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Abstract 

The amount of unstructured text produced daily in scholarly journals is enormous. Systematically identifying, sorting, 
and structuring information from such a volume of data is increasingly challenging for researchers even in delimited 
domains. Named entity recognition is a fundamental natural language processing tool that can be trained to anno-
tate, structure, and extract information from scientific articles. Here, we harness state-of-the-art machine learning 
techniques and develop a smart neuroscience metadata suggestion system accessible by both humans through a 
user-friendly graphical interface and machines via Application Programming Interface. We demonstrate a practical 
application to the public repository of neural reconstructions, NeuroMorpho.Org, thus expanding the existing web-
based metadata management system currently in use. Quantitative analysis indicates that the suggestion system 
reduces personnel labor by at least 50%. Moreover, our results show that larger training datasets with the same soft-
ware architecture are unlikely to further improve performance without ad-hoc heuristics due to intrinsic ambiguities 
in neuroscience nomenclature. All components of this project are released open source for community enhancement 
and extensions to additional applications.
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1  Introduction
A named entity is anything that can be referred to with 
a proper name. Common named entities in neurosci-
ence articles are animal species (e.g., mouse, drosophila, 
zebrafish), anatomical regions (e.g., neocortex, mush-
room body, cerebellum), experimental conditions (e.g., 
control, tetrodotoxin treatment, Scn1a knockout), and 
cell types (e.g., pyramidal neuron, direction-sensitive 
mechanoreceptor, oligodendrocyte) [15]. The task of 
named entity recognition (NER) consists of identify-
ing spans of text (mentions) that comprise named enti-
ties and tagging the entity [28]: for example, recognizing 

every time an article refers to tetrodotoxin treatment and 
tagging them as experimental condition. Entity recogni-
tion is a non-trivial task, due in part to the difficulty of 
segmentation, i.e., deciding what is or is not an entity 
and where its boundaries are in the text. For example, the 
term Swiss by itself is not a neuroscience-specific entity; 
however, Swiss Albino and Swiss-Webster are mouse 
strain names for common neuroscience animal models. 
Another challenge is the terminological vagueness of 
cross-type entities, as in ganglion, which is both a neuron 
type of the retina and an invertebrate brain region, and 
Golgi, which is both a cerebellar neuron and a histologi-
cal stain.

NER plays a crucial role in information extraction and 
natural language processing (NLP). Nonetheless, most 
NER models and datasets are domain-specific (e.g., [12, 
36]). These models are difficult to generalize, because the 
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entity categorical needs differ across domains, and for 
many specific domains no suitable datasets are publicly 
available [6, 20].

A prominent approach for performing NER relies on 
pre-existing and domain-specific vocabularies to identify 
mentions of entities in the text. Dictionary-based mod-
els are widely used for their simplicity, as they can extract 
from a document all matched entities listed in a vocabu-
lary. However, compiling accurate dictionaries requires 
expensive effort by domain experts, and comprehensive 
coverage of all relevant types of named entities often 
remains elusive [19]. Furthermore, vocabulary-based 
methods suffer from low recall because of their brittle-
ness with respect to the multifarious variations of the 
target terms. The problem is especially serious in neu-
roscience due to the lack of standardized nomenclature 
and heterogeneity of abbreviation conventions in most 
relevant entity types, such an anatomical regions and 
experimental conditions, which make name recogni-
tion challenging even for human professionals [16]. In 
addition, the lack of community consensus on a com-
mon classification for key entities, particularly cell types, 
compounds the unsolved terminological problem with 
an even deeper conceptual ambiguity [40]. Nevertheless, 
dictionaries have been shown to enhance state-of-the-
art NER systems by incorporating information about the 
similarity of the extracted entities with available terms 
[21, 34].

Deep learning has been applied to information extrac-
tion in neuroscience [39]. In general, deep learning 
approaches to NLP typically require mapping words from 
unstructured text into numerical vectors called word 
embeddings [31]. Word embeddings precomputed from 
large corpora may be beneficial in solving NER tasks [27]: 
instead of training a model from scratch, importing mod-
els pre-trained on related datasets (referred to as trans-
fer learning) can lower the computational cost of training 
[44].

