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Abstract 

Introduction: The present paper discusses the findings of a systematic review of EEG measures in neuromarket-
ing, identifying which EEG measures are the most robust predictor of customer preference in neuromarketing. The 
review investigated which TF effect (e.g., theta-band power), and ERP component (e.g., N400) was most consistently 
reflective of self-reported preference. Machine-learning prediction also investigated, along with the use of EEG when 
combined with physiological measures such as eye-tracking.

Methods: Search terms ‘neuromarketing’ and ‘consumer neuroscience’ identified papers that used EEG measures. 
Publications were excluded if they were primarily written in a language other than English or were not published as 
journal articles (e.g., book chapters). 174 papers were included in the present review.

Results: Frontal alpha asymmetry (FAA) was the most reliable TF signal of preference and was able to differentiate 
positive from negative consumer responses. Similarly, the late positive potential (LPP) was the most reliable ERP com-
ponent, reflecting conscious emotional evaluation of products and advertising. However, there was limited consist-
ency across papers, with each measure showing mixed results when related to preference and purchase behaviour.

Conclusions and implications: FAA and the LPP were the most consistent markers of emotional responses to 
marketing stimuli, consumer preference and purchase intention. Predictive accuracy of FAA and the LPP was greatly 
improved through the use of machine-learning prediction, especially when combined with eye-tracking or facial 
expression analyses.
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1 Introduction
The present systematic review aimed to investigate the 
use of EEG measures in neuromarketing. We specifi-
cally focused on identifying which ERP and TF effects 
were most consistently associated with consumer pref-
erence and purchase intention, the best computational 

approaches to predict consumer behaviour, and which 
biometric measures are best combined with EEG meas-
ures to improve predictive accuracy.

Marketing is used to help a product inform, engage, and 
sustain its target audience by identifying and manipulat-
ing consumer preferences [167, 188, 288]. Conventional 
market research depends on self-report measures such 
as questionnaires, interviews, and focus-group discus-
sions [167, 188, 288]. However, the traditional approach 
to marketing is usually only capable of conducting poste-
riori analysis of consumer preference towards marketing 
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stimuli [288]. Self-report methods may also provide 
potentially unreliable or incomplete data due to partici-
pants misremembering their experiences or conforming 
to social desirability bias [288].

Neuromarketing overcomes the limitations of tra-
ditional marketing methods by capturing consumers’ 
unspoken cognitive and emotional responses to market-
ing stimuli using neuroimaging and biometric devices 
[11, 21, 30, 213, 304]. This allows for the concurrent 
recording of consumers’ emotional responses while 
engaging with marketing stimuli, and can detect emo-
tional responses that consumers may be unwilling to 
report or may even be unware of [11, 21, 30, 213, 304]. 
The main techniques applied within this paradigm are 
neuroimaging measures, such as functional magnetic 
resonance imaging (fMRI) and electroencephalography 
(EEG); and biometric measures such as the galvanic skin 
response (GSR) and eye-tracking (ET) [163].

EEG measures and physiological measures (e.g., ET, 
GSR) are most commonly used in neuromarketing 
research due to them being relatively inexpensive and 
easy to implement [8, 130, 257]. EEG measurements are 
considered useful for their high temporal resolution and 
ability to adapt traditional experimental designs into 
neuroscience experiments [8, 130, 257], and are highly 
compatible with machine-learning algorithms due to 
the richness of data collected [59, 144, 164]. By compari-
son, physiological measures collect simpler data types, 
taken from bodily responses indexing changes in arousal, 
emotion and visual attention [18, 214, 221, 257, 290]. 
Heart-rate responses, GSR, and are typically used in neu-
romarketing stimuli to measure changes in physiologi-
cal arousal in response to marketing stimuli, but cannot 
separate positive from negative responses [18, 214, 257]. 
Similarly, ET can be used to measure how marketing 
stimuli draw visual attention [10, 168, 221, 290] and facial 
expression analysis can be used to detect specific emo-
tional responses to stimuli such as disgust or anger [60, 
155, 187].

In contrast, neuroimaging measures such as fMRI are 
favoured due to their ability to accurately localise neural 
activity through detection of haemodynamic blood flow, 
but has poor temporal resolution when compared to EEG 
[134, 149, 224]. fMRI may also be less favourable in neu-
romarketing research than physiological and EEG meas-
ures due to the high cost associated with fMRI measures, 
and their lack of portability [134, 149, 224].

However, despite the current popularity of neuromar-
keting, it remains unclear which measures are the most 
effective and in which context they are best used. For 
example, while fMRI is often preferred for its spatial res-
olution and EEG is preferred for its temporal resolution 
[200], the comparative effectiveness of these measures 

in neuromarketing research is yet to be systematically 
investigated. Further, the data recorded by neuromar-
keting devices can be analysed in several ways and situa-
tions. For example, EEG data can be considered in terms 
of event-related potentials (ERPs) occurring milliseconds 
after the presentation of a stimulus [172, 184, 238], or 
in terms of changes in relative power in specified fre-
quency bands [197, 256]. Recent developments in com-
puter science have further allowed for machine-learning 
algorithms [2] to precisely predict consumer preference, 
purchasing behaviour, and remembered events [44, 51].

We, therefore, conducted a large-scale systematic 
review on the field of neuromarketing, with the express 
purpose of investigating the use of differing neuroimag-
ing and biometric measures to determine their best use 
in the context of marketing research. To ease analysis, the 
systematic review was divided into three subsets based 
on broad neuromarketing measures: EEG measures, 
functional imaging measures, and biometric measures. 
The subset discussed presently focused on the use of EEG 
measures in neuromarketing. Specifically, the effective-
ness of phase-locked and time–frequency (TF) analysis 
methods were compared, as well as sub-analysis methods 
within these fields (e.g., alpha- compared to theta-band 
activity). EEG combined with other neuromarketing 
measures (e.g., EEG combined with eye-tracking) was 
further investigated. Finally, the effectiveness of algorith-
mic approaches (e.g., machine-learning) to analysing EEG 
data were compared to traditional statistical methods.

The present article, therefore, focused its investigations 
on the following research questions:

• What different analysis methods are currently used 
for EEG research in neuromarketing?

• In which conditions are differing ERP components 
and TF effects significantly modulated?

• Which EEG effects are best used to predict consumer 
preference and emotional responses to marketing 
stimuli?

• In which ways are EEG measures best combined with 
other measures, and which measures are best com-
bined?

• Does machine learning improve the predictive accu-
racy of EEG measures in neuromarketing?

The research questions were generated in descending 
order to first identify the TF and ERP measures currently 
used in neuromarketing research, and then to investigate 
which emotional processes each effect was most consist-
ently associated with. Following the initial identification 
of relevant EEG measures, consumer preference was 
investigated, and the effects most consistently associated 
with preference and purchase intention were assessed. 
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Finally, the use of other biometric measures (e.g., ET, 
GSR) when combined with EEG was investigated, as well 
as the best computational approaches to predict con-
sumer preference and purchase intention (e.g., machine 
learning algorithms compared to regression analyses).

