time according to an STDP rule (Fig. 1b). 
From the simulated spiking activity (Fig.  1c) we com-
puted different FC measures. We then investigated the 
extent to which these FC measures can be used to infer 
the “ground truth” synaptic structural connectivity of the 
network. Namely, we attempted to infer which pairs of 
neurons were connected, the values of their communica-
tion delay, and which synapses were inhibitory or excita-
tory (Fig. 1d). Then, we used a sliding window to measure 
DFC and computed the correlation between DSC and 
DFC over time (Fig. 1e). In doing so, we also studied how 
exploiting the communication delays estimated via static 
FC measures could enhance the performance of DFC 
measures in recovering the ground-truth dynamics of 
synaptic weights.

We simulated a spiking network of N = 100 neurons in 
which the dynamics of each neuron was governed by the 
Izhikevich neuron model [24]. Izhikevich derived a sin-
gle-neuron model which produces a wide set of dynamics 
that are observed in real spiking neurons, while keeping 
the computational complexity as low as possible. In this 
model, the voltage v of each neuron is described by two 
coupled differential equations:

where u is a recovery variable, prime symbols (′) denote 
time derivatives, Isyn is the total synaptic input to the 
neuron and (a, b, c, d) is a set of parameters control-
ling the firing behavior. Depending on the set of param-
eters, the Izhikevich model can reproduce several 
firing patterns observed in cortical neurons. As in the 
original Izhikevich cortical network model [1], we set 
(a, b, c, d) = (0.02, 0.2,−65, 8) to simulate excitatory reg-
ular spiking neurons, and (a, b, c, d) = (0.1, 0.2,−65, 2) 
for inhibitory fast spiking neurons. The term Isyn is a sum 
of the voltages generated by the firing of the presynaptic 
neurons plus an external input term. The external input 
term consisted of a voltage of 20 mV added to a randomly 

v′ = 0.04v2 + 5v + 140− u+ Isyn,

u′ = a(bv − u),

if v(t) = 30mV then v ← c and u ← u+ d,
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selected neuron in each simulation time step, as in Ref. 
[1]. The synaptic voltages were set to an initial value of 
6 mV for excitatory synapses and − 5 mV for inhibitory 
synapses, as in Ref. [1].

As in the original Izhikevich study [1], to match typical 
proportions of excitatory and inhibitory neurons found 
in cortex, we set 80% of neurons in the network model 
to be excitatory and 20% to be inhibitory. Each of the 80 
excitatory neurons was randomly connected to 10 excita-
tory or inhibitory post-synaptic neurons (800 excitatory 
synapses in total). Each excitatory synapse had a random 
communication delay whose value was uniformly distrib-
uted between 1 and 20 ms and was constant over time. 
The 20 inhibitory neurons were randomly connected 
to 10 post-synaptic excitatory neurons (200 inhibitory 
synapses) with a fixed communication delay of 1  ms. 
No inhibitory-to-inhibitory (I–I) connections were pre-
sent in the network (Fig.  2a). The lack of I–I synapses 
caused the average firing rate of excitatory neurons 
(5.12 ± 0.08  Hz) to be lower than the one of inhibitory 
neurons (8.23 ± 0.05 Hz). The simulations ran with 1-ms 
temporal precision for up to 180 min.

During each simulation, the strength of excitatory syn-
apses changed dynamically (Fig. 2b) due to an asymmet-
ric Hebbian exponential STDP rule: when a presynaptic 
neuron i fired �t ms before a post-synaptic neuron j the 
strength of the synapse from i to j ( wij ) was strengthened 

as �wij = A+e
�t
τ  , on the other hand when j fired before i 

wij was depressed as �wij = −A−e
�t
τ  (Fig. 1b). The decay 

time of the STDP rule was τ = 20ms , while A+ = 0.1 
and A− = 0.12.

Every 1-s synaptic weights were updated by adding 
�wij to wij . After the weights update, the �wij were not 
set to zero, but they were multiplied by a memory fac-
tor equal to 0.9 and kept as a starting value for the next 
update. The presence of the memory factor made the 
synaptic weights evolve over the time-scale of a few min-
utes (Fig. 2c, autocorrelation half-life = 64 s). To keep the 
activity of the network balanced, synaptic strengths could 
not grow above a cut-off value of 10 mV.