Bidirectional Encoder Representations from Trans-
formers (BERT) is a word embedding model that employs 
bidirectional transformers for pre-training [11]. Trans-
formers are deep neural networks that derive semantic 
and syntactic information from the contextual relation 
of each word with all other words in the sentence [42]. 
The transformers utilized by BERT process text bidirec-
tionally from right-to-left and left-to-right at once. The 
pre-trained BERT can be fine-tuned to create competi-
tive models for a wide range of downstream NLP tasks, 
including NER.

In this work, we pre-train the base BERT architecture 
on a large neuroscience corpus to increase its text mining 
efficacy in this domain. Then we fine-tune the resultant 
pre-trained language model (NeuroBERT) for the NER 

task of identifying and tagging mentions of neuroscience 
terms from peer-reviewed articles. Specifically, we aug-
ment our custom neuroscience information extraction 
algorithm with term statistics and curated ontologies 
from the open access repository of neural reconstruc-
tions, NeuroMorpho.Org [2]. We thus deploy a smart, 
context-aware, domain-specific knowledge suggestion 
engine that complements and interfaces with our previ-
ously developed literature [25] and metadata manage-
ment systems [7] to foster the public availability of digital 
reconstructions of neural morphology.

2 � Materials and methods
The proposed system takes a sequence of paragraphs 
from a neuroscience article and extracts a list of meta-
data entities that best characterize the data described in 
the article. The core extraction mechanism is a sequence 
labeling algorithm, which requires training. Once the 
sequence labeling algorithm is trained, we take advantage 
of a probabilistic sentence classifier tuned with term sta-
tistics extracted from the publication and from Neuro-
Morpho.Org [4] to sort the extracted entities and provide 
a ranked metadata suggestion list. The following sections 
describe the algorithm, the training dataset, and explain 
the structure of the entity suggestion system.

2.1 � Corpus preparation and preprocessing
The data utilized in our metadata suggestion system 
consists of two main parts. The first part is the dataset 
prepared for training the sequence labeling algorithm. 
Starting from a corpus of over 2000 neuroscience arti-
cles processed for NeuroMorpho.Org, we selected 13,688 
sentences via active learning [9]. We then used the open-
source annotation software DataTurks (https://​github.​
com/​DataT​urks) to manually annotate the sequence 
of words with nearly 40,000 target metadata labels of 
interest (Table  1). The length of the annotated output 
sequence (labels) is thus the same as that of the input 
sentence. For this NER annotation, we adopt the BIO 
format [35], a tagging scheme that captures both bound-
ary and the named entity types (Fig. 1). All training data 
described above, including publication identifiers and 
annotated sentences, are available at https://​gitlab.​orc.​
gmu.​edu/​kbija​ri/​neuro​ner-​api/-/​tree/​master/​data.

The second part of the data consists of metadata enti-
ties of specific collections of neural reconstructions pub-
licly shared on NeuroMorpho.Org and associated with 
812 published articles [7]. These highly curated meta-
data summaries constitute the gold standard for bench-
marking the automated suggestion system (Fig.  2). It is 
important to note that typically not all NeuroMorpho.
Org metadata are explicitly mentioned in the publica-
tion: certain entities (such as the name of the collection 
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and the structural domains included in the data) are only 
provided directly by the dataset contributors at the time 
of submission to the repository [29]. Therefore, this work 
solely focuses on extracting the subset of metadata most 
commonly reported in publications (Table  1). These 12 
metadata entities to be extracted can be logically grouped 
in three broad categories: animal, anatomy, and experi-
ment, as briefly explained below.

The four metadata entities pertaining to the animal 
category specifies information about the subject of the 
study: the species, strain, sex, and developmental stage. 
This knowledge is the simplest to extract from the arti-
cle, as the corresponding details are almost always clearly 
stated in the text of the publication.

