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Abstract 

Autism spectrum is a brain development condition that impairs an individual’s capacity to communicate socially and 
manifests through strict routines and obsessive–compulsive behavior. Applied behavior analysis (ABA) is the gold-
standard treatment for autism spectrum disorder (ASD). However, as the number of ASD cases increases, there is a 
substantial shortage of licensed ABA practitioners, limiting the timely formulation, revision, and implementation of 
treatment plans and goals. Additionally, the subjectivity of the clinician and a lack of data-driven decision-making 
affect treatment quality. We address these obstacles by applying two machine learning algorithms to recommend 
and personalize ABA treatment goals for 29 study participants with ASD. The patient similarity and collaborative filter-
ing methods predicted ABA treatment with an average accuracy of 81–84%, with a normalized discounted cumula-
tive gain of 79–81% (NDCG) compared to clinician-prepared ABA treatment recommendations. Additionally, we assess 
the two models’ treatment efficacy (TE) by measuring the percentage of recommended treatment goals mastered by 
the study participants. The proposed treatment recommendation and personalization strategy are generalizable to 
other intervention methods in addition to ABA and for other brain disorders. This study was registered as a clinical trial 
on November 5, 2020 with trial registration number CTRI/2020/11/028933.
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1  Introduction
Autism spectrum disorders (ASD) prevalence in the US 
(United States) is estimated at 1 in 44 children [1], a rise 
from previous figures of 1 in 54. Given the brain’s high 
neuroplasticity in the first 5 years [2], gold-standard 
ABA intervention [3] can improve the skills of chil-
dren with ASD enhancing their language, life skills 
[4, 5], and IQ (intelligence quotient) [6]. ABA inter-
ventions have demonstrated impactful outcomes for 
a wide range of children with ASD and also with other 
brain disorders such as ADHD [7], cerebral palsy [8] in 

multicultural environment [9]. Intensive ABA interven-
tion can improve challenges related to adaptive behavior, 
ASD severity, and academic performance [10–12]. Addi-
tionally, ABA therapies in low-resource countries have 
enhanced skill acquisition and inclusion possibilities [13] 
for ASD children. However, there is an acute shortage of 
certified ABA professionals [14, 15], doctors specializ-
ing in child and adolescent brain disorders and clinicians 
practicing evidence-based intervention methods such as 
EIBI [10], occupational therapy [16], and speech therapy 
[17]. The shortage of clinicians impacts the access, reach, 
and affordability of treatment services, especially in low-
resource settings, where approximately 80% of children 
diagnosed with ASD live [18]. Further, the limited avail-
ability of licensed ABA clinicians impacts the quality 
of the baseline ABA program and its subsequent revi-
sions during the patient treatment journey [19] limiting 
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rehabilitation outcomes for ASD children. The above 
limitations underscore the importance of technological 
advancements, particularly in developing technology-
driven personalized ABA recommendation systems (RS), 
enhancing therapist capacity [20, 21] and intervention 
quality, disencumbering both caregivers and healthcare 
professionals of the challenges they face. Additionally, 
there is growing interest in applying ML algorithms to 
the field of brain disorders and mental health [22, 23]. 
The application of ML on the large clinical data [24] can 
ensure trustworthy and efficient healthcare decisions 
benefiting both patients [25, 26] and providers [27]. Per-
sonalization facilitated by ML has become engrained in 
our daily interactions with a variety of digital systems 
[28], including e-commerce [29], movie recommenda-
tions, exercise advice [30], and therapy recommendations 
[31]. Thus, personalized RS in ASD management can uti-
lize patients’ medical meta-data and assessment records 
to recommend personalized treatment prescriptions 
to improve their well-being that would not be achiev-
able through conventional procedures [32]. Due to the 
established efficacy of RS and a desire to overcome the 
limitations of the traditional ABA intervention model, we 
conducted a first-of-its-kind pilot study evaluating the 
effectiveness of RS with treatment personalization capa-
bilities. We used assessment records, sociodemographic 
data such as age and gender [33, 34], and 6-month longi-
tudinal treatment data from 29 ASD children.The paper 
is organized with a Literature review in Sect. 2, followed 
by a Materials and methods in Sect. 3. We then present 
Results in Sect. 4 followed by Discussion and conclusion 
in Sects. 5 and 6, respectively.

2 � Literature survey
This section highlights literature on the related work with 
the following subsections. Sect.  2.1 highlights various 
assessment scales used in the assessment of brain disor-
ders. Sect.  2.2 highlights the role of technology in ASD 
management. In addition, Sect.  2.3 discusses the use of 
patient similarity models on multimodal clinical data. 
The Sects. 2.4 and 2.5 discuss ML-based treatment rec-
ommendation and personalization methods.

2.1 � Brain disorders and assessment scales
Numerous evaluation techniques, including struc-
tural and functional neuroimaging [35], brain electro-
physiology [36], molecular genetics [37], and clinical 
assessments [38, 39] across cognitive and behavioral 
dimensions, are crucial for improving diagnostic preci-
sion for various brain disorders. fMRI is the non-invasive 
technique for assessing the functioning of various brain 
regions responsible for critical functions such as thought, 