3 � Measures of static and dynamic functional 
connectivity

We used different measures, described below, to compute 
the static and dynamic functional connectivity of the net-
work from the spiking activity. Such measures were all 
directed (i.e., could be distinct for each direction between 
a pair of neurons) and were computed for different tem-
poral delays (δ) between the activities of the neurons in 
the directed pair. When computing static FC, we used 
data from the whole simulated recording to compute a 
single connectivity value for each pair of neurons 

(

i, j
)

 . 
We computed all connectivity measures with δ rang-
ing from 1 to 50  ms then, for each pair, we determined 

Fig. 1  Graphical depiction of the method. A Structural connectivity of the simulated network for N = 10 neurons. Synaptic weights could be either 
excitatory (green) or inhibitory (blue). Excitatory connections had randomly distributed communication delays. B The strength of the synaptic 
weights changed over time due to STDP. C Structural and biophysical properties of the network determined the spiking activity of the neural 
population. The presence of an excitatory (inhibitory) synapse between pairs of neurons (such as the yellow and the purple one) generates spike 
trains that are correlated (anticorrelated) over time with a delay δ . D Static FC was measured from spiking activity. E DFC was measured from 
pairwise activity measures, additionaly leveraging on the inferred static connectivity of the network, and compared to ground truth temporal 
evolution of synaptic weights (two example synapses are shown as orange and grey lines)
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the static FC value, denoted as fij , as the maximum con-
nectivity value across delays. We selected the inferred 
communication delay, denoted as δij , as the lag that 
maximized static FC. After computing fij for each pair 
of neurons, we inferred the synaptic connectivity by con-
sidering as synaptically connected those directed pairs 
of neurons whose value of static FC exceeded a thresh-
old value expressed as a given percentile of the distribu-
tion of FC values computed across the entire set of pairs 
of neurons in the network (Fig. 3a, b), as done in previ-
ous work inferring the presence of synaptic connectivity 
from static FC measures [21, 22, 25]. We repeated this 
procedure separately for each considered measure of 
FC. When the FC measure was signed, we also inferred 
whether a synapse was excitatory or inhibitory from the 
sign of FC. Finally, we used a sliding window approach 
to compute DFC of all the neurons pairs whose static FC 
value was in the top 5th percentile of the FC distribution.

Two of the FC measures that we computed were based 
on Pearson correlation, which is commonly used to esti-
mate the connectivity between pairs of neurons [16, 21, 
26]. The first method was normalized cross-correlation 
(XCorr):

XCorrij(δ) =
E[it−δ jt ]

σiσj
,

where it and jt ′ are the binary values of the spike trains 
from neurons i and j at times t and t ′ , and the expected 
value was computed across time. σi and σj are standard 
deviations of the spike trains of neurons i and j , respec-
tively. The second method was the normalized cross-
covariance (XCov), which subtracts the average firing rate 
from the spike trains before computing the correlation:

where i and j are the average firing rates of neurons i and 
j , respectively. Given the signed nature of the XCorr and 
XCov measures, we first took the absolute value of the 
measured fij and then we used the percentiles of this dis-
tribution to set a threshold (Fig. 3a, b) to infer whether 
a synapse was present in the network, regardless of 
whether it was excitatory (positive correlation) or inhibi-
tory (negative correlation).

We computed two additional FC measures that were 
variants of the information-theoretic measure of infor-
mation transfer known as transfer entropy (shortened 
to TE) [27, 28], a measure that has been successfully 
used to characterize time-dependent changes in recur-
rent connectivity between mass signals [29]. TE has the 
theoretical advantage of capturing higher-order non-
linear interactions as it is defined in terms of the full 
probability of the lagged activity of neuron i and j and 

XCovij(δ) =
E
[(

it−δ − i
)(

jt − j
)]

σiσj
,

Fig. 2  Ground truth connectivity and synaptic weights evolution. A Example connectivity matrix, all synapses present in the network were 
colored according to their communication delay. Absent synapses are grey. The red dashed lines separate the excitatory (N = 80 neurons) from the 
inhibitory (N = 20 neurons) population. B Ground-truth values of three example synaptic weights over time. Excitatory synapses (in orange and 
grey) evolved over time due to STDP, inhibitory synapses (in light blue) were constant over time. C Autocorrelation function of synaptic weights, the 
vertical dashed line indicates the autocorrelation half-life (64 s)