The two metadata entities in the anatomy category 
represent the nervous system region and the cell type 
of the reconstructions described. These are the most 
difficult characteristics to recognize automatically 
for three main reasons. First, their semantics strongly 
depend on the species: many regions and cell types 
only exist in vertebrates (e.g., cerebellum and pyramidal 
cells) or invertebrates (e.g., antennal lobe and Kenyon 

cells). This provides tight contextual constraints that 
require considerable specialization for proper inter-
pretation. The second reason is that anatomical enti-
ties can often be labeled according to different criteria, 
which typically vary based on the specific focus of the 
study. For example, regions can be partitioned func-
tionally (e.g., visual vs. somatosensory vs. motor cor-
tex) or structurally (e.g., occipital vs. parietal vs. frontal 
lobes); and cell types can be classified electrophysiolog-
ically (fast-spiking vs. regular spiking), or molecularly 
(calbindin-expressing vs. calretinin-expressing). These 
labels often overlap to a certain extent across criteria, 
considerably complicating the annotation task. The 
third challenge is that NeuroMorpho.Org divides both 
anatomical regions and cell types into three hierarchi-
cal levels, from generic to specific (e.g., hippocampus/
CA1/pyramidal layer and interneuron/basket cell/
horizontal). Not all hierarchical descriptors might be 
explicitly mentioned in the article, as authors often rely 
on the reader’s tacit knowledge for correct understand-
ing. To overcome these obstacles, we take advantage of 
the substantial information contained in the manually 
curated metadata from thousands of publications by 
more than 900 labs as provided by NeuroMorpho.Org 
and its public metadata hierarchies [32]. Specifically, 
from these records we constructed a lookup table for 
individual terms listing correlations with other meta-
data dimensions, potential hierarchies, synonyms, and 
frequencies.

The last six metadata entities targeted by our sug-
gestion system, belonging to the experiment category, 
describe methodological information: the preparation 
protocol, experimental condition, label or stain, slic-
ing orientation, objective type, and the tracing soft-
ware. These details are also relatively straightforward to 
extract, since peer-reviewed publications usually men-
tion the experimental specifications explicitly.

If any metadata detail is not provided by the contrib-
utor nor mentioned in the publication, the correspond-
ing entry is marked “Not reported” in NeuroMorpho.
Org. Moreover, certain details are labeled as “Not appli-
cable” depending on the specific preparation: for 

Table 1  List of neuroscience entities of interest for 
NeuroMorpho.Org with their abbreviated form that is used in this 
article along with an example of its type and their distribution in 
the annotated sentences

Entity Abbreviation Example Count

Cell type CEL Interneuron 7549

Developmental stage DEV Adult 1243

Experimental condition EXP Control 9860

Sex or Gender GEN Female 685

Objective type OBJ Oil 156

Protocol PRO In vivo 1482

Reconstruction software REC Imaris 1209

Brain region REG Amygdala 8314

Slicing direction SLI Coronal 362

Species SPE Rat 4481

Staining method STA Biocytin 1402

Strain STR Wistar 3169

Total – – 39,876

Fig. 1  Sample sentence from a neuroscience article annotated with entities of interest in BIO format. B–X indicates the beginning of the new entity 
X in the word sequence, I–X presents the continuation of entity X in sequence, and O points to the words out of the area of interest
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instance, if the experimental protocol is “cell culture”, 
then the slicing direction is not a relevant entity.

2.2 � Metadata extraction—problem definition & system 
architecture

Given a full text of a publication (P) captured from the 
publisher’s application programming interface (API), 
and an empty list of target metadata (M) dimensions 
(Table 1), the entity extraction task is to collect all meta-
data entities noted within the sentences of P and add 
them into the appropriate sub-list of M. Then, the algo-
rithm must sort all sub-lists of M based on the relevance 
of the extracted entities.

The metadata extraction architecture we designed to 
solve the above task consists of three main elements: pre-
processing, entity extraction, and entity collection/rank-
ing (Fig. 3).