speech, movement, and sensation. The technology ana-
lyzes functional brain anatomy, assesses the effects of 
stroke, stress, or retrogressive disease (such as osteo-
porosis or cancer) on brain function, and examines the 
progression and function of brain tumors [40, 41]. Addi-
tionally, the approach aids in planning invasive therapies 
such as brain surgery. An EEG records brain wave pat-
terns that can assist a physician in identifying aberrant 
patterns indicative of seizures and other difficulties with 
brain function. EEGs can be used to diagnose problems 
such as sleep disorders [42] and behavioral disturbances 
and analyze brain activity following a severe head injury. 
The researchers have used genetic testing to determine 
whether the person inherited one of the known genes 
associated with the brain disorder [40]. Additionally, clin-
ical testing can find mutations in specific genes or sets of 
genes to establish a specific brain disorder diagnosis or 
provide information to clinicians to make treatment rec-
ommendations. Behavioral assessments on the physio-
logical, cognitive, motor, speech or socio-communication 
components of behavior can facilitate diagnosis, severity, 
and treatment design for various brain disorders. These 
assessments increasingly use validated rating scales to 
document and record patient responses against a set 
of questions or record participant behavior responses 
against activities or tasks. These assessment scales have 
been deployed to make diagnoses and treatment road-
map for conditions such as Parkinson [43], Alzheimer 
[44], multiple sclerosis [45], dementia in the elderly [46], 
ADHD [47], and ASD [48, 49].

2.2 � Role of technology in ASD management
Modern medicine faces difficulty utilizing the exten-
sive knowledge base required to diagnose and treat 
complicated mental health issues. With the abundance 
availability of structured and unstructured data, ML is 
increasingly deployed to manage multiple mental health 
conditions [27], such as epilepsy [50], and Alzheimer 
[51]. ML is a collection of algorithms that infer meaning-
ful patterns from data without requiring human interven-
tion [52]. The goal of ML is to replicate human cognitive 
functions. The ML application brings a paradigm shift in 
the healthcare sector with early diagnosis [51], personal-
ized treatment [53], and drug discovery [54] by analyzing 
extensive data, improving access and quality of services 
to manage multiple health conditions. Recently, there has 
been a rise in studies involving ML in managing men-
tal health conditions [55]. For example [56], developed 
a solution to promote adherence to the consumption of 
drugs to manage conditions such as schizophrenia. Ref. 
[57] identified persons at CHR of developing psychosis 
using web-based risk screening. ML can be used to detect 



Page 3 of 25Kohli et al. Brain Informatics            (2022) 9:16 	

depression by identifying putative fMRI biomarkers of 
vulnerability to major depression [58]. The application of 
technology-focused solutions has played an essential role 
in managing ASD. The application of DL technologies 
to diagnosing brain disorders is emerging as a new area 
of research. Ref. [59] generated virtual brain networks 
using fMRI data and developed a unique CNN to diag-
nose ASD. Ref. [60] tracked the eye movements of indi-
viduals with and without ASD while they browsed web 
pages. They trained machine learning classifiers on visual 
processing data patterns and predicted ASD 74% accu-
rately. Further [61], used ML models to build a behavior-
based automated screening using video and audio data 
to identify 8–24 months HR-ASD infants. Typically, 
children with ASD have poor IJA skills. Young children 
usually perceive IJA through nonverbal gestures such 
as pointing, sharing, showing, and collective gaze [62]. 
Ref. [63] developed an immersive C3I platform to assist 
youngsters with ASD to practice IJA skills. The plat-
form incorporates a caregiver into the instructional loop, 
retaining the benefits of both human-administered and 
computer-administered intervention. Further, socially 
assistive robots may aid in treating ASD by training social 
skills through games that utilize dyadic interactions. Ref. 
[64] created a robotic coaching platform to improve the 
social, physical, and cognitive skills of ASD children.

2.3 � Patient similarity
The traditional one-size-fits-all clinician-centric decision 
model has evolved to a data-driven predictive framework 
[65]. The new paradigm incorporates patient-centric tai-
lored disease onset risk computation, treatment predic-
tion, dosage recommendations, and treatment revisions 
depending on disease severity, progression, and symp-
toms [66, 67]. Several machine learning-based patient 
similarity models are constructed based on multimodal 
data that capture disease onset, severity, symptomology 
and track disease evolution with various treatment com-
binations [68]. An individualized treatment or diagnostic 
framework includes methods to compute the similar-
ity between a new patient and an existing large pool of 
patients [69] in the EMR. Several distance metrics such 
as Euclidean, Mahalanobis, and cosine are computed 
using the patient’s sociodemographic and clinical evalu-
ation meta-data to derive patient similarity scores [70]. 
Most patient similarity models incorporate clinician-rec-
ommended disease-specific features that can be assigned 
weights [71] according to their importance. Further, by 
mapping disease subtypes [72] to an individual patient’s 
risk exposure [73], the patient similarity framework has 
resulted in the CDS framework [74] for early risk iden-
tification. For example, to predict the onset of diabetes, 
[71] shortlisted clinically relevant features, identified 

similar patients using LSML from the cohort, calcu-
lated risk score, and individualized risk profile for a new 
patient. Additionally, patient subgroups that may ben-
efit from one treatment over another can be identified, 
establishing the efficacy and personalization of drugs and 
therapies [75] for a patient. Additionally, time series and 
clustering [68] are two techniques for identifying compa-
rable patients based on meta-data from temporal clini-
cal evaluations. The clustering method generates patient 
groups [53, 76] with comparable disease progression and 
clinical data patterns to predict whether a new patient 
will belong to the most similar cluster. For example, adult 
spinal deformity patients were classified using hierarchi-
cal clustering [77] to help surgeons optimize treatment 
and identify the least risky surgical choices. Further [78], 
constructed a two-dimensional RNN that learns patient 
similarity from longitudinal and multimodal data and 
improves recommendations and outcomes for Parkin-
son’s intervention. One of the difficulties of deploying 
supervised learning techniques is the time and expense 
associated with data labeling. [79] overcame the limita-
tion by employing a weak supervision method. Cancer 
patients’ disease-subgroup classification was performed 
using supervised learning techniques and then integrated 
with unsupervised learning methods as a patient similar-
ity vector. This resulted in several cluster groups useful 
for a precision treatment analysis.