Page 5 of 12Celotto et al. Brain Informatics            (2022) 9:28 	

not by lower order features such as correlation values. 
Additionally, this measure incorporates the Wiener–
Granger causality principle of causal communication 
by conditioning the information between the past of 

the sender and the present of the receiver neuron on 
the past activity of the receiver neuron. Our first imple-
mentation of transfer entropy uses single time-points 
statistics to build the probability distribution of lagged 

Fig. 3  Performance of static FC measures in inferring the presence of synapses. A Example distribution of static FC values measured using XCov. 
The 90th, 95th and 99th percentile were highlighted by dashed vertical lines (in green, red and blue, respectively). B Connectivity matrix obtained 
by considering only synaptic weights above a given percentile of the static FC distribution. The color of synapses represents the percentile 
(matched with panel A) for which they were included in the connectivity matrix. C Precision–recall (PR) curves computed from 180 min of simulated 
activity for TE, HOTE, XCov and XCorr. Each point is one percentile of the distribution of static FC values across pairs, going from the 1st (bottom 
right) to the 99th (top left) percentile. D AUPR trend with simulation length (length ranges from 5 to 180 min). E Comparison of precision in 
identifying connected pairs with simulation lengths, with a 90th (1000 pairs) and 95th (500 pairs) percentile threshold on the static FC distributions. 
F Fraction of pairs belonging to each group of synapses, from 180 min simulation and with a 90th percentile threshold on the FC distributions GT 
denotes ground truth. All error bars in the figure are SEM across repetitions of the simulation (N = 5)
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neural activity. In mathematical terms, TE is defined as 
follows:

where p
(

it−δ , jt , jt−1

)

 is the joint probability distribu-
tion of the present state of the receiver neuron jt , its 
past lagged by one time step jt−1 and the past state of 
the sender neuron lagged by δ time steps it−δ . The sum 
occurs over all the 

(

it−δ , jt , jt−1

)

 triplets of events in the 
probability space. The probability distribution was sam-
pled across time. The lag of the receiver past was set 
to − 1 ms as using short lags can improve the estimation 
of the real communication delay [30].

The second implementation of transfer entropy uses 
multidimensional pasts of the sender and the receiver 
neuron to consider the possible relevance of time win-
dows longer than 1  ms when transmitting information. 
Using the terminology of [21], we refer to this measure as 
higher order transfer entropy (HOTE):

where k and l are the dimensions of the past activity 
of the sender and the receiver neurons i and j , respec-
tively. For the analysis reported in this paper, we set 
k = l = 5ms.

Additionally to the above FC measures, which we 
already presented in our conference presentation about 
this topic [23], for the static measures of connectivity 
we also tested how the overlap between pairs of meas-
ures performed in inferring the presence of synapses. We 
defined the overlap index O(M1,M2)

ij  between the pair of FC 
measures M1 and M2 as:

where rank
(

f Mij

)

 is the rank, in ascending order, of static 
FC value fij computed using measure M . The sorting of 
fij across pairs of neurons was done separately for each 
measure after maximizing the considered static FC over 
delays. Therefore, O(M1,M2)

ij  was used only to infer the 
presence of synapses and not their synaptic delay δij.

4 � Inferring the presence of synapses from static 
functional connectivity

We first considered how to infer whether a pair of neu-
rons was synaptically connected. In our simulations, 
we assumed that neurons were either connected or not 

TEij(δ) =
∑

p
(

it−δ , jt , jt−1

)

log2
p
(

jt |it−δ , jt−1

)

p
(

jt |jt−1

) ,

HOTEij(δ) =
∑

p
(

i
(k)
t−δ , jt , j

(l)
t−1

)

log2

p
(

jt |i
(k)
t−δ , j

(l)
t−1

)

p
(

jt |j
(l)
t−1

) ,

O
(M1,M2)
ij =

1

2

(

rank
(

f
M1
ij

)

+ rank
(

f
M2
ij

))

,

connected during the entire simulation, although the 
strength of their synapse could vary due to plasticity. We 
assume that the same would apply to data that we analyze 
with our FC measures.