Preprocessing starts by resolving all abbreviations men-
tioned in the full text using Hearst’s algorithm [37] and a 
list of common abbreviations collected throughout our 
practice on the NeuroMorpho.Org knowledge repository. 
Afterward, we replace all Latin numeric mentions with 
their corresponding Arabic numerals (e.g., i/ii → 1/2). 
Once this is done, we use the NLP toolkit [23] to break 
the text into paragraphs and sentences, next, sentences 
are tokenized into a sequence of words and punctuations. 
Having the full text of publication transformed into a 
list of word sequences, we can turn to tagging metadata 
entities.

Fig. 2  Schematic representation of the data for the metadata 
extraction task. Unstructured text of neuroscience articles 
are mapped to their corresponding metadata matching the 
NeuroMorpho.Org schema. Each article has a body of text extracted 
from PubMed or other publishers and is associated with a list of 
target metadata entities. The task of the algorithm is to find the 
target entities in the text of the article and create a list of suggestions 
ranked based on their relevancy

Fig. 3  Overview of the architecture of the metadata extraction system used in this study. The full text of the publication is preprocessed, marked 
with sentence boundaries (CLS and SEP), and converted into sequences of words. Each sequence is then passed through the entity extraction 
algorithm to identify occurrences of metadata entities. The candidate terms are then post-processed and ranked based on relevance score
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The sequence-to-sequence algorithm to extract named 
entities consists of two sub-parts. First, NeuroBERT 
encapsulates the preprocessed sequence of words with 
special tokens ([CLS] and [SEP]) to demarcate the sen-
tence boundaries and creates appropriate metadata tags 
for each term. Second, to ensure that all entities are 
fully extracted from the text, and nothing is missed, we 
cross-check the terms in the sequence for exact matches 
in the lookup table of NeuroMorpho.Org metadata 
terminology.

The above process produces labels for every term in 
all publication sentences. This dense annotation is then 
trimmed by removing labels that cannot be mapped to 
suitable target terms from the NeuroMorpho.Org lookup 
dictionary. Matching between extracted labels and Neu-
roMorpho.Org target term is assessed by Jaro similarity 
[18]. This metric measures edit distance between two 
strings in the [0, 1] range, with 1 indicating identical 
strings and 0 indicating no character in common between 
them. For our purpose, we set a similarity threshold of 
0.85 to retain a label.

The result of this sequence-to-sequence processing is a 
list of candidate terms for each metadata entity type (cat-
egory). At this stage, the terms within each entity type 
must be ranked to identify the most accurate metadata 
suggestion.

2.3 � Metadata entity ranking
To rank terms within the list of identified candidates for 
each metadata entity type, we assign to each candidate 
term a score that is a function of its occurrence frequency 
and location in the text, its usage rate in NeuroMor-
pho.Org, and the structure of the sentence in which it 
appears. Specifically, the score of each extracted entity is 
determined based on the following equation.

Here, ‘term’ is the identified metadata entity, while ‘sec’ 
and ‘sen’ are, respectively, the section of the publication 
(e.g., Introduction, Materials and Methods, etc.) and the 
sentence in which the term is found. ‘Freq’ calculates 
the frequency of ‘term’ by simply counting the number 
of times the term appears within the publication. ‘Rate’ 
computes how often NeuroMorpho.Org uses the term 

Score(term, sec, sen) = α × Freq(term)+ β × Rate(term)

+γ × SecScore(sec)+ δ × SenScore(sen)

by dividing the number of times a group of neural recon-
structions is annotated with that specific entity by the 
count of all group of reconstructions annotated by any 
entity within that metadata category.

‘SecScore’ returns the importance of the section in 
which the term is identified, assigning, for example, 
greater weight to Materials and Methods or Results 
than to Introduction or Discussion (Table 2). Figure leg-
ends are assigned the SecScore value of the section they 
belong to (typically Results). If a term is found in multiple 
sections within the publication, the maximum SecScore 
value is utilized.