2.4 � Treatment recommendation
Previous treatment recommendation systems classified 
diseases and medications using expert systems, support-
ing physicians in making more informed clinical judg-
ments. However, with the introduction of EMRs [69] and 
the availability of a large amount of clinical data, real-
time data-driven treatment guidance is finding preva-
lence [80]. Finding historical records of similar patients 
may aid in finding comparable reference cases for antici-
pating clinical outcomes and may provide a mechanism 
for heterogeneous label propagation to shortlist effec-
tive drugs and treatment regimens for a new patient. 
The primary data-driven treatment recommendation 
research methodologies are supervised learning (SL) and 
reinforcement learning. The goal of SL for prescriptions 
is to bridge the gap between the algorithm’s suggested 
medications and those advised by physicians. Numerous 
pattern-based algorithms [75] create prescription sug-
gestions based on patient similarity and improve recom-
mendation outcomes by learning associations between 
several diseases and multiple medication categories 
[81]. Precision treatment in mental health is a promis-
ing technique to boost psychotherapy’s efficacy. The 
therapy recommendations could be incorporated into a 
comprehensive treatment navigator to assist clinicians in 
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making more informed clinical judgments and improving 
patient outcomes [82]. Unfortunately, there are two chal-
lenges with SL-based model recommendations. The first 
challenge is establishing the empirical basis for a "good” 
treatment plan defined by the medical literature. Sec-
ond, the clinical decision system’s primary objective was 
to enhance patient outcomes, rather than matching pre-
scriptions to a class label, usually ignored by the SL tech-
nique. Further, applying these methodologies to clinical 
practice presents difficulties due to their reliance on a 
small amount of data.

2.5 � Treatment personalization
The researchers are interested in establishing models 
that enable them to make tailored treatment suggestions. 
Without the supervisor’s oversight, the RS may prescribe 
markedly different medicines from those suggested by 
clinicians, offering unacceptable hazards [83]. These limi-
tations can be managed using reinforcement learning for 
DTR [84] that can generate tailored treatment depending 
on a patient’s dynamic state over time. The appropriate 
DTR is obtained by optimizing the assessment signal to 
ensure long-term treatment effectiveness. For example 
[85], employed tabular Q-learning to make drug recom-
mendations based on actual clinical data for schizophre-
nia patients. Collaborative filtering (CF), often used in an 
e-commerce platform, creates personalized recommen-
dations based on user similarity by calculating a weighted 
average of user and item preference interactions [86, 
87]. Most collaborative filtering systems use similarity 
indexes to assess the active user’s similarity to other users 
via a neighborhood-based method. Additionally, the 
CF models can automatically learn feature embedding 
rather than manual feature engineering. In a healthcare 
scenario, we can presume that individuals with compara-
ble disease profiles or health concerns will receive simi-
lar treatments services in the healthcare domain based 
on a sparse, multi-dimension, and missing value utility 
matrix [88]. For example [89], used the CF technique to 
develop personalized recommendations to manage dia-
betic conditions. The patient’s age and vitals are analyzed 
to identify similar patients. Then using pre-treatment 
assessment and longitudinal treatment data, state-of-the-
art supervised, collaborative, and content-filtering ML 
algorithms efficiently predict treatment goals, personali-
zation, and effectiveness across time horizons.

3 � Material and methods
The study participant enrollment details are listed 
in Sect.  3.1, treatment planning and goal setting in 
Sect.  3.2 and study design in Sect.  3.3. We discuss the 

implementation of two ML algorithms for treatment rec-
ommendation and personalization in Sect. 3.4.

3.1 � Study detail and participants
The trial is based on a pre-post single-group design 
approved by the Indian Institute Of Technology, Delhi’s 
Ethics Committee, and registered with India’s clinical 
trial registry (CTRI/2020/11/028933). The study lasted 
from November 2020 to October 2021 and enrolled 31 
ASD children aged 2 to 6 years diagnosed with stand-
ardized tools such as DSM-V [90], CARS-2 [91], ADOS 
[49], INDT-ASD [92], or ISAA [93]. The trial had three 
objectives: (1) to develop a behavioral treatment model 
using a digital platform that enhances parents’ and 
experts’ capacity to manage autism spectrum disorders 
better; (2) evaluate the efficacy of digitally delivered 
ABA intervention with parents as primary caregivers; 
and (3) to develop and validate machine learning mod-
els to recommend and personalize behavioral treatment 
plans using longitudinal treatment data of children 
across multiple domains, such as expressive language, 
receptive language, echoic, and requesting. This study 
covers the third objective of the trial. A social media 
campaign and referrals from developmental pediatri-
cians and pediatric neurologists were used to recruit 
study participants. The study enrolled participants for 6 
months and trained parents to play a caregiver role for 
their children by requiring them to attend weekly 1-h 
online consultations and training sessions with ABA 
therapists. The sociodemographic data, including age, 
gender, ethnicity, and ASD diagnosis for participants, 
were collected. From each family, informed consent 
was recorded. We did not include two parents for final 
enrollment due to our inability to confirm the child’s 
diagnosis. The entire study was conducted online. The 
final study consisted of 29 participants, including 24 
males and five females, with a mean age of 4.12 years 
and a standard deviation of 0.94 years and age distri-
bution listed in Table 1. The participants reported their 
ASD diagnosis from multiple diagnostic tools. Follow-
ing were the participant inclusion criteria: 

Table 1  Enrollment details

Age group Number 
of 
learners

Two–three years 4

Three–four years 8

Four–five years 12

Five–six years 5

Total 29
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1.	 Children between the ages of 2 and 6 of both sexes.
2.	 Children should have a diagnosis of autism spectrum 

disorder using standardized instruments such as the 
DSM-V, CARS-2, ADI-R, INDT-ASD, ISAA, or any 
other evidence-based ASD diagnostic tool.