We computed the FC measures discussed in the previ-
ous section between all pairs of neurons and estimated 
the communication delay for each pair, as explained 
above. We inferred which pairs of neurons were con-
nected based on a threshold of static FC equal to a given 
percentile of the distribution of static FC values across 
all pairs in the network, such that increasing the thresh-
old produced sparser networks (Fig.  3a). A depiction of 
this is presented in Fig. 3b, where the additional synapses 
included in the network by lowering the FC threshold 
are shown in different colors (blue, red, and green for 
the 99th, 95th, and 90th percentile, respectively). The 
network obtained including all pairs of neurons whose 
FC values was above the 90th percentile (i.e., blue, plus 
red, plus green in Fig.  3b) closely matches the ground 
truth connectivity matrix (Fig.  2a). To evaluate the per-
formance of different metrics in determining the pres-
ence or absence of synapses between pairs of neurons, we 
compared ground truth connectivity to the connectivity 
of different inferred networks with static FC thresholds 
ranging from 1 to 99%. Since the two classes of present 
and absent synapses were unbalanced (only 10% of all the 
possible synapses were present in the network), we used 
precision–recall (PR) curves to study the performance in 
this classification task [31] (Fig.  3c). Calling TP , FP and 
FN  the number of true positive, false positive and false 
negative inferred synapses, respectively, we have that 
precision = TP

TP+FP and recall = TP
TP+FN  . In other words, 

precision is the percentage of synapses inferred by the 
algorithm that are actually present in the network, while 
recall is the percentage of ground truth synapses that the 
algorithm correctly identified. Therefore, if for a given 
measure the two distributions of present and absent syn-
apses were perfectly separable, we would get an optimal 
PR curve that achieves at the same time recall = 1 and 
precision = 1 . A random classifier would always have 
a precision equal to the ratio of synapses present in the 
model (10%, dashed line in Fig. 3c) for any recall value.

We ran 5 repetitions of a 180-min simulation of the 
network  model, where the identity of synapses pre-
sent in the network and their communication delay 
was independently drawn in each repetition. After 
180  min, XCov, TE and HOTE all performed well in 
the classification task, having a PR curve whose shape 
approached the optimal one which achieves both preci-
sion and recall equal to one. Among these three meas-
ures, XCov showed the best PR curve and TE the worst 
one. The overlap between XCov and HOTE, denoted as 
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O(XCov,HOTE) , provided results similar to XCov. XCorr 
performed poorly, with a PR curve far from optimal.

The area under the precision–recall curve (AUPR) is a 
useful metric to summarize the goodness of a PR curve; 
a perfect classifier has an AUPR equal to one, whereas 
in our case a random value of AUPR would be 0.1. We 
compared how the performance of different measures, 
computed by AUPR, scaled with simulation length. This 
analysis confirmed that XCov, HOTE and O(XCov,HOTE) 
were the best metrics in evaluating which synapses were 
present for long recordings (Fig. 3d). We measured how 
the precision of the different measures scaled with the 
simulation time when setting a threshold to the 90th and 
the 95th percentile of the static FC distribution. With a 
threshold to the 90th percentile (i.e., 1000 inferred syn-
apses, which equals the ground truth number of con-
nections) we found that the maximum precision in the 
classification was obtained with XCov and O(XCov,HOTE) , 
which topped at 98% for 180 min of simulated recording 
(Fig. 3e, top). With a more conservative threshold to the 
95th percentile of connections (i.e., half of the true total 
number), O(XCov,HOTE) captured the top 500 real con-
nections after 30 min of simulation (Fig. 3e, bottom). In 
general, O(XCov,HOTE) had the best AUPR and precision 
in inferring which synapses were present in the network 
for simulation lengths ranging from 10 to 70  min. This 
shows that gathering the information from several meas-
ures can boost the inference of fixed structural properties 
of the network in presence of limited amount of data. To 
investigate why XCorr performed poorly when compared 
to other measures, we computed the fraction of synapses 
inferred by each FC measure in the four subgroups of 
excitatory-to-excitatory (E–E), excitatory-to-inhibitory 
(E–I), inhibitory-to-excitatory (I–E) and inhibitory-to-
inhibitory (I–I) synapses (Fig. 3f ). After 180 min of simu-
lated activity and with a 90th percentile threshold on the 
static FC distribution, XCov and O(XCov,HOTE) performed 
best in determining the correct fraction of synapses 
belonging to each group, while XCorr overestimated the 
number of I–I connections and underestimated the num-
ber of E–E connections. This behavior of XCorr is due 
to the differences in average firing rate between inhibi-
tory and excitatory neurons, with a higher firing rate for 
inhibitory neurons, as XCorr is sensitive to the correla-
tion between average firing rates. Given the poor perfor-
mance of XCorr in estimating the presence of synapses, 
we discarded it in the following analyses.