‘SenScore’ calculates the relevance of the sentences 
containing the term. For this purpose, we trained the 
logistic regression classifier Scikit-learn [30], using 
default parameters, on 375 sample sentences randomly 
selected from neuroscience articles associated with Neu-
roMorpho.Org data, and manually labeled as 0 or 1 based 
on their informativeness. This classifier reads the embed-
ded sentences from the last layer of NeuroBERT (Fig. 3) 
and uses a sigmoid function to produce a likelihood 
value based on its structure. For example, the label ‘Spe-
cies = rat’ in the sentence "experiment was performed on 
55 adult male Sprague–Dawley rats" will have a higher 
value (SenScore = 0.85) than in the sentence "previous 
in vitro studies of adult rat have shown that correlation 
depends on the level of excitation" (SenScore = 0.40). If a 
term is found in multiple sentences within the publica-
tion, the maximum SenScore value is utilized.

2.4 � Model training and parameter settings
The ranking values (Freq, Rate, SenScore, and SecScore) 
were min–max normalized to the [0, 1] range. Their 
coefficient values [α, β, γ, δ] were optimized using grid 
search in [0, 1] interval with 0.05 incremental steps as 
those maximizing annotation performance (Table  3). 
We used default values for most BERT hyperparameters 
[11], except for the following. The learning rate was set 

Table 2  List of different sections considered in publications along with their relative importance for the modeling. “Summary” is 
considered synonymous with Abstract and “Conclusions” with Discussion. “Others” include Acknowledgments and References as well 
as any additional section

Section Title Abstract Keywords Introduction Methods Results Discussion Others

Importance 1.0 1.0 1.0 0.5 1.0 1.0 0.6 0.4

Table 3  Best performing parameters for the model

Parameter α β γ δ

Value 0.20 0.25 0.35 0.20
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at 0.00002 upon testing the 5 recommended values and 
a batch size of 8 was used after comparing the results 
with a value of 16. We chose 10 as the number of training 
epochs, which produced the best results among all val-
ues from 1 to 50. Model training and optimization were 
performed using Python 3.10 under Linux operating sys-
tem on a Tesla K80 GPU with 32 GB of RAM and lasted 
3 days. The full list of packages and libraries used is avail-
able at https://​gitlab.​orc.​gmu.​edu/​kbija​ri/​neuro​ner-​api.

3 � Results
We use the well-known information retrieval metric, 
accuracy [24], to quantify the metadata extraction and 
suggestion performance as well its robustness relative 
to the training dataset size. Moreover, we report the 
outcome of a labor analysis estimating the amount of 
manual curation that the automated suggestion system 
can save in the day-to-day curation of forthcoming Neu-
roMorpho.Org content. Finally, we introduce an API to 
allow integration of the metadata extraction and sugges-
tion system with other software components as well as a 
graphical interface enabling user-friendly open access.

3.1 � Metadata extraction from scientific literature
We first tested the performance of the metadata extrac-
tion and suggestion system against 812 articles for which 
the entities of interest had been manually curated and 
accessible on NeuroMorpho.Org (Fig.  4). For each arti-
cle and metadata category, we checked whether the set 
of terms suggested by the system included the manually 
annotated term (considered here as gold standard). If 
so, we further checked whether the target term was the 
highest ranking one within all suggested terms. In this 
analysis, we refer to True Pool as the cases in which the 

correct term was identified by the system but did not 
rank at the top; and to Top Pool as the cases in which the 
correct term was identified as the highest ranking of all 
identified terms. Thus, the True Pool percentage quan-
tifies the suggestion performance for computer-assisted 
human annotation, while the Top Pool percentage quan-
tifies the recommendation performance of a fully auto-
mated machine annotation. Over all metadata category, 
the system achieved a suggestion (computer-assisted) 
performance of ~ 84% and a recommendation (fully auto-
mated) performance of ~ 62% (Fig.  4A). These propor-
tions varied widely by metadata category. The species, for 
instance, was correctly recommended ~ 95% of the times 
and always suggested in the remaining 5%. The objective 
type, in contrast, was correctly recommended just ~ 45% 
of the times and merely suggested only in another 10% 
of cases. When we investigated the missed labels, we dis-
covered that in most instances the article simply did not 
report the relevant information (marked as “Not-Availa-
ble” in Fig. 4A). In those cases, NeuroMorpho.Org either 
labeled the corresponding metadata categories as Not 
Reported or Not Available, or else obtained the correct 
label through personal correspondence with the authors. 
If excluding the labels not available in the publication 
text, the suggestion performance approaches 100% in 
most metadata categories and exceeds 90% in all of them 
(~ 98% overall), with a corresponding recommendation 
performance of ~ 72% (Fig. 4B).