3.	 Children who are currently not undertaking ABA 
therapy.

4.	 The families should have access to any one of the 
devices, i.e., IOS or Android-based smartphones, 
desktops, or laptop.

5.	 The willingness of parents to participate in initial 
online training sessions and biweekly online training 
sessions with the therapists.

Following were the exclusion criteria: 

1.	 Children with visual and aural impairments.
2.	 Children with a recent ailment, seizure history, or 

another chronic condition.
3.	 Young children with severe or profound GDD.
4.	 The child and his family do not speak English, Mar-

athi, Bengali, or Hindi.
5.	 A history of traumatic brain injury or another signifi-

cant medical or neurological disorder affecting motor 
or higher cortical function.

6.	 Severe intellectual disability or sensory–motor diffi-
culties.

7.	 Caregivers or parents cannot use mobile, internet, 
desktops, or laptops to access remote training and 
evaluations.

3.2 � Treatment planning and goal setting
The trained ABA therapists worked under the supervi-
sion of a BCBA and delivered parent training, performed 
goal setting and assessments, and updated the ABA pro-
gram after discussing with the participant’s parents and 
family members during weekly meetings. The therapist 
prepared a comprehensive ABA program with written 
instructions and training videos and made it accessible 
via a mobile and web application. Parents used mobile 
or web applications to track their child’s progress, shared 
10–15 min child’s progress videos weekly, and recorded 
responses to skill development treatment goals. At the 
start of months zero, four, and six, the children under-
went a detailed SRS-2 and VB-MAPP assessment. We 
have detailed about SRS-2 [94] and VB-MAPP [95] 
assessment tools in Appendix 1.

3.3 � Study design
Personalized treatment goals for each child is a critical 
component of an ASD treatment strategy. The ABA ther-
apist assessed each study participant’s skills at the start of 

the study using assessment tools such as the SRS-2 and 
VB-MAPP. These assessments suggested participants’ 
strengths and weaknesses and aided ABA therapists in 
developing a treatment plan tailored to each child. The 
therapist prioritized skills to include in the treatment 
plan based on the child’s age, level of functioning, areas 
of skill deficiency, family needs, and available time for 
family members to assume the caregiver role.

The ABA therapist chose the most appropriate skills 
from various domains to be part of the treatment plan, 
including social communication, social skills, academ-
ics, behavior management, and self-regulation. While 
each child’s needs are unique, ABA therapists frequently 
prioritize socio-communication skills to maximize skill 
development in core ASD deficit areas. However, a thera-
pist must choose from a vast repertoire of skills in each 
domain to incorporate them into the treatment plan. As a 
result, ABA therapists’ and supervisors’ experiences and 
subjective judgments are often used to choose and prior-
itize skills to be part of the treatment goal.

ML models can overcome the subjectivity inherent in 
human-centered treatment selection through a data-driven 
approach. We evaluated the role of ML models in treatment 
recommendation and personalization using retrospective 
longitudinal treatment data of the study participants. We 
divided the treatment data into two parts: (1) domain and 
verbal operants, and (2) target codes:

•	 Level 1—Domains [96], and verbal operants [97] such 
as academic language, prerequisites, tacting, manding, 
expressive language, imitation, and receptive language 
lays down the foundation for developing language and 
communication skills. Skill development in various ver-
bal operants is critical for language and communica-
tion development. Ref. [98] assert that developing skills 
within one verbal operant facilitates growth in other ver-
bal operants.

•	 Level 2—Under each domain or verbal operant, a tar-
get code is a skill [99] expected to be learned by a par-
ticipant. Usually, the targets under various domains are 
incorporated into the treatment goal in easy to complex 
chronological order.

We split each child’s retrospective treatment plan into 
a combination of a domain and target codes and imple-
mented patient similarity and collaborative filtering ML 
models. We compare predictions made by two ML mod-
els to the treatment goal prepared by the ABA therapist, 
i.e., the ground truth. We assume that children would 
benefit from ABA treatment goals that have shown suc-
cess to an existing child with similar gender, age, and 
assessment scores. We also compared the effectiveness of 
the recommended treatment from both ML models.
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3.4 � Methods
We implemented and compared two ML methods for 
patient treatment recommendation and personalization: 

1.	 Patient similarity with similar patient skill selection 
using cosine similarity method, and

2.	 Collaborative filtering.

3.5 � Cosine similarity
The cosine similarity coefficient [100] quantifies the simi-
larity of two vectors in an inner product space by comput-
ing the cosine of the angle between them and evaluating if 
the vectors point in the same direction. The coefficient is 
used in text analysis to determine the document’s similar-
ity. When selecting a threshold for similarity, a value more 
than 0.5 [101] indicates strong similarities. We calculated 
cosine similarity and patient similarity metric (PSM) for 29 
patients. PSM is defined as the similarity between two vec-
tors of an inner product space:

PSM(P1,P2) =
P1 · P2

�P1��P2�
,

where P1 and P2 are predictor vectors corresponding to 
two distinct patients, respectively, where P1 is the index 
patient and P2 is the second patient, and finally, the pair-
wise patient similarity metric PSM(P1,P2) is calculated. 
This study aimed to determine whether the patient cosine 
similarity score can aid treatment prediction and person-
alization. The therapist developed a treatment plan dur-
ing the 6-month study duration at regular intervals. At 
various temporal points, we used the patient similarity 
framework to evaluate if treatment similarity concerning 
treatment commonality and effectiveness was observed 
in the study participants with similar patient similar-
ity scores, as illustrated in Fig. 1 [102]. The figure details 
that a large number of patient records exist in EMR. Each 
patient record consists of sociodemographic, treatment, 
and assessment records. A new patient in the EMR is 
compared with the existing patient’s database using the 
cosine similarity Algorithm  1, on sociodemographic 
information and assessment records resulting in the rec-
ommendation of a similar patient cohort. The top three 
patients’ treatment records are suggested to a clinician as 
a treatment recommendation, from which a clinician can 
choose the optimal treatment option for the new patient.

Queried Patient Vector 

Patient Vector

x1 = age

x2 =Gender

x3 = SRS1

x4 = SRS2

x5= VBMAPP1

x6= VBMAPP2

x1
x2

.

.

.

.xn

P1PX
Pn

x11
x21

.

.

.

.
xn1

x1n
x2n

xnn

………………………………
………………………………
……………………………….

.

.

.

.

.

.

.

Cosine Similarity

Top 3 similar patient

EMR Database

Domain & Targets

Accuracy
Precision
Recall
F1 score
AUC

1 2

4

3

Treatment recommendation

Similarity matching with Patient pool

.

.

.

.

.

.

.

.

Patient vectors P1, P2, P3, ……Pn queried from the database

………………………………
………………………………
………………………………

Fig. 1  Patient similarity framework



Page 7 of 25Kohli et al. Brain Informatics            (2022) 9:16 	

We retrospectively analyzed the ABA program devel-
oped by the clinicians for 29 study participants. We 
calculated patient similarity by building vectors that 
included sub-module assessment T-scores of SRS-2 and 
aggregate scores of VB-MAPP along with age and gen-
der. Thus, we evaluate each patient’s relevance to a skill 
that is inherently captured by the feature set and scores 
of SRS-2 and VB-MAPP. We compared individual patient 
treatment goals developed by clinicians with the top 
three similar patients as described in Algorithm  1 on 
commonality and effectiveness measures. Commonality 
refers to the percentage similarity of domains and targets 
in the treatment plan recommended by the ML model 
compared to the manual treatment plan developed by 
an ABA therapist (ground truth). Therefore, commonal-
ity measures prescription similarity, i.e., similar patients’ 
common domain and target codes. Observance of simi-
lar treatment for similar patients could lead the way for 
personalization. Effectiveness measures the percentage of 
ML-based recommended targets that the child mastered. 
We measured effectiveness at the end of months 3 and 6.

Algorithm 1 Patient similarity model
1: Prepare individual vector with SRS-2 (submodule T-Scores),

VB-MAPP, age and gender data for all 29 patients.
2: Compute cosine similarity using individual vector for each par-

ticipant comparing with other participants.
3: Sort similarity scores to get most similar patients for every pa-

tient on a scale [0, 1], with scores closer to 1 having most cor-
respondence. Ignore similarity score < 0.50.

4: Evaluate domain/target code recommendation on a new pa-
tient of interest using commonality and effectiveness.

5: Extract domain/target codes of three closest similar patients.
Compute commonality (recommendation) and effectiveness
(personalization) measures based on recommended domain
codes/target codes among similar patient.

3.6 � Collaborative filtering
We used CF to recommend domain or target codes as 
part of the treatment plan for patients with similar clini-
cal histories, treatment trajectories, and sociodemo-
graphic profiles. As shown in Fig.  2, the CF algorithm 
[103] incorporates demographic data (age and gender 
of patients), longitudinal treatment data and their effec-
tiveness (number of days required to master a skill), and 
assessment data (SRS-2 and VB-MAPP).

The standard CF recommendation models can make 
treatment recommendations based on assessment and 
sociodemographic data available during the initial patient 
enrollment stage with inherent cold-start limitations. 
However, the algorithm can be integrated and optimized 
with treatment effectiveness data to generate recom-
mendations and personalizations during the steady-state 
treatment phase, circumventing the inherent limitations.

We employed the CF-based algorithm recommen-
dation model to create each patient’s user–item inter-
actions with the measure we wish to forecast, i.e., 
treatment goals. Latent information regarding interac-
tions, such as clicks, likes, dislikes, skips, views, and 
purchases, is frequently present in traditional e-com-
merce-based CF-based recommender systems. How-
ever, we observed that our use case lacked explicit 
rating data. Our data are implicit, meaning they do 
not include any external ratings, preferences, or vot-
ings provided by users on domain or treatment codes, 
an item of our recommendation interest. Nonetheless, 
our objective is to capture indirect rating information 
about user–item interactions as an implicit feedback 
system. Therefore, we investigated the relationship 
between patients’ treatment profiles, including soci-
odemographic data (age, gender), domain and target 
codes, treatment duration, and effectiveness (days to 
mastery) as interaction items and as an input vector to 
develop an effective treatment recommendation system 
using CF.

Using CF with implicit feedback alternating least 
square (ALS) technique [103], we can infer a prefer-
ence/rating for each patient–target skill interaction that 
has occurred. Here, we select SRS-2 T-scores as a pref-
erence since it directly relates to the quantitative skill 
measurement criteria linked with domain and target 
code selection.