These questions will allow us to gain a comprehensive 
account of the use of EEG measures in neuromarketing, 
which components are the most useful, and in which 
situations they are best used. After the introduction, the 
systematic review methodology will be discussed, fol-
lowed by the systematic review findings, and a broader 
discussion of these findings.

2  Methods
A systematic literature review was performed to col-
lect and assess the measures used in neuromarketing. 
This method was selected due to systematic literature 
reviews’ high degree of objectivity and replicability [104]. 
A systematic review uses pre-defined methods to collect, 
select, and analyse collected literature, with the purpose 
of unbiased evidence collection to reach an impartial 
conclusion [135].

The present systematic review aimed to examine 
measures used in neuromarketing (i.e., neuroimaging 
and physiological measures) and identify the best use of 
these measures. To ease analysis, literature was subdi-
vided into three categories; EEG measures, physiological 
measures, and functional imaging measures. The present 
paper represents the first subset of the systematic review; 
EEG measures. The analysis of the literature collected in 
this subset focused on comparing different EEG analysis 
approaches (e.g., TF and ERP analysis) in terms of their 
effectiveness when used in different kinds of neuromar-
keting research.

2.1  Search terms
Studies were collected from relevant journals and data-
bases using key search terms. The primary search terms 
were the simple terms’ neuromarketing’ and ’consumer 
neuroscience’, intended to catch studies that self-identi-
fied as belonging to the field of neuromarketing. How-
ever, additional studies may have used neuroscience or 
physiological measures to investigate marketing-relevant 
behaviour without explicitly using these terms. For this 
reason, additional search terms were used to identify 
studies that used neuroscience or physiological measures 
(e.g., EEG, MRI, GSR, ET) combined with marketing or 
consumer investigation.

The key search terms were used as selection crite-
ria for the titles, keywords, abstracts, and body of text 
in the selected databases and journals. Document types 
included in the search were ‘articles’, and time limits were 
not established. Therefore, the initial search resulted in 
a shortlist of relevant publications to be considered for 
inclusion in the review. Duplicate articles were excluded 
from subsequent analysis.

To ensure the maximum number of neuromarket-
ing studies were collected, literature searches were con-
ducted in multiple databases and individual journals. 
Databases were selected from those that are internation-
ally recognised and widely used as a source of research 
for distinct post-graduate programmes. Table 1 presents 
the database sources and the search terms used, and the 
number of articles found within each database.

Twenty journals were searched to find any articles that 
were not found in the database search. These journals 
were selected due to their focus on consumer behaviour, 
marketing psychology, and neuroscience. Individual jour-
nals were searched using the keyword ’neuromarketing’. 

Table 1 A summary of the journal databases searched, the search terms used for each database, and the number of journals 
produced from each search

Database Search terms #Found

Web of Science TI = ((neuro*) AND (marketing* OR consumer))
T2 = ((EEG* OR MRI* OR fMRI* OR pupil dilation* OR galvanic skin response OR eye-tracking OR eye-tracking) AND 
(marketing* OR consumer))

483

Science Direct (neuro) AND (marketing OR consumer)
(EEG OR MRI or fMRI OR pupil dilation OR galvanic skin response OR eye-tracking OR eye tracking) AND (marketing OR 
consumer)

349

Pubmed (Neuromarketing) OR (Consumer neuroscience) 143

Wiley Online Library Neuromarketing
Consumer Neuroscience

129

Taylor & Francis T1 = neuro AND (marketing OR consumer)
T2 = (EEG OR MRI OR fMRI OR pupil dilation OR galvanic skin response OR eye-tracking OR eye-tracking) AND (market-
ing OR consumer)

124

ProQuest neuromarketing OR "consumer neuroscience" 939

Total: 2167
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Table 2 presents the journals searched and the number of 
articles generated for each.

2.2  Inclusion/exclusion criteria
The inclusion criteria defined for the systematic review 
were as follows:

– Primary study, published in a peer-reviewed journal.
– Studies that explored marketing using brain or physi-

ological mechanisms, underlying theories of market-
ing, consumer behaviour, psychology and neurology.

– Research papers that used neuroimaging techniques 
such as EEG, fMRI, and positron emission tomogra-
phy (PET) or physiological measures such as ET and 
GSR, to further understanding and application of 
marketing methods.

– Research papers using exclusively human, non-clini-
cal populations as participants.

Studies that explored new developments in neuro-
marketing or summarised current research were classed 
as review papers and not included in the review. How-
ever, review papers were screened for citations, and any 

relevant citations which were not included in the original 
search were added to the systematic review.

The exclusion criteria for the systematic review were 
defined as:

– Any other literature review on Neuromarketing was 
excluded from the review.

– Articles that were not published in peer-reviewed 
academic journal articles were excluded (e.g., book 
chapters, post-graduate theses, conference abstracts).

– Articles written/published in any language other than 
English were excluded from the review.

2.3  Screening process
Overall, 2247 articles were found in the literature review. 
The titles and abstracts of these articles were individu-
ally analysed by multiple researchers, who screened the 
papers according to the pre-defined inclusion and exclu-
sion criteria.

2.3.1  Process

1. Read all titles, exclude any duplicates and those that 
are clearly not relevant according to exclusion crite-
ria.

2. Read abstracts of those remaining, exclude any that 
are not relevant according to exclusion criteria.

3. The remaining papers qualify for full-text screening.
4. Of those that qualify, search through their reference 

list and all published articles which cite them.
5. Compile this list and perform title and abstract 

screening (stages 1–3) again.
6. Repeat as many times as necessary until the compiled 

list from stage 5 yields no papers that qualify for full-
text screening.

Following the first stage of article accumulation, arti-
cles were exhaustively screened by the authors through 
title and abstract reviews and were categorised accord-
ing to whether they matched the inclusion or exclusion 
criteria. 2512 papers were excluded from the literature 
review, while 777 were included. Of the journals excluded 
from the review, 516 were duplicate articles, 268 were 
neuromarketing review papers, and 930 were removed 
according to the pre-defined exclusion criteria. 21 addi-
tional papers were extracted from the review papers, and 
these were added to the included from the initial litera-
ture search, meaning 798 papers were included in the lit-
erature review. A further 8 papers were included in the 
literature review due to a second search being conducted 
at a later date using the same search terms.

Table 2 A table summarising the journals search for the present 
systematic review and the number of articles produced by each 
search

Journals #Found

AJOB Neuroscience 9

Cognitive, Affective and Behavioural Neuroscience 0

European Journal of Marketing 11

European Journal of Neuroscience 0

Harvard Review of Psychiatry 1

International Journal of Consumer Studies 2

International Journal of Neuroscience 0

International Journal of Research in Marketing 3

International Journal of Technology Marketing 2

International Journal of Psychology 1

International Marketing Review 0

Journal of Computational Neuroscience 0

Journal of Consumer Affairs 1

Journal of Consumer Behaviour 14

Journal of Consumer Marketing 14

Journal of Consumer Psychology 5

Journal of Consumer Research 2

Journal of International Marketing 0

Journal of Marketing 0

Journal of Marketing Management 4

Journal of Marketing Research 5

Psychology and Marketing 6

Total 80
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To aid the analysis of the collected data, papers were 
separated into four discrete categories based on the 
measures used. The first category included papers that 
used EEG measures to investigate consumer or market-
ing-related behaviour, in which 213 papers were identi-
fied. The second category included papers that used 
neuroimaging measures based on blood oxidation levels 
such as fMRI or FINRS, in which 158 papers were found. 
The third category described studies that used physiolog-
ical measures such as ET or GSR, in which 410 studies 
were found.