We then analyzed the distribution of scores utilized 
in the ranking and how they differed among the Top 
Pool, True Pool, and missed labels (Fig. 5). As expected, 
the Top Pool had scores mostly distributed toward high 
values, whereas the missed labels had the lowest value 
scores, with the True Pool characterized by intermediate 

Fig. 4  Accuracy of metadata extraction from neuroscience articles by metadata category (see Table 1 for abbreviations). A. The Top Pool (blue bars) 
consists of the highest ranking recommended terms. The True Pool (green bars) includes all terms in the suggestion list regardless of rank. Gray bars 
from the top indicate the proportion of target metadata terms for which the article provides no information. The numerical value reported above 
the bar plot are averages of all metadata categories. B. Same data as in panel A with Not available (gray bars) removed and other values scaled 
accordingly

https://gitlab.orc.gmu.edu/kbijari/neuroner-api
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values (Fig. 5A). The Top Pool and True Pool score dis-
tributions overlapped substantially at intermediate score 
values. However, the overall score distribution was not 
distributed uniformly over all [0, 1] values. Instead, the 
majority of scores fell in the [0.4, 0.9] range. Thus, we 
ranked all scores and analyzed the accuracy of terms by 
score percentile (Fig.  5B). This analysis indicated that 
the label predictions in the bottom 10% of scores, up to 
a score value of 0.18, are mostly incorrect and can thus 
be safely discarded. In contrast, label predictions in the 
top 10% of scores, above a score value of 0.78, are almost 
entirely in the Top Pool, and can thus be utilized for fully 
automated annotation. For labels in intermediate value 
percentiles, the balance of Top Pool vs. True pool shifts 
gradually. This means, for example, that approximately 
two-thirds of scores in the 50–90 percentiles can be 
trusted as correct labels.

Next, we investigated whether the performance of the 
metadata extraction and suggestion system was limited 
by the amount of training data. To this aim, we analyzed 
performance robustness while progressively reducing the 
training data size. Specifically, we used different percent-
ages of the annotated sentences to train the metadata 
extraction algorithm and quantified in each case True 
Pool accuracy (Fig. 6).

While the performance, as expected, initially increased 
with the amount of training data, it did so steeply, effec-
tively reaching a plateau at approximately 50% of the 
training dataset size used in this work. This means that 
greater amounts of training data would be unlikely to fur-
ther improve the accuracy of metadata extraction using 
the same architecture.

3.2 � Labor automation analysis
An important practical consideration of a semi-auto-
mated labeling system is the trade-off between the 
proportion of data that it can extract and the resultant 

accuracy. To characterize this trade-off, we examined 
the accuracy of all individual terms extracted in the 
test data. The proportion of terms captured within a 
given accuracy is indicative of the amount of work that 
could be saved through automatic extraction. In par-
ticular, this analysis quantifies the potential labor sav-
ing of semi-automated suggestions and fully automated 
recommendations as a function of desired accuracy 
(Fig. 7).

If we require, for example, an overall accuracy of 75% 
or more, full automation could identify the exact target 
entity for 50% of terms, whereas a hybrid computer-
assisted suggestion system would include the right term 
within a pool of suggestions in 80% of cases, leaving only 
the remaining 20% for human annotators to find from 
scratch (Fig.  7A). Notably, labor saving differs by meta-
data dimension. For instance, with an accuracy of 90%, 
the extraction system could pinpoint 90% of the target 

Fig. 5  A Frequency of term scores for terms in the Top Pool, True Pool, and in neither (missed labels). B Accuracy as a function of term score and 
corresponding term score percentile

Fig. 6  Overall accuracy as a function of training dataset sizes
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species (Fig. 7B) as the first choice; however, it could only 
find 60% of the experimental conditions (Fig.  7D). This 
means that the metadata suggestions could be accepted 
with different levels of confidence depending on their 
category.