There are several ways to handle implicit feedback sys-
tems [104, 105]. We use ALS matrix factorization model 
approach [103] in the current study. We are interested to 
model the preference/rating r̂ an user u would give to an 
item i by r̂ui = xTu yi , where xTu = (x1u, x

2
u, ..., x

N
u ) is a vector 

associated with the user (patient), and yTi = (y1i , y
2
i , ..., y

N
i ) 

is a vector associated with the item (skill/target code). 
We define user vectors into a matrix

and item vectors into a matrix
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and user–item ratings as the interaction matrix R̂ approx-
imating true R

Using a simple Boolean variable denoted pui , we want to 
determine whether a patient u has a preference for skill 
(domain and target codes) i.

For each patient, the SRS-2 T-scores is interpreted 
as rating/confidence in the model. Following the idea 
of matrix factorization [103, 106, 107], we find an user 
(patient) vector xu for each user u and an item (skill) vec-
tor yi for each item i so that pui ∼ xTu yi.

We try to minimize the L2 cost function in Eq. 1:

where the constant � is the regularization parameter that 
helps to penalize the large-magnitude components of 
the matrices X and Y for numerical stability. The more 
a patient interacts with a skill, the more we penalize 
our model for incorrectly predicting pui . If a patient has 
never interacted with a skill, it is possible that pui = 1 
and the skill are not part of the treatment plan. To over-
come the challenge, we defined the degree of confidence 
cui depicted by Equation 2:

where α is a model parameter that must be tuned on our 
data. There is empirical evidence [103] that the sparsity 
ratio (the ratio of nonzero entries to zero entries) thresh-
old value serves as a benchmark and that missing entries 
are frequently regarded as somewhat negative, suggest-
ing that alpha balances positive and negative interac-
tions. Our data have a sparsity ratio of 0.94, which is 
less than the critical value of 0.995, above which model 
performance declines significantly. The implementation 
of the implicit Feedback ALS is discussed in detail in 
Algorithm 2. We used 80% of user and item vectors for 
the training algorithm and masked 20% of items to blind 
validate model performance. Our goal is to minimize 
Cimplicit by keeping user vectors fixed and solving the 
quadratic equation for item vectors decreasing Cimplicit . 
Now, we alternatively keep item vectors fixed and solve 
the quadratic equation  1 for user vectors until Cimplicit 
converges to the global minimum. Table  2 highlights 
ALS model training parameters. We added a regulariza-
tion term with a value of 10 to make the trained model 
less scale-dependent. We can expect similar performance 

R̂ := ( ˆrui) := XYT .

(1)

Cimplicit :=
∑

u,i∈observed interactions

cui(pui − xTu yi)
2

+�(
∑

u

�xu�
2 +

∑

i

�yi�
2),

(2)cui := 1+ αrui,

if we apply the best parameter learned from a sampled 
subset to the entire dataset. We evaluate the model’s 
recommendation on masked user and item vectors to 
determine the most appropriate treatment recommen-
dation outcomes (domain/target code) for the user, i.e., 
the study participant. The number of latent factors that 
should be recommended for both the domain and tar-
get codes was determined using cross-validation. These 
variables influence the amount of abstract data stored in 
a two-dimensional space. A matrix factorization based 
on a single latent component is analogous to a recom-
mender system that automatically recommends the items 
with the highest number of interactions. Increasing the 
number of latent factors improves personalization up to 
a point where the model overfits. We chose 22 and 20 
as the optimal latent factor values for domain and target 
code recommender models, respectively, as specified in 
Table 2.

Algorithm 2 Implicit Feedback ALS
1: Initialize user vectors
2: For each item i, let pi be the vector whose components are pui

and let Ci be the diagonal matrix with cui for fixed u along
the diagonal. Let di = Cipi, Compute

yi = (XTCiX + λI)−1XT di

3: For each user u,let pu be the vector whose components are
pui and let cu be the vector whose components are cui. Let
Cu be the diagonal matrix with cu along the diagonal, and let
du = Cupu. Compute

xu = (Y TCuY + λI)−1Y T du

4: Repeat steps 2 and 3 until convergence.

4 � Results
The results of the commonality and treatment effective-
ness measures are presented in Sects. 4.1 and 4.2, respec-
tively. In each subsection, we present the results of two 
machine learning models: patient similarity and collabo-
rative filtering.

Table 2  Implicit feedback ALS model training parameters

Parameter Target code Domain code

Number of latent factors 20 22

Regularization 0.10 0.10

Iterations 200 150
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4.1 � Commonality measure
This subsection discusses the results of the commonal-
ity and other evaluation metrics for patient similarity and 
the CF machine learning models.

4.1.1 � Patient similarity
In the first step, we compute each participant’s similar-
ity to the top three other study participants using the 
cosine similarity [100]. We further compute commonality 
scores as listed in Table 5 for each participant,and evalu-
ation metrics on five measures in Tables 3 and 4 referring 
to the top three similar participants for domain and tar-
get recommendations, respectively. The five evaluation 
measures are precision, recall, accuracy, F1 score, and 
AUC. These measures incorporated computation of true 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN), denoting a recommender system’s 
outcomes compared to the ground truth. The items for 
evaluation metrics are defined below.