All papers that used EEG or MEG measures were 
included in the current subsection of the systematic 

review. However, some of the papers included in the 
EEG subsection also used physiological methods such 
as ET or the GSR, and facial action coding and were 
therefore included in both the EEG and physiological 
subsections of the systematic review. EEG papers were 
categorised according to whether they primarily used 
ERP or TF analysis methods. Table  3 summarises the 
papers included in the EEG subset of the systematic 
review, along with the relevant measures used (ERP, TF, 
Mixed-Methods, Machine-learning).

Table 3 A summary of papers included in the current subset of the systematic review, categorised according to the measures used

Categories Studies included

ERP Astolfi, Laura et al. [12]; Bastiaansen et al. [25], Bosshard et al. [37], Cai et al. [41], Camarrone and Van Hulle [42], Chen et al. [49], 
Daugherty et al. [62], Deitz et al. [63], Fan and Zhang [76], Fan et al. [75], Fu et al. [79], Fudali-Czyz et al. [80], Gajewski et al. [81], 
García-Madariaga et al. [83]; Gkaintatzis et al. [86],Goto et al. [91], Goto Nobuhiko et al. [92, 97, 100, 105, 106, 107, 111, 113], Jia et al. 
[124], Jin et al. [125], Jin et al. [126], Jing et al. [128], Jones et al. [129], Junghoefer et al. [131], Khushaba et al. [137], Kuan et al. [148], 
Kumagai et al. [150], Kytö et al. [154], Lee Hyun–Woo [160]; Li and Bu [165], Liao et al. [166], Luan et al. [170, 174, 176, 181, 174, 176, 
181], Ma et al. [175], Ma et al. [179], Ma et al. [180], Ma et al. [177], Ma et al. [174, 176, 178, 181], Nittono and Watari [198], Ozkara and 
Bagozzi [205], Pileliene and Grigaliunaite [211], Pozharliev et al. [215], Roberts et al. [223], Royo et al. [231], Schaefer et al. [236], Shang 
et al. [248], Shang et al. [246], Shang et al. [247], Shen et al. [249], Soria Morillo et al. [255], Telpaz et al. [258], Thomas et al. [259], 
Treleaven-Hassard et al. [261], Tyson-Carr et al. [262], Uva et al. [264 , 279, 282, 284, 285], Wang and Han [279, 281, 282, 284, 285], 
Wang et al. [286, 297, 297, 299, 306, 310, 311, 312], Zubair et al. [315]

Time–frequency Adrián et al. [1], Aldayel et al. [2], Aldayel et al. [3], Aprilianty and Purwanegara [9], Astolfi et al. [12, 13, 14], Ausin-Azofra et al. [15], 
Avinash et al. [16], Babiloni et al. [17], Balconi et al. [19], Balconi et al. [20], Baldo et al. [22], Baldo et al. [21], Barnett and Cerf [24, 27, 
28], Berezka and Sheresheva [29], Bhushan et al. [31], Bigne et al. [33], Boksem and Smidts [34], Boshoff [35], Boshoff [36], Braeutigam 
et al. [38], Brown et al. [39], Caratu et al. [43], Cartocci et al. [45], Cartocci et al. [44], Cartocci et al. [46], Chen, et al. [50], Cherubino 
et al. [52], Christoforou et al. [53], Clark et al. [54], Constantinescu et al. [56], Correa et al. [58], Daugherty et al. [61], Di Gruttola et al. 
[65], Diao et al. [66], Dimpfel [68], Dulabh et al. [70], Eijlers et al. [71], Fallani et al. [74], Fischer et al. [77], Garcia-Madariaga et al. [82], 
Garcia-Madariaga et al. [83], García-Madariaga et al. [83], Garczarek-Bak and Disterheft [84], Gauba et al. [85], Golnar-Nik et al. [87], 
González-Morales [88], Goode and Iwasa-Madge [89], Gordon et al. [90], Gountas et al. [94], Guo et al. [99], Guo et al. [98], Guo and 
Elgendi [101], Hakim et al. [102], Hakim et al. [103, 105, 106], Harris et al. [109], Herrando et al. [110], Horska et al. [115], Horská and 
Berčík [116], Hsu and Chen [117, 118, 119], Hungenberg et al. [120], Janić et al. [122], Jeong and Kim [123], Kacaniova and Vargova 
[132], Khushaba et al. [138], Khushaba et al. [139], Khushaba et al. [137], Kim et al. [141], Kong et al. [145]; Kong et al. [146]; Kuan 
et al. [148], Kumar et al. [151], Laurence and Gerhold [157], Leanza [158], Lee et al. [159], Lee Eun-ju et al. [161]; Lee and Eun-Ju [162]; 
Lucchiari and Pravettoni [171],Mahamad et al. [182], Mengual-Recuerda et al. [189, 191, 192, 191, 192], Morey [194], Moya et al. [195], 
Nomura and Mitsukura [199], Ohme and Matukin [201], Ohme et al. [203], Ohme et al. [204], Ohme et al. [202], Pennanen et al. [207], 
Ramsøy et al. [217], Raiesdana and Mousakhani [216], Ramsøy et al. [218], Ravaja et al. [219], Rosenbaum et al. [226–228], Roths-
child and Hyun [229]; Russo et al. [232], Alan Dos Santos and Moreno [5]; Schoen et al. [239], Senecal et al. [243], Shaari et al. [245], 
Shestyuk et al. [237], Slanzi et al. [251], Smith and Gevins [253], Soria Morillo et al. [254], Soria Morillo et al. [255], Touchette and Lee 
[260], Varan et al. [265], Vecchiato, et al. [266, 267, 268, 269, 270–272 273, 274], Vecchiato [266]; Vecchiato [267, 269, 273, 274, 278] 
Wajid et al. [277], Walsh et al. [278], Wang et al. [283], Wei et al. [291], Yadava et al. [294], Yang [295, 296, 298], Yazid et al. [300], Yen 
and Chiang [301], Yılmaz et al. [303], Young [305], Zhu et al. [314]

Mixed measures Adrián et al. [1], Ausin-Azofra et al. [15], Baldo et al. [22], Barnett and Cerf [24], Bigne et al. [32], Berčík et al. (2021); Boshoff [35], 
Boshoff [36], Cartocci et al. [44], Cartocci et al. [46], Chen et al. [50], Cherubino et al. [52], Christoforou et al. [53], Clark et al. [54], Cor-
rea et al. [58], Dimpfel [68], Garcia-Madariaga et al. [82], Garcia-Madariaga et al. [83], Guo et al. [99], Herrando et al. [110], Horska et al. 
[115], Janić et al. [122], Mengual-Recuerda et al. [189, 191, 192], Moya et al., [195], Ohme et al. [203], Pozharliev et al. (2022); Russo 
et al. [232, 266, 267, 269, 270–274], Walsh et al. [278], Zhu et al. [314]