3.3 � Integration with other portals and deployment 
for NeuroMorpho.Org

One main objective of this metadata extraction system 
is to interact with other previously developed Neuro-
Morpho.Org functionalities, specifically the literature 
portal [25] and the metadata management systems [7]. 
Accordingly, we designed an API, named NeuroNER, 
that hosts the trained architecture and awaits requests 
from other servers to fulfill (Fig.  8). In particular, when 
the literature portal finds a new relevant publication for 

NeuroMorpho.Org, it sends to NeuroNER links to the 
full-text and related information, including PubMed ID, 
digital object identifier, publisher, authors, and affilia-
tions. After receiving the request, the API then processes 
these data to extract the metadata labels from the full 
text, sort them based on their score, and saves the result-
ant information in a local database. When a user requests 
this information on the metadata portal, NeuroNER 
posts back the JSON formatted data (Fig. 8A).

We have also upgraded the metadata portal to display 
the information received from NeuroNER as a list of sug-
gestions for different metadata categories, sorted and 
color-coded by score (Fig.  8B). Hovering over the sug-
gestions with the mouse cursors pops up the score value 
and color codes. Clicking on a suggestion selects that 

Fig. 7  Labor automation analysis. A Fraction of labels identified by the metadata extraction system across all metadata categories as a function 
of identification accuracy. The green curves represent all suggested terms regardless of rank (True Pool), while the blue curves represented 
the recommended terms only if they appear at the highest rank (Top Pool). Same analysis broken down by species (B), brain region (C), and 
experimental condition (D)
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label and overwrites previous annotations in the same 
category.

4 � Discussion
Proper curation, interpretation, and analysis of neurosci-
ence information are crucial for the continuous growth of 
neuroinformatics efforts, such as advanced data reposi-
tories and large-scale brain modeling projects. However, 
manually sifting through thousands of peer-reviewed 
articles for detailed metadata is a burden with small or no 
reward. To facilitate this process for the practitioners, we 
adapted and expanded a state-of-the-art deep learning 
tool to implement a text mining application for detect-
ing, tagging, and ranking neuroscience named entities 
in the context of NeuroMorpho.Org. Our work demon-
strates that increasingly widespread machine learning 
techniques in natural language processing are useful for 
extracting neuroscience information from the unstruc-
tured text of research publications. Progressively auto-
mating metadata retrieval can considerably aid the efforts 

of neuroscientists in their daily curation tasks. This work 
characterized the application of information extraction 
for the specific curation needs of NeuroMorpho.Org. 
However, most other knowledge data repositories and 
informatics projects that rely on literature-mining and 
information extraction can likewise benefit from a simi-
lar approach and implementation as described here. A 
prime example in this regard is the curated knowledge 
base of neuron types in the hippocampus circuits, Hip-
pocampome.Org [45].

Several relevant efforts have been described to aid the 
metadata extraction and annotation process. Those previ-
ous works differ from the system described in this report 
in terms of design, implementation, resource manage-
ment or usage, and do not fully satisfy the curation needs 
of NeuroMorpho.Org. For example, PubTator is a web-
based application that assists in the prioritization, cura-
tion, and annotation of articles with a focus on molecular 
concepts, such as genes, proteins, chemicals, and muta-
tions [43]. Its usage of predefined packages, dictionaries, 
and rules to extract bio-entity terms and their relations 
makes it impractical to extend to a different domain. 
Another project, WhiteText, uses NLP to recognize solely 
mentions of brain anatomy in neuroscience text with the 
goal of automatically extracting regional connectivity 
information, without covering other metadata categories 
[13]. The widely used ModelDB repository of neurosci-
ence models [17] implemented an automated suggestion 
system using manually curated regular expression-based 
rules to facilitate annotation [26]. This approach yielded 
79% precision when tagging metadata from abstracts, but 
only 41% from the full text, which is insufficient for the 
needs of NeuroMorpho.Org. The odMLtables is a com-
plement to the open metadata Markup Language (odML) 
framework for managing neurophysiological metadata 
[41]. This effort focuses on unifying the format utilized to 
annotate metadata rather than with information extrac-
tion per se.