•	 Precision [108] is a ratio of accurately predicted posi-
tive recommendations (TP) to all positive recom-
mendations (TP+FP). Precision may be expressed 
mathematically as the following equation, and the 
optimal precision value for an ideal recommender 
system is 1. The average precision outcome for 29 
research participants, considering the top 3 similar 

participants, was 0.64–0.92 for domain recommen-
dations and 0.85–0.90 for target suggestions. Given 
that targets are a subset of the domain, it is reasona-
ble to predict that the joint probability distribution of 
target recommendation is dependent on the success-
ful recommendation of domain code as a first step of 
the treatment plan: 

•	 Sensitivity or recall [108], is computed as the ratio of 
accurately predicted positive recommendations (TP) 
to actual positive recommendations (TP+FN) and is 
denoted by the mathematical formula below. Similar 
to precision, recommendations with a recall score of 
one are optimal. It is critical to obtain a true-positive 
outcome in medical and clinical studies, emphasizing 
the critical role of evaluation criteria, specifically pre-
cision and recall. The higher the precision and recall 
values, the more robust the recommendation out-
come is. The average recall values were near-perfect 
1 for the domain level and 0.96 for the target level, 
suggesting the recommender’s robustness: 

Precision =
TP

TP+ FP
.

Recall =
TP

TP+ FN
.

Correlation Match

Age 4 y
Gender              M
T Score SRS     75
Target Code      3.5
Duration (days) 25 
…………….   
…………….     
VBMAPP            69

Age 3 y
Gender               F
T Score SRS     70
Target Code      4.5
Duration (days) 35 
…………….        
…………….      
VBMAPP            89

Age 5 y
Gender               M
T Score SRS     95
Target Code      9.5
Duration (days) 95 
…………….       
…………….          
VBMAPP            99

Age 9 y
Gender               F
T Score SRS      85
Target Code      7.5
Duration (days) 85 
…………..……..
…………………       
VBMAPP            89

Age 9 y
Gender               M
T Score SRS      55
Target Code      3.5
Duration (days) 15 
…………………..
………………….        
VBMAPP            69

Age 4 y
Gender               M
T Score SRS      75
Target Code      3.5
Duration (days) 65 
………..……..
…………….          
VBMAPP            69

Age 4 y
Gender              M
T Score SRS     75
Target Code      3.5
Duration (days) 35 
………………..
………………..       
VBMAPP            69

Age 3 y
Gender               M
T Score SRS     65
Target Code      3.5
Duration (days) 35 
………...……..
…………….      
VBMAPP            69

Age 4 y
Gender               M
T Score SRS      95
Target Code      3.5
Duration (days) 35 
…………………..         
……..………
VBMAPP            69

Expert 
recommendation

Queried Patient

EMR / USER Database

Target code 

Fig. 2  Collaborative filtering method for domain and target code recommendation
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•	 Accuracy  [108] is computed as the count of accu-
rate suggestions (TP+TN) divided by the total 
count of suggestions (TP+TN+FP+FN) and is 
expressed mathematically below. One disadvantage 
of the accuracy metric is that it ignores the com-
plexities of class imbalances and the various costs 
of false negatives and positives. However, accu-
racy measures suggest how closely the evaluation 
criteria used by study participants match popula-
tion characteristics, indicating that the research is 
generalizable, dependable, and valid. The accuracy 
outcomes for domain and target recommendations 
were substantial, ranging between 0.72–0.94 and 
0.83–0.87: 

•	 The F1 score [108] is the harmonic mean of preci-
sion and recall. The F1 score is a more robust metric 
than accuracy since it considers the specific costs 
of false positives and negative recommendations 
based on unequally dispersed healthcare class data. 
A high F1 score suggests that the recommendation 
system is robust and produces few false positives 
and negatives. F1 can be represented numerically 
using the following equation. While the F1 score 
for domain code suggestions was moderate, rang-
ing between 0.78 and 0.96, we discovered robust 
treatment recommendations for targets, ranging 
between 0.90 and 0.93. The results auger well from 
a clinical perspective as targets are incorporated as 
a part of the treatment plan to overcome deficits in 
social communication, academics, prerequisites, 
and behavior management for study participants: 

•	 The area under the curve-receiver operating char-
acteristics (AUC-ROC) [108] score determines the 
ML model’s robustness. AUC values of 0.5 indicate 
that recommendations are random, values between 
0.6 and 0.8 indicate that recommendations were 
good, values between 0.8 and 0.9 indicate that rec-
ommendations were excellent, and values greater 
than 0.9 indicate that recommendations were out-
standing. ROC curves are frequently employed 
to illustrate the trade-off between sensitivity and 
specificity for all conceivable cut-off values in a 
test. The optimal cut-off has high true-positive 
and low false-positive rates. The X-axis indicates 
the false-positive rate, and Y-axis depicts the true-
positive rate. Additionally, AUC scores are crucial 

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
.

F1 =
2*TP

2*TP+ FP+ FN
.

for medical research since they provide a relevant 
interpretation regarding the commonality meas-
ure. The AUC values for the domain were modest, 
ranging between 0.65 and 0.74, but the AUC scores 
for targets were outstanding, ranging between 0.78 
and 0.80. The AUC-ROC curves for the top three 
patients for domain and target codes are shown in 
Figs. 3 and 4, respectively.

The commonality metric displayed in Table 5 suggests 
a percentage accuracy of the recommended domain 
and target for each participant compared to those built 
by clinicians (ground truth). The findings suggest that 
all participants recorded a minimum of 65% percent 
commonality, implying that the recommendations are 
acceptable.

We observed a broad domain recommendation accu-
racy range for the participants. The result suggests 
greater than 90% commonality for six participants, 
80–90% for thirteen, 70–80% for seven, and less than 
70% for three participants. The domain recommendation 
metric had a more pronounced frequency distribution 
than the target recommendation metric.