5 � Inferring synapse type and communication 
delay from static functional connectivity

We next studied how well  static FC measures per-
formed in inferring whether each synapse was excita-
tory or inhibitory, and in inferring the value of the 

communication delay of that pair of neurons. In our 
model, the communication delay was a fixed structural 
parameter of synapses across the entire simulation, and 
we assume that the same holds for data analyzed with our 
procedure.

We could not use information-theoretic measures to 
infer whether synapses were excitatory or inhibitory as 
these measures are only positively defined. Therefore, we 
only examined XCov performance in classifying synapses 
as excitatory or inhibitory. We classified a connection as 
excitatory and inhibitory based on XCov, with positive 
correlation values assigned as excitatory connections and 
negative correlation values as inhibitory connections. 
After 180 min of recording XCov could reliably separate 
excitatory and inhibitory synapses (Fig.  4a). We found 
that the performance of the classifier increased with 
simulation time for both the excitatory and the inhibitory 
class (Fig. 4b).

We also compared how static FC measures performed 
in inferring ground-truth communication delays. After 
180  min of simulation, all static connectivity measures 
estimated communication delays with a correlation 
across synapses that was above 0.95 (see Fig.  4c for the 
relationship between the ground truth delays and those 
inferred using XCov—on the top—and using HOTE—on 
the bottom). The correlation between ground truth and 
estimated delays grew monotonically with simulation 
length, with a similar trend for all the measures (Fig. 4d). 
Nonetheless, HOTE estimated the delays more accurately 
than XCov and TE. After 180  min of simulation, HOTE 
had an average delay error, measured as the absolute 
value of the difference between ground truth and inferred 
delay, of (0.68± 0.02) ms. XCov and TE showed a system-
atic error in the delay estimation of approximately 2.5 ms 
(Fig. 4c, e).

6 � Relationship between dynamic functional 
connectivity and the temporal evolution 
of synaptic weights

Finally, we investigated how the ground truth evolution 
of the synaptic weights, that is the DSC, related to the 
measured DFC. We computed DFC using a non-overlap-
ping sliding time window. We first selected a size for the 
sliding window T and then shifted it through the simu-
lated recording in steps of length T. We computed DFC 
only for pairs of neurons that were putatively connected, 
which we selected as the top 5th percentile of synapses 
inferred by each measure after 180  min of simulation 
(Fig.  3e, bottom), and only at the communication delay 
that we estimated for those synapses (Fig.  4c). Moreo-
ver, we computed DFC only for excitatory synapses since 
the inhibitory ones had a constant synaptic weight in the 
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simulated network (Fig.  2b). We calculated the across-
time correlation between DFC and DSC for all synapses 
to quantify the performance of each FC measure in esti-
mating DSC. To do this, we averaged DSC over windows 
of width T, so that the number of DSC and DFC samples 
over time were matched.

In Fig.  5a, we show DSC (top left), DFC computed 
using TE (top right), HOTE (bottom left) and XCov (bot-
tom right) for three example synapses and T = 10 min . 
While all measures worked reasonably well in tracking 
how the strength of the grey and the light blue synapses 
changed over time, TE and HOTE failed in quantifying 
the temporal evolution of the orange synapse. We found 
that, on average, DFC computed via XCov correlated 
with DSC better than DFC computed via TE or HOTE 
(Fig. 5b). In particular, while DFC computed via TE and 
HOTE had a high temporal correlation with DSC (above 
0.7) for the majority of neuron pairs, their distributions 
showed a large tail of pairs whose correlation between 
DSC and DFC was distributed around zero (such as the 

orange one in Fig. 5a). For XCov, the number of synapses 
whose DSC was poorly estimated decreased rapidly with 
the correlation strength, and the average correlation was 
0.82 (Fig.  5b, right). Therefore, DFC computed using 
XCov outperformed DFC obtained from TE and HOTE 
in inferring the ground truth changes of synaptic weights 
over time.