Unrestricted access to mined metadata on publicly 
shared repositories is vital to enable reproducibility, rep-
licability, further scientific exploration, and data-driven 
computational modeling [5, 14, 33]. Within the domain 
of neural morphology, recent developments include 
detailed statistical analyses enabled by machine learning 
[8] and tools for organizing large amounts of data based 
on arbitrary combinations of user-selected metadata [1]. 
More broadly, the prominence of such endeavors is con-
tinuously growing in neuroscience [3].

In the longer term, we envision a fully autonomous 
system capable of automatically extracting all relevant 
metadata for a dataset from the related peer-reviewed 
article without any human input and with the accuracy 
of domain experts. The work described in this report 

Fig. 8  A API interactions between NeuroMorpho.Org functionalities. 
When a relevant article is identified, the literature portal sends a 
request to the NeuroNER API with a pointer to the article identifier. 
The API then processes the request and sends the extraction labels 
back to the metadata portal. B Enhanced graphical user interface 
of the metadata portal. For different metadata dimensions (e.g., 
species and sex), the web form now shows a sorted list of clickable 
suggestions automatically extracted from the article text. The 
color coding reflects the level of confidence associated with the 
suggestion: green (recommended): score ≥ 0.78; blue (suggested): 
0.78 > score ≥ 0.45; scores below 0.45 are discarded
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represents substantial progress toward this goal and 
reveals the extent of the remaining challenges. On the 
one hand, our existing system demonstrated excellent 
performance in identifying the correct label when it is 
mentioned in the publication full text (~ 98% accuracy). 
On the other, the system is not yet equipped to recognize 
when the article does not provide suitable information 
to annotate a given metadata category (not reported or 
not applicable cases), which occurs for 14.6% of entries. 
Moreover, in a majority, but not in the totality, of cases 
does the target label rank at the top of the scores among 
the identified term for that metadata category. As a com-
bined effect of these factors, at present the overall accu-
racy for fully automated usage falls to ~ 62%, which is 
insufficient for the expectations of the NeuroMorpho.
Org community. Despite this shortcoming, the described 
system is already useful as a computer-assisted sugges-
tion system, and when deployed as such can halve the 
annotation labor.

Our analysis demonstrated that the performance limits 
of this approach cannot be overcome by simply increas-
ing the training dataset size. Thus, we are consider-
ing alternative strategies to extend this effort in future 
upgrades. One long-term possibility is to incorporate 
NeuroMorpho.Org’s new similarity search engine [22] to 
augment the metadata suggestions based on the resem-
blance of the actual neural reconstructions. The rationale 
behind this idea is that neurons with similar morpho-
logical attributes would tend to have matching metadata 
characteristics, e.g., in terms of animal species, brain 
region, and cell type, but also experimental protocol [38]. 
An alternative or additional improvement could leverage 
statistical correlations within and among different meta-
data dimensions, which can be extracted from the Neu-
roMorpho.Org database [32]. These potentially predictive 
relations could reflect hard biological constraints (e.g., if 
the neuron type is pyramidal, the anatomical region can-
not be retina) or soft sub-community preferences (e.g., 
Knossos is the most popular reconstruction software to 
skeletonize neurons from electron microscopy).

The semi-automated suggestion system introduced in 
this work constitutes a foundational first step in the direc-
tion of seamless, machine-driven metadata annotation 
for NeuroMorpho.Org. Increasingly autonomous cura-
tion reduces the burden for human experts and enables 
continuous growth toward ever larger datasets, ushering 
in the big science era of computational neuroscience.
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