Machine-learning Adrián et al. [1], Aldayel et al. [2], Aldayel et al. [3], Alimardani and Kaba [4], Al-Nafjan [6], Ausin-Azofra et al. [15], Bandara et al. [23], 
Barnett and Cerf [24], Bhushan et al. [31], Bigne et al. [32], Boshoff [35], Boshoff [36], Cartocci et al. [44], Cartocci et al. [46], Chen 
et al. [50], Cherubino et al. [52], Christoforou et al. [53], Clark et al. [54], Correa et al. [58], Dimpfel [68], Garcia-Madariaga et al. [82], 
Garcia-Madariaga et al. [83], Gauba et al. [85], Golnar-Nik et al. [87], Guo et al. [99], Guo et al. [98], Guo and Elgendi [101], Guixeres 
et al. [96], Hakim et al. [102], Hakim et al. [103], Khushaba et al. [139], Kumar et al. [151], Ma and Zhuang [173]; Mashrur et al. [185], 
Mashrur et al. [186], Mengual-Recuerda et al. [189, 191, 192], Moya et al. [195], Ohme et al. [203], Pandey et al. [206], Phutela et al. 
[210], Roberts et al. [223], Russo et al. [232], Shestyuk et al. [237], Slanzi et al. [251], Soria Morillo et al. [254], Soria Morillo et al. [255], 
Tyson-Carr et al. [262], Ullah et al. [263, 266, 267, 269, 270–274], Walsh et al. [278], Wang et al. [287], Wei et al. [291], Yadava et al. [294], 
Yılmaz et al. [303], Zamani and Naieni [307]; Zeng et al. [308], Zheng et al. [313], Zhu et al. [314]
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2.3.2  Secondary literature search
In order to identify neuromarketing literature which used 
machine-learning algorithms to predict consumer behav-
iour based on EEG signals, a secondary literature search 
was conducted. Literature searches using the six journal 
databases used in the primary literature search were con-
ducted using the search terms “consumer neuroscience”, 
“neuromarketing”, and “machine learning”. From this lit-
erature search, an additional eighteen studies were iden-
tified which used machine learning to predict consumer 
preference or purchase intention using EEG signals [4, 6, 
23, 24, 87, 96, 185, 185, 186, 186, 206, 210, 237, 263, 287, 
291, 294, 307, 308, 313]. These additional studies have 
been included in the systematic review section.

2.4  Data synthesis
In the data synthesis step, an aggregative approach was 
used to summarise the conclusions of the literature. Such 
an approach depends on the subjective interpretation 
of the researchers concerning the reviewed articles and, 
considering this, a certain degree of subjective latitude 
should be given to enable researchers to evaluate and 
compare distinct studies, with the purpose of extracting 
shared meanings and abstracting the approaches that do 
not concern the purposes stated for the review [73].

The overall objective of the present subset is to provide 
a mapping of the consistency and direction of significant 
EEG effects found in neuromarketing research, identify-
ing specific components showing strong effects or con-
sistencies. The results were be analysed using pattern 
correspondence [64].

3  Systematic review
3.1  EEG introduction
Cortical oscillatory activity can be analysed using three 
critical forms of information extracted from the wave-
form; amplitude, phase, and frequency [143]. Amplitude 
reflects the size of a peak in terms of its volts, while fre-
quency measures how many oscillations occur per sec-
ond (Hz), and phase represents the relative position of 
the wave in time. Using these forms of information, EEG 
data are typically analysed using one of two approaches; 
time–frequency analysis (TF) or event-related potential 
analysis (ERP).

3.2  Time–frequency analysis
EEG TF measures can expand on traditional marketing 
measures such as self-reports and behavioural willingness 
to pay by showing the underlying cognitive processes 
behind participant decision-making or the effect of spe-
cific changes to features of products or advertisements. 
EEG TF measures can further expand on physiological 

measures of arousal such as GSR by unveiling the under-
lying cognitive and emotional processes behind product 
and advertisement evaluation.

During time–frequency analysis, changes in the 
power of cortical oscillations are analysed according to 
pre-defined frequency bands, usually time-locked and 
averaged to a particular class of events [183]. Lower fre-
quency bands generally exhibit larger amplitudes than 
higher frequency bands and usually reflect more exten-
sive patterns of cortical activation [197]. Power changes 
can be analysed primarily according to a baseline condi-
tion (as is done in relative-band power or event-related 
desynchronisation analysis) across the scalp or relative 
to another region of the scalp (as is done in studies using 
measures of frontal asymmetry).

3.2.1  Frontal asymmetry
Consumer neuroscience is often focused on separat-
ing positive and negative responses to sales and market-
ing stimuli [63] to modify or predict consumer choices 
through behavioural, physiological, or neural measures 
[267, 269, 273, 274]. The relative difference in power 
between the left and right prefrontal cortex, especially in 
the alpha frequency band, has emerged as a critical meas-
ure separating positive from negative responses [252]. 
This neural marker is generally interpreted as reflect-
ing the motivational direction and preference towards 
a stimulus and often occurs just before the formation of 
behavioural intentions [108, 112, 275]. Frontal asymme-
try is posited to reflect an approach response to stimuli 
when indicating an increase in cortical activity to the 
left side and an avoidance response when indicating an 
increase in cortical activity to the right side [108, 112]. 
For this reason, frontal asymmetry is thought to be a 
more nuanced measure of preference than physiological 
measures such as GSR, which can only identify valence 
magnitude, not direction [108, 112].

The relative degree of alpha frontal asymmetry is calcu-
lated using the following formula:

Frontal asymmetry was commonly found during posi-
tive elements of viewed advertisements [15, 52, 108, 112, 
157, 182, 203, 204, 227, 277], as well as proving useful 
in the prediction of advertisement preference and suc-
cess [46, 51, 54, 157, 182, 203, 204, 266, 266, 270, 270, 
271, 271, 272, 272, 275, 277]. Frontal asymmetry has also 
been shown to differentiate between emotional responses 
to advertisements by gender [267, 269, 273, 274] and 
age [267, 269, 273, 274] and shows approach/avoidance 
responses to marketing-related stimuli such as food [39, 

Left alpha power − right alpha power

left alpha power + right alpha power
∗ 100.
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207, 232, 278], music [16] and sales/persuasion messag-
ing [58, 65].

Frontal asymmetry has also been found to be predic-
tive self-reported preference [9, 110, 118, 119, 122, 148, 
191, 192, 260], and emerged as the only EEG TF meas-
ure that is consistently associated with behavioural meas-
ures of willingness to pay (WTP) [50, 138, 148, 217–219, 
239]. This suggests that frontal asymmetry may reflect 
actional/motivational responses to brands/products 
while evaluative ratings and recall may be better inves-
tigated using other TF measures such as relative-band 
power changes [26, 87, 99, 115, 117, 138, 145, 226, 237]. 
For example, Ramsøy et al. [217] and Ramsøy et al. [218] 
showed using a principal component analysis that pre-
frontal asymmetry best accounted for variance in WTP, 
while other TF measures best accounted for self-reported 
preference.