We then studied how the across-time correlation 
between DSC and DFC depended on the width of the 
sliding window T  . Differently from the earlier confer-
ence presentation of this work [23], we subsampled the 
number of time-points in DSC and DFC time series 
obtained with different T to match the number of sam-
ples we had for T = 30  min. The number of samples in 
the time series is inversely proportional to T, thus a fair 
comparison of DSC and DFC correlation for different T 
requires the number of samples used to compute corre-
lation to be matched [32]. The correlation between DFC 
and DSC increased with window size, reaching a plateau 
around T = 10 min (Fig. 5c, left). Below T = 10 min , the 

Fig. 4  Performance of the measures in estimating connection type and delays. A Distributions of static FC values measured using XCov for 
excitatory (green) and inhibitory (blue) cells. B Performance of a classifier in identifying excitatory and inhibitory synapses with simulation length. 
The decision boundary of the classifier was set to XCov = 0. C Scatter plots of real and estimated delays across cell pairs using XCov (top) and HOTE 
(bottom). The size of the markers is proportional to the number of pairs having that specific combination of ground truth and estimated delay. The 
dashed line is the identity line x = y. Black dots far from the identity line correspond to pairs of inferred and ground truth delays that occurred only 
once. D Correlation between ground truth and estimated delays with simulation length. E Average error in delay estimation with simulation length. 
All error bars in the figure are SEM across repetitions of the simulation (N = 5)
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correlation dropped due to the limited sample size used 
to compute DFC manifesting a tradeoff between the size 
of the sliding window T  , which is also the temporal reso-
lution of DFC measures, and the performance in estimat-
ing DSC. Nonetheless, the correlation between DSC and 
DFC was significantly above zero also for sizes of the slid-
ing window similar to the width of the synaptic weights 
autocorrelation (Fig. 2c). We repeated the same analysis 
without keeping the delay consistent when computing 
DFC but simply taking the maximum FC value across 
delays (between 1 and 50 ms) for each window (Fig. 5c, 
middle). When not keeping the delay consistent with 
the  one inferred   from the static network analysis, the 
correlation between DSC and DFC dropped substantially. 
For sizes of the sliding window lower than T = 10 min , 
the advantage of keeping a consistent delay was particu-
larly evident, with a boost in correlation between DSC 
and DFC computed via XCov larger than 0.2 (Fig.  5c, 
right). This result showed a clear benefit in leveraging 
estimates of delay derived from entire simulated record-
ings when inferring DSC from DFC.

7 � Conclusion
We studied how different measures of static and dynamic 
functional connectivity measured from simulated spiking 
activity of a recurrent neural network can be used to infer 
the fixed and time-varying properties of synapses within 
the network. This question is relevant as in vivo experi-
ments typically rely on recording spiking activity or other 
functional measures (such as field potentials) to examine 
network structure using FC. To infer how changes in FC 
relate to changes in the underlying synaptic structure of 
the network requires an understanding of the relation-
ship between the static and dynamic FC measures and 
the fixed and dynamic synaptic properties of the net-
work. We addressed the problem of inferring synaptic 
weights and their temporal evolution at the level of simu-
lated recordings with single-neuron cellular resolution. 
As such, our approach differs from and complements 
other studies of DFC at the level of mass neural activ-
ity [33, 34], which lack the ability to resolve interactions 
between pairs of individual neurons.

We found that among the considered static FC meas-
ures, XCov, HOTE and, in particular, O(XCov,HOTE) out-
performed other measures in inferring the presence of 

Fig. 5  Relationship between dynamic synaptic and functional connectivity. A Dynamic connectivity for 3 example synapses, T = 10 min. Top 
left: ground truth dynamics of synaptic weights (DSC). Top right: transfer entropy DFC. Bottom left: HOTE DFC. Bottom right: cross-covariance 
DFC. B Distribution of the across-time correlation coefficients between DSC and DFC, T = 10 min. Left: Transfer entropy. Middle: HOTE. Right: 
cross-covariance. Colored dots show where the synapses in panel A are in the correlation distributions. C Average correlation between DSC and 
DFC over time for different sizes of the moving window. Shaded areas are SEM across neuron pairs. Left: DFC keeping delay consistency (i.e., 
measures computed only at previously estimated delay); Middle: DFC without delay consistency; Right: boost in correlation between DFC and DSC 
when keeping delay consistency (difference between left and middle panels)
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synapses. Using cross-covariance as a static FC meas-
ure could also reliably classify excitatory and inhibitory 
synapses, while HOTE was the best measure to estimate 
ground-truth communication delay between neurons. 
Cross-covariance performed best in inferring DSC, with 
an across-time correlation above 0.8 between DFC and 
DSC for sliding window sizes larger than 10 min.