While frontal asymmetry is most commonly associ-
ated with alpha-band activity [108, 112, 275], effects were 
also reported in the theta and beta bands in the reviewed 
literature. Frontal asymmetry is most widely reported in 
the alpha band and appears to reflect WTP and adver-
tisement effectiveness, therefore likely reflecting the 
motivational approach response most commonly asso-
ciated with frontal asymmetry [44–46, 50, 65, 148, 157, 
182, 191, 192, 203, 204, 218, 219, 227, 237, 239, 267, 267, 
269, 269, 273, 273, 274, 274, 275, 277, 278]. Frontal asym-
metry reported in the theta-band mostly related to self-
reported preference [16, 138, 266, 270–272, 275], and 
advertisement memorability [44, 46, 182, 266, 266, 270, 
270, 271, 271, 272, 272]. Further, while two experiments 
reported significant changes in beta-band frontal asym-
metry [9, 182, 217], the cognitive processes reflected 
by this response seem much less certain. Therefore, it 
is recommended that frontal asymmetry measures are 
primarily employed in the alpha band and are best used 
in neuromarketing when assessing approach/avoid-
ance responses to advertisements and willingness to pay 
towards products.

3.2.2  Relative‑band power changes
While frontal asymmetry is considered to be the best 
measure of motivational valence, relative-band power 
changes in specific frequency bands can be used to meas-
ure other cognitive and emotional responses to market-
ing stimuli. For example, a reduction in power in the 
alpha band (8–12  Hz) over occipital areas is generally 
considered to reflect visual processing. Occipital alpha-
band power was found to be modulated by video but not 
print advertisements in early experiments [62], and has 
been used in more recent experiments to measure the 
visual processing of advertisement features [83, 147, 228, 
229, 253, 300].

Frontal alpha-band suppressions are linked to infor-
mation processing, attentional orienting, decision-
making and emotional regulation [55, 143, 190, 309], 
and were shown in the reviewed literature to relate to 
advertisement recall and effectiveness [68, 71, 74, 90, 
109, 145, 267, 269, 273, 274] (Pozharliev 2022), TV 
viewership [237] and self-reported preference [26, 82, 
83, 118, 119] as well as responding to preferred brands 
and pro-social products [146, 161, 244]. Power changes 
in the alpha band over frontal regions of the scalp can 
therefore be considered to be a helpful neuromarketing 
tool, especially when considering the saliency of adver-
tisement and product features.

Theta rhythms describe slower and larger oscillatory 
frequencies within the 4–7 Hz range [235]. An increase 
in midline theta power is reliably associated with long-
term memory encoding [95, 142, 234] and an increase 
in sustained effortful engagement [47, 121, 169]. The 
papers reviewed showed that theta-power was com-
monly associated with memorable elements of adver-
tisements [68, 70, 74, 132, 145, 266, 266, 267, 267, 269, 
269, 270, 270, 271, 271, 272, 272, 273, 273, 274, 274], 
recognised brands [68, 70, 74, 132, 145, 146, 171, 191, 
192, 195, 245, 266, 266, 267, 267, 269, 269, 270, 270, 
271, 271, 272, 272, 273, 273, 274, 274] and out-of- and 
within-sample success [44, 46, 68, 70, 74, 83, 90, 109, 
117, 132, 145, 146, 158, 171, 191, 192, 195, 237, 245, 
258, 266, 266, 267, 267, 269, 269, 270, 270, 271, 271, 
272, 272, 273, 273, 274, 274]. However, preference asso-
ciations were less common [19, 20, 66, 118, 119, 160–
162, 216, 244, 295]. Increases in theta-band power can 
be considered a valuable tool in advertising research, 
highlighting the memorability and out-of-sample effec-
tiveness of tested advertisements, but may be less use-
ful in investigating buying behaviour or preference.

Faster cortical oscillatory activity found in the beta 
(16–24  Hz) and gamma (30–45  Hz) ranges are less 
clearly interpreted in neuromarketing research. Beta-
band power is traditionally associated with movement 
preparation and intention formation when suppressed 
over sensorimotor regions [72, 208, 209], as well as 
inhibition when increased over right frontal areas [40, 
276], while gamma-band over prefrontal areas is asso-
ciated with visual attention [233], working memory 
[93, 230], and language abilities [93]. However, in the 
literature, beta and gamma band changes were modu-
lated by a range of stimuli, including advertisement 
memorability [13, 14, 17, 74, 194], preference [53, 89, 
115, 158, 171, 296], emotional valence [89, 296, 298], 
and changes in the shopping environment [27, 28, 116]. 
Therefore, relative-band power changes in the beta and 
gamma bands should be treated with caution when 
used in neuromarketing research. Further investigation 



Page 8 of 23Byrne et al. Brain Informatics            (2022) 9:27 

is required to identify their exact role in buying and 
advertising behaviour.

Other EEG TF measures have been used in neuro-
marketing research, such as cross-brain correlations 
across two participants predicting advertisement pref-
erence and recall [24], or global field power and peak 
density function [13, 14, 94, 105, 106, 266, 266, 266, 267, 
269, 270, 270, 270, 271, 271, 271, 272, 272, 272–274], 
and partial directed coherence [74]. Additionally, pre-
defined emotion toolboxes have been used to gauge emo-
tional responses to marketing stimuli based on EEG TF 
responses [21, 63, 115, 199, 231]. However, due to the 
limited research done, it is difficult to judge the consist-
ency of these measures, so further research is required.

3.2.3  Mixed measures experiments
A subsection of the studies reviewed used a mix of EEG 
time–frequency measures and physiological measures; 
including measures of arousal, such as the GSR heart-rate 
variability (HRV) and pupil dilation (PD); ET measures of 
attentional orienting; and facial-expression analyses. The 
use of a mixed-measures design allows for the compari-
son of EEG TF measures with physiological measures, 
identifying the strengths and weaknesses of each and 
determining which measures should be used in which 
contexts [56].

Several studies have shown that measures of arousal 
and EEG TF responses are modulated by advertisement 
preference and memorability [1, 44, 46, 58, 83, 203, 266, 
266, 267, 267, 269, 269, 270, 270, 271, 271, 272, 272, 273, 
273, 274, 274], as well as differences in product features 
[43, 50, 278]. However, physiological measures of arousal 
appear to be unable to differentiate between different 
emotional and cognitive responses, while EEG TF meas-
ures can [1, 22, 24, 50, 52, 83, 110, 189, 191, 192, 195, 232, 
266, 273]. For example, [50] Chen [49] showed that HRV 
measures of arousal could only differentiate between 
the intensity of mouthwash flavours, while FAA distin-
guished between flavours and was predictive of self-
reported preference and purchase intention. It, therefore, 
appears that physiological measures of arousal are less 
useful when combined with EEG TF measures due to 
their lack of sensitivity.

ET, or the tracking of eye movements, is a measure that 
can easily be combined with EEG measures while partici-
pants view an advertisement or product [53, 54, 68, 82, 
83, 99, 191, 192, 195, 267, 269, 273, 274]. The advantage 
of this measure over EEG TF measures is that it can be 
used to identify product or advertisement features that 
draw attention within a visual field [15, 32, 53, 68, 82, 83, 
99, 189, 267, 269, 273, 274, 287] (Pozharliev et al. 2022). 
Further, Zhu et  al. [314] found that, while EEG can be 
used to build more accurate machine learning models of 

customer preference than ET, the inclusion of ET data 
does improve the predictive accuracy of the model when 
compared to models using EEG data alone. ET, there-
fore, provides a useful and complementary measure to 
EEG TF measures. Some papers found significant atten-
tional ET effects, but no significant EEG differences [32, 
82]. ET should therefore be considered for use with EEG 
measures.

Only eight studies identified have combined facial 
expression analysis or EMG with EEG TF analyses [15, 
35, 36, 54, 115, 203, 278] (Berčík et  al. 2021). However, 
this measure provided a useful complement to EEG TF 
measures, as facial expressions and micro-expressions 
can separate different emotional responses such as hap-
piness and disgust. Although the combination of EEG 
TF and facial-expression analysis is currently not well 
employed in neuromarketing research, further explora-
tion should be pursued.

3.2.4  Machine‑learning prediction
In more recent years, neuromarketing researchers have 
begun to use machine-learning classification of EEG TF 
measures to improve the prediction of ‘like/dislike’ or 
pleasantness ratings. Early studies primarily used multi-
variate analysis methods, such as logistic regressions, to 
predict preference ratings [24, 85, 101, 139, 237, 303]. The 
subsequent use of machine-learning algorithms has been 
shown to improve the predictive accuracy of a model 
above the use of traditional logistic regressions [31, 85, 
87, 96, 102, 103, 151, 185, 185, 186, 186, 251, 255, 287, 
291, 294, 313]. Most studies reviewed employed the use 
of multiple machine-learning algorithms, allowing for the 
direct comparison of these methods [2–4, 6, 23, 87, 98, 
102, 103, 206, 210, 251, 254, 263, 287, 294, 307, 308] (see 
Table 4).

Across the reviewed literature, the most commonly 
used classification methods were DNN [2, 3, 6, 313], 
KNN [2, 3, 6, 98, 102, 103, 206, 210, 263, 308], SVM [1–3, 
6, 87, 98, 102, 103, 185, 185, 186, 186, 210, 263, 291, 307, 
308, 314], RF [1–3, 6, 23, 85, 98, 151, 206, 307, 308, 314], 
and regressions [1, 24, 85, 102, 103, 138, 237, 251].

The highest predictive accuracy reported was found 
by experiments using DNN algorithms, which achieved 
a binary classification accuracy of 85–94% (M = 0.89, 
SD = 0.06), followed by RF algorithms (M = 0.80, 
SD = 0.11), then SVM algorithms (M = 0.77, SD = 0.11), 
and KNN algorithms (M = 0.72, SD = 0.13). The worst 
classification accuracy was reported by studies using 
regression methods, which were only able to correctly 
classify consumer preference around 60% of the time 
(M = 0.59, SD = 0.24).

Machine-learning prediction appears to be a fruit-
ful avenue of research within neuromarketing and can 
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achieve very high predictive accuracy, potentially over-
coming the reliability problems identified in earlier por-
tions of the systematic review. However, there are several 
additional methodological considerations that research-
ers must take into account when using machine-learning 
prediction. Crucially, machine-learning algorithms may 
require a larger number of trials and greater computa-
tional power than traditional regression models, due to 
the complex calculations required [136]. Machine learn-
ing models are also vulnerable to ‘overfitting’, where 
models achieve high accuracy rates for training data, but 
perform poorly when predicting out-of-sample values 
[67, 225, 302]. Current neuromarketing research using 
machine-learning prediction also seems relatively lim-
ited, primarily focusing on product preference, so this 
method should be expanded in the future.

3.3  Event‑related potential measures
ERPs reflect averaged transient effects to specific stimuli 
or a specific class of stimuli [172, 183, 238]. ERPs, there-
fore, measure phasic responses to advertising stimuli, 
occurring within hundreds of milliseconds following 
stimulus onset [172, 238], and thus capitalise on the 
high temporal resolution of EEG recordings. It is gener-
ally considered that reactions that occur within the first 
300 ms of decision-making are unconscious, while those 
occurring after 300  ms are related to conscious inclina-
tions [165, 193]. The consensus regarding whether the 
P300 and N400 components reflect conscious or uncon-
scious reactions remains contentious, and these compo-
nents may reflect a critical phase in the transition from 
unconscious to conscious mental processes [57, 156, 
250].

3.3.1  N400/N200 ERP component
The N200 and N400 components are most commonly 
associated with conflict and unfamiliarity, especially 
brand extension and recognition [48, 152, 240, 292]. The 
N200 is a negative potential peaking between 200 and 
350  ms after stimulus onset, with an amplitude that is 
negatively related to familiarity and is generally consid-
ered to represent fast and unconscious conflict process-
ing [48, 152, 240, 292]. The N400, a negative potential 
peaking around 400 ms following stimulus onset, is com-
monly related to violations of grammatical rules and 
unexpected stimuli. N400 amplitude is thought to reflect 
the corresponding conscious processing of conflicting 
information [48, 152, 240, 292]. These components are 
most commonly used in neuromarketing research to 
measure consumer familiarity with brands and products 
and the conflict between price and expected value. In the 
reviewed literature, fourteen studies using brand-exten-
sion paradigms reported modulations in N200/N400 

amplitude [42, 76, 80, 125, 175, 177, 179, 180, 246, 248, 
286, 295, 299, 312], nine studies reporting N200/N400 
modulations used conflict tasks such as oddball tasks [79, 
81, 97, 100, 107, 126, 129, 205, 259, 311], and nine used 
other tasks, such as auction tasks or advertising stimuli 
[91, 92, 105, 106, 124, 128, 137, 279, 279, 282, 282, 284, 
284, 285, 285, 310].

In the literature, significant N200 and N400 amplitude 
differences were most commonly found in experiments 
utilising brand extension paradigms. Brand extension 
tasks are used to investigate how generic product types 
(e.g., coffee) are associated with brand names or logos 
(e.g., Starbucks). Twelve out of the 15 studies which 
investigated brand extension in the reviewed literature 
found significant effects in N200 or N400 amplitude 
[76, 80, 125, 177, 179, 180, 246, 248, 286, 297, 299, 312], 
while one used machine-learning and therefore did not 
investigate modulations in ERP amplitude directly [178]. 
Within the 11 studies that reported significant N200/
N400 effects, nine reported significant effects of N400 
amplitude [42, 80, 125, 177, 180, 246, 286, 295, 299], two 
reported significant N200 effects [76, 179], while only 
two studies found significant effects in both N400 and 
N200 amplitude [80, 299]. Further, two studies reported 
non-significant N2 amplitude modulations [297, 299]. In 
contrast, six of the studies using brand extension experi-
ments reported significant differences in P300 amplitude, 
and only two found significant LPP or LPC differences 
[76, 246]. N200 and N400 amplitudes were generally 
interpreted as reflecting conflict processing and were 
negatively related to brand extension acceptance rates 
[42, 76, 80, 177, 179, 180, 246, 286, 295].