We also found that, when computing DFC, keeping the 
communication delay consistent with the one obtained 
from the static network analysis increased the corre-
spondence between DFC and DSC, especially for slid-
ing windows shorter than 10 min. This benefit is likely to 
arise from the fact that, in situations like those simulated 
here in which the communication delay is a fixed struc-
tural property of the neuron pair over the considered 
time scales, estimating the delay from long time windows 
increases the precision of its detection without missing 
out on capturing possible changes of this parameter. This 
specifically holds under the assumption that communica-
tion delays are constant in the recording period as is the 
case of our spiking network.

Reliable methods to infer structural properties of neu-
ral networks are relevant to several open questions in 
system neuroscience, ranging from investigating the rela-
tionship between structural connectivity and computa-
tional properties of neural populations to understanding 
the physiological mechanisms that control the up- and 
down-scaling of FC, e.g., how the dynamics of synaptic 
weights relate to changes in functional connectivity dur-
ing sleep. Another relevant potential application of such 
methods concerns the inference of STDP rules from 
recordings of spiking activity. Many studies support the 
idea that several STDP rules might coexist in different 
cells or brain areas [35, 36]. Nonetheless, such theories 
are complicated to test in  vivo due to lack of statistical 
methodologies to estimate how synaptic weights evolve 
after STPD-triggering events. The methods presented in 
this work could potentially be used to infer STDP rules 
governing network plasticity from in vivo recordings, by 
estimating how synaptic weights change after the occur-
rence of pre- and post-synaptic spikes with precise tem-
poral relationships.

The present study has limitations that we plan to 
address in future works. First of all, it will be important 
to validate DFC measures on more biologically realistic 
simulated neural networks with global oscillations, cor-
related inputs to neurons or global network covariations 
(which induce FC not related to direct synaptic con-
nections between the neurons [37, 38]), and more het-
erogeneity in the firing rates and in the average synaptic 
weights over time. Such effects could act as confound-
ers of the relationship between DFC and DSC or could 
require refined null hypotheses based on permutation 

tests to assess the presence of synapses. In the model we 
also assumed that communication delays between neu-
rons are fixed and no synapses are formed or eliminated 
over time. The former assumes that the main param-
eters determining the conductance velocity of action 
potentials (e.g., axons diameters and myelination) are 
approximately constant over time scales of a few hours. 
Experimental finding suggest that this assumption is rea-
sonable, especially in adult mice where the formation of 
new myelin occurs in the range of weeks [39]. The lat-
ter assumption is more delicate since in mice it has been 
shown that, especially during sleep, dendritic spines can 
be formed and eliminated within hours [15]. It will be 
important to investigate how much we can relax these 
hypotheses while still exploiting the knowledge obtained 
from static FC measures. Moreover, we plan to test the 
performance of other bivariate (e.g., Granger Causality) 
and multivariate measures for estimating DSC. These 
measures include using Granger Causality estimates 
based on Generalized Linear Models [40–42] and maxi-
mum entropy models [43, 44]. Such multivariate meas-
ures could be useful to alleviate the effect of confounders 
such as common inputs.

Lastly, it will be crucial to apply such methods to data 
collected from real neural populations and validate, in 
the first place, the performance of inferring fixed struc-
tural connectivity properties from static FC (Figs. 3, 4). A 
first way to validate the method proposed here is to ver-
ify if the static connectivity networks obtained from two 
long (e.g., >90 min) independent recordings of the same 
population converge to the same inferred synapses and 
delays. A second possible validation of the static part of 
our methodology would be to apply the FC measures to 
a long recording of a population whose fixed structural 
properties were reconstructed post-mortem using, e.g., 
electron microscopy [5, 45]. Such methods typically iden-
tify the synapses of neurons whose functional activity 
was recorded with two-photon calcium imaging rather 
than with electrophysiology. Given the lower signal-to-
noise ratio and temporal resolution of calcium imaging 
recordings [46], it would be important to first extend and 
then validate in simulations our proposed methodology 
to simulated two-photon imaging recordings, rather than 
simulated electrophysiological recordings as done here.

In conclusion, here we laid down foundations for relat-
ing dynamic functional connectivity to the temporal evo-
lution of synaptic weights in spiking neural networks. 
The results obtained here provide a benchmark for fur-
ther improving methodologies that infer DSC from DFC.
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