N400 and N200 amplitudes have also been associated 
with perceptions of brands and products, especially when 
conflicted with other relevant features such as reviews 
or previous experiences. It was found by nine of the 
reviewed studies that N200/N400 amplitudes were signif-
icantly modulated by participant awareness of a brand/
product [105–107, 175, 279, 282, 284, 285, 310, 311]. 
When elicited during oddness experiments, N200/N400 
amplitudes were most commonly modulated by incon-
gruence caused by negative framings or reviews during 
the viewing of a product or brand [49, 81, 97, 100, 126, 
166, 205], as well as product preference [91, 92, 124, 137, 
175, 279, 281, 282, 284, 285]. Three studies investigated 
the effect of price on N400 and N200 amplitudes [79, 129, 
137] and found that amplitudes were modulated by viola-
tions in price expectations and price deception.

Overall, the N200 and N400 ERP components are typi-
cally used in neuromarketing research to identify brand 
familiarity, extension, and conflict caused by negative 
attitudes and price violations. Reported effects of pref-
erence on N400/N200 amplitudes were less consistent 
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and should be treated with caution. Significant effects 
were more commonly found in N400 than N200 ampli-
tudes, suggesting that response conflict occurs more con-
sciously in consumers.

3.3.2  P300/P200 ERP component
The P2 and P300 ERP components are positive potentials 
occurring between 200 and 400 ms after cue onset. It is 
generally considered that P300 amplitude is positively 
related to the attentional resources allocated towards 
a stimulus [133, 140, 196]. The P2 is a similar positive 
potential, which peaks approximately 200 ms after stim-
ulus presentation [114, 280, 293], and is considered to 
reflect the rapid automatic activity of attention [113, 114, 
280, 293]. Based on the theoretical background of P300 
and P200 modulations, it would be expected that their 
best use in neuromarketing would emerge in investigat-
ing how products and advertisements attract attention, 
and the best ways to draw attention.

In the present review, P300 and P2 amplitude were 
found to be especially effective in the investigation of 
advertisement [61, 62, 261, 279, 282, 284, 285, 289] and 
marketing [212, 215, 259, 264, 315] effectiveness, with 
significant amplitude modulations found in all reviewed 
studies. P300 and P200 amplitude were also significantly 
modulated by preference [25, 126, 137, 174, 174, 176, 
176, 181, 181, 264, 281, 306], purchase intention [41, 92, 
127, 129, 160, 162, 170, 174, 176, 181, 247], price [128, 
223], and brand or product features [75, 81, 105–107, 
311]. However, significant effects were not reported in 
all papers investigating these factors [37, 49, 79, 91, 92, 
111, 131, 166, 205, 249, 258], so results may lack statis-
tical power. Especially of note were the inconsistent 
effects found regarding preference on P200 amplitude, 
with some papers finding smaller amplitudes to preferred 
stimuli [107, 124, 126, 129, 170, 315], and others finding 
the reverse [25, 128, 174, 174, 176, 176, 181, 181, 306].

Overall, P300 and P2 amplitudes were revealed to be 
especially effective when investigating advertising effec-
tiveness. However, modulations in these ERP compo-
nents should be treated with caution when examining 
consumer preference as it may lack statistical power and 
may only be reflective of attention drawn due to stimulus 
salience rather than valence.

3.3.3  LPP component
The LPP is a positive component, usually found later 
than 400  ms following stimulus onset, and is generally 
considered to reflect conscious emotional processing. 
The LPP is sensitive to emotional stimuli, both positively 
and negatively valanced [78, 153, 241, 242], and has been 
proposed to represent emotional regulation process-
ing or attention towards the emotional nature of stimuli. 

The LPP is commonly used in neuromarketing due to its 
relationship to conscious emotional evaluation, which is 
strongly related to purchase behaviour and brand percep-
tion [25, 37, 166, 174, 176, 181].

In the reviewed literature, the LPP was most com-
monly associated with preference or emotional evalua-
tion towards products and brands [25, 37, 75, 79, 91, 92, 
126, 128, 166, 174, 174, 174, 176, 176, 176, 181, 181, 181, 
198, 215, 247, 249, 306, 310, 315], while only six papers 
investigating participant preference did not report sig-
nificant modulations in LPP amplitude [62, 137, 154, 258, 
261, 281]. However, the effect of emotional content on 
LPP amplitude appears to predominantly be reflective 
of valence strength rather than direction [128, 249, 315], 
meaning it may be unable to differentiate between posi-
tive and negative attitudes towards brands and products. 
The results reported by Goto et  al. [92] further showed 
that when used to predict single-trial product preference, 
the LPP achieved the highest accuracy (70%) of all the 
ERP components investigated. However, it may be less 
sensitive under low trial numbers [107].

Taken together, the reviewed literature reveals the LPP 
as a key ERP component in neuromarketing research, as 
it directly reflects emotional evaluation of brands and 
products, rather than the correlated measures of atten-
tion and conflict. For this reason, the LPP may be a more 
appropriate measure in neuromarketing research for the 
investigation of preference. However, the LPP should be 
used with caution, as it may be unable to untangle emo-
tional valence and may only be reflective of intensity.

3.3.4  Other ERP components
A limited number of studies identified in the literature 
review investigated further ERP components in relation 
to marketing stimuli, including the MMN [111], N1 [25, 
97, 100, 205, 282, 289, 306], FRN [41, 236], LPC [129, 246, 
279, 282, 284, 285], and PSW [92]. However, due to the 
limited number of studies investigating the effectiveness 
of these ERP components, it is difficult to make explicit 
judgments regarding their use and effectiveness.

3.3.5  ERP studies using machine learning/ICA
Three studies were identified that used independent com-
ponent analysis or machine-learning on phase-locked 
EEG data rather than traditional ERP analysis. Tyson-
Carr et al. [262] used an independent component analysis 
(ICA) to investigate ERP effects behind willingness-to-
pay, finding that significant differences between EEG 
activity between the right and left parietal lobe at around 
200 ms following stimulus onset were most predictive of 
willingness-to-pay. Similarly, Roberts et  al. [223] differ-
entiated between the phase-locked EEG activity found in 
response to high- and low-value items using ICA analysis. 
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Ma and Zhuang [173] was the only study identified in the 
present systematic review which used machine-learning 
to investigate marketing-relevant stimuli based on phase-
locked EEG activity. Using t-SNE machine learning, the 
researchers predicted brand-extension acceptance with 
an accuracy of 87.37%.

3.3.6  ERP conclusions
Taken together, the literature collected in the present 
review identified three ERP components that were most 
commonly used in neuromarketing research: N400, P300, 
and LPP. Modulations in N400 and P300 amplitude were 
best implemented when investigating specific neuromar-
keting effects such as conflict and attentional saliency. 
In contrast, LPP amplitude modulations appeared more 
suitable to measure preference and emotional evaluation, 
although it is only sensitive to magnitude, not valence. 
The use of alternate data analytic approaches such as 
machine learning and ICA is less common in ERP analy-
sis than TF analysis. However, studies in this area seem 
promising. It is recommended that future ERP research 
in neuromarketing employs machine-learning and ICA 
analyses.

4  Discussion
The results of the present systematic review revealed 
several key recommendations that can be made regard-
ing the use of EEG measures in neuromarketing. First, 
key ERP and TF components were identified as the most 
consistent markers of preference and emotional evalua-
tion, namely the FAA and LPP. Second, the importance 
of machine-learning analysis in future neuromarketing 
research was highlighted. Finally, it was shown that EEG 
measures are best used in conjunction with ET and facial 
expression analysis rather than GSR or PD.

The core finding of the present systematic review was 
the identification of FAA and LPP as key TF and ERP 
components in the investigation of consumer preference. 
Overall, FAA was judged to be the optimal measure of 
preference due to its ability to disentangle positive from 
negative responses, while the LPP only indexed response 
magnitude. Further components were identified that 
were useful in indexing customer attention (P300 ampli-
tude, alpha-band power, theta-band power), memora-
bility (theta-band power) and emotional conflict (N400 
amplitude). These components should be considered in 
future neuromarketing research but not used as principal 
measures of consumer preference.

Traditional marketing models assume that consumer 
decisions are mostly rational, and therefore ignore the 
role of implicit emotional responses in consumer pref-
erence and buying decisions [7, 69]. Neuromarketing 
overcomes these limitations through the use of biometric 

and neuroimaging measures, which can detect implicit 
emotional responses traditionally ignored in marketing 
research [7, 69, 220]. The primary benefits of neuromar-
keting are therefore to improve the accuracy of mod-
els aiming to predict consumer preference and buying 
behaviour, and provide a greater understanding of the 
emotional impact of marketing stimuli on consumers [7, 
69, 220]. Ultimately, neuromarketing research should be 
developed in ways that can be actively used to improve 
products or advertising campaigns. However, there was a 
large degree of inconsistency found in the reviewed lit-
erature regarding the significance and interpretation of 
different EEG effects in a marketing context, specifically 
when relating to consumer preference.

The present results, therefore contribute to the litera-
ture by demonstrating the most consistent EEG meas-
ures of consumer preference and willingness to pay, and 
these measures require greater focus in future research. 
Matching the theoretical literature, FAA appears to 
reflect approach/avoidance responses to stimuli [108, 
275] and was the only component identified in the cur-
rent review that could untangle positive from negative 
emotional reactions. In contrast, the LPP ERP compo-
nent appears to reflect conscious emotional processing of 
marketing stimuli [78, 153, 241, 242] but cannot separate 
positive from negative responses. Future neuromarket-
ing research should therefore focus on the use of the FAA 
and LPP when creating predictive models of consumer 
preference.

It would also be appropriate to use the other compo-
nents identified as measures of factors that may indi-
rectly relate to preference. For example, P300 amplitude 
and theta-band power appear to be effective measures 
when investigating advertisement effectiveness, reflect-
ing attentional orienting [133, 140, 196] and memory 
encoding [95, 143], respectively. In contrast, the N400 
ERP component was most effective in investigating brand 
extension acceptance rates. Future research investigating 
these components should therefore build their hypoth-
eses based on these findings and not use them as undif-
ferentiated measures of preference.

When used in a mixed-measures design, EEG data were 
found to be best combined with eye-tracking and facial-
expression analysis, as these provide data types that EEG 
cannot reveal. ET measures are useful in demonstrating 
which areas of a visual field (e.g., advertisement) draw 
customer attention [32, 83]. Similarly, facial-expression 
analyses can reveal specific emotional responses to mar-
keting stimuli such as joy or disgust [15, 54, 115, 203, 
278]. In contrast, physiological measures of arousal such 
as GSR and PD provide less additional interpretive util-
ity as they only reflect arousal intensity [1, 24, 50, 52, 83, 
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189, 191, 192, 195, 232], which can be indexed by EEG 
measures such as the FAA or P300.

It is our hope that the interpretive framework provided 
in the present review will aid in the analysis and interpre-
tation of future neuromarketing research, and provide a 
neuromarketing-specific interpretation of EEG data, pre-
venting post hoc analysis of future results. Highlighting 
the importance of a clear interpretive framework, signifi-
cant inconsistencies were found across several sections 
of the systematic review, and future researchers should 
be aware of the issues of replication in neuromarketing 
research. For example, several studies found a positive 
relationship between preference and P2 amplitude [107, 
124, 126, 129, 170, 315], while others found a negative 
relationship [25, 128, 174, 174, 176, 176, 181, 181, 306]. 
These inconsistencies reflect the larger replication cri-
sis in psychology and may result from small effect sizes, 
cherry-picking of results, and the overuse of frequentist 
statistics.

Machine-learning algorithms are a potential solution to 
the replication problem, achieving high predictive accu-
racy in the reviewed literature, consistent across papers. 
The most effective machine-learning algorithms were 
DNNs, which reported accuracies as high as 94% in pre-
dicting consumer preference. The predictive accuracy of 
machine learning was further improved when conducted 
on EEG data combined with physiological measures. 
Therefore, the present results highlight the importance 
of machine-learning analyses in future neuromarketing 
research to improve the replicability and consistency of 
results.

While machine learning presents a promising avenue 
for neuromarketing research, care should be taken when 
designing machine learning models. First, due to the 
complex calculations made, machine learning requires 
more trials and computational power than traditional 
statistical models [136, 222]. Machine learning models 
are also vulnerable to ‘overfitting’, where they may show 
high accuracy rates for the training data used, but per-
form poorly when predicting out-of-sample values. Over-
fitting can be solved in a number of ways, such as by 
splitting a dataset into ‘training’ and ‘testing’ data, or by 
using out-of-sample data to test machine-learning mod-
els [67, 225, 302].

In the literature reviewed presently, machine learning 
was used primarily to predict consumer self-reported 
preference or buying behaviour [1–4, 6, 23, 24, 31, 85, 87, 
96, 98, 101–103, 139, 151, 178, 185, 185, 186, 186, 206, 
210, 223, 254, 262, 263, 287, 294, 307, 308, 314]. However, 
it has yet to be demonstrated how machine learning can 
be used to improve advertisement or product designs. For 
example, a machine learning approach could be used to 
suggest the shape or colour to use on product packaging. 

The integration of EEG machine learning methods with 
developing technologies such as VR headsets should also 
be investigated further (Fortunato 2014), as well as the 
use of ‘live’ machine-learning, which can actively update 
stimuli while a consumer is viewing them based on their 
patterns of brain activation (Robaina-Calderin 2021; For-
tunato 2014).

5  Conclusion
The literature summarised in the present systematic 
review highlighted the effectiveness of FAA and the LPP 
as measures of consumer preference and pointed to the 
importance of machine learning to tackle problems of 
consistency and replicability existent in the current lit-
erature. It is recommended that in future research, inves-
tigators use LPP and FAA effects when investigating 
customer preference and only use other EEG compo-
nents to investigate other specifically associated effects 
(e.g., memory encoding, attentional orienting). Further, 
the use of machine learning is encouraged in future 
research to improve the replicability of EEG measures of 
customer preference, and the scope of machine-learning 
should be expanded.
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