Similarly, for target recommendations, we observed 
between 80-90% commonality for 24 participants, 
greater than 90 and less than 70 for 2 participants each, 
and between 70 and 80% for one participant. These val-
ues suggest that the outcomes of ML models are stable 
and consistent in their performance. Further, the aver-
age commonality score for domain and target codes was 
82.86 and 84.07 for all 29 participants.

4.1.2 � Collaborative filtering
Precision, recall, and the F1 score metrics can assess 
a recommendation system’s robustness [68, 108, 109]. 
These measures aid clinicians in making sound judg-
ments about the dependability of therapy recommen-
dations and implementing them into treatment plans. 
However, these evaluation metrics are global and apply 
to the entire data set, rather than focusing exclusively 
on the “Top-N” most appropriate recommended items. 
For example, if a clinician is presented with a list of 100 
treatment goals, the first 5, 10, or 20 are the most criti-
cal and are most likely to be evaluated by the clinician. 
As a result, ranking the recommendation system’s results 
is critical. Therefore, the standard evaluation outcomes 
have to be constrained top-n bound into rank-aware met-
rics to increase their precision and recall in the context of 
a recommendation system. Precision@N and Recall@N 
can be used to accomplish this with top N recommenda-
tions with results comparable to those of precision, recall, 
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Fig. 3  ROC curve for domain recommendations
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Fig. 4  ROC curve for target recommendations
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and F1 measures. Additionally, top-n bound rank-aware 
evaluation metrics can prioritize critical items extremely 
high on the list of recommendations using two distinct 
metric families approach. The first is a binary classifica-
tion metric that determines whether a treatment recom-
mendation is appropriate or not. The second metric is 
utility-based, quantifying recommendation item’s abso-
lute or relative relevance and ranking them according 
to their appropriateness. We evaluate in Tables  6 and 7 
recommendation outcomes of the collaborative filtering 
model on three evaluation metrics, P@k, MAP@k, and 
NDCG@k (with k=5). The value of k=5 resulted in the 
best psychometric outcomes compared to the outcomes 
of k = 1, 3, 5, 10, and 20.

The items of evaluation metrics are detailed below. We 
calculated P@K, k=5, by taking the participant’s top five 
recommendations and counting the number of relevant 
recommendations matched with ground truth. This 
number divided by k yields the P@K:

•	 Precision@k(P@k) [110] is proportion of recom-
mended items in the top-k set that are relevant. For 
domain and target suggestions, we observed robust 
outcomes of 0.77 and 0.85 for P@5. The accuracy 
of recommendations was higher for targets than for 
the domain, which clinically bodes well as targets are 
part of treatment goals to overcome participants’ skill 
deficits: 

•	 Average Precision@k (AP@k) is the number of top-k 
relevant items recommended of m total items [111]. 
AP@K is calculated for a single user. To find AP@K, 
for example, we added P@1, P@2,..., and P@K and 
divided that by k: 

 where rel(k) indicates whether k th  item was rel-
evant or not.

•	 Mean Average Precision@k(MAP@k) is the average of 
AP@k over all users U [112] and can be represented 
with the following equation: 

 To calculate MAP@k, we added the AP@k val-
ues for all users and divided them by the number 
of study participants (k). For domains and target 

P@k =
Number of recommended items @k that are relevant

Number of recommended items @k
.

AP@k =
1

m

N
∑

k=1

P(k) · rel(k),

MAP@k =
1

|U |

N
∑

u=1

AP@k.

recommendations, the MAP@5 results were almost 
similar, with values of 0.75 and 0.77, respectively.

•	 Cumulative Gain@k (CG@k) is the sum of the gains 
associated with the first k recommended items in 
any sequence. Gain is the score assigned to each 
recommended item based on its relevancy, and CG 
is the sum of all recommendation outcomes graded 
relevance scores [113]. The challenge with CG is 
that it ignores the result set’s rank when calculating 
its utility: 

•	 Discounted Cumulative Gain@k (DCG@k) weighs 
each recommendation score based on its position. 
For example, the top items in the recommendation 
are rated higher, and the bottom items with a lower 
score. DCG penalizes highly relevant recommenda-
tions that appear lower in the search result list by 
decreasing the graded relevance value logarithmi-
cally proportional to the position of the recommen-
dation in the result [113]: 

•	 Normalized Discounted Cumulative Gain@k 
(NDCG@k) is the DCG@k over a normalization 
factor. It evaluates both the degree of relevance 
and the ranking of items in recommendations. As 
the length of the recommendation outcomes varies 
based on input parameters, the NDCG is calculated 
by normalizing the cumulative gain at every item’s 
recommendation position [113]: 

where IDCG@k denotes the Ideal DCG when the 
system recommends the most relevant items first: 

 The real challenge with NDCG is that, when only 
partial relevance feedback is available, we typically do 
not know the ideal ordering of results. The NDCG, 
on the other hand, has been demonstrated to be a 
valuable statistic for measuring the quality of rank-
ing for a range of problems, including job offer [114], 
BBC news [115], and Airbnb bookings [116] rec-
ommendations. We observed the NDCG@5 score 

CG@k =

K
∑

i=1

Gi.

DCG@k =

K
∑

i=1

Gi

log2(i + 1)
.

NDCG@k =
DCG@k

IDCG@k
,

IDCG@k =

K ideal
∑

i=1

Gideal
i

log2(i + 1)
.
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highest among the three evaluation parameters. The 
recommendation ranged between 0.79 and 0.81 for 
NDCG@5 for domain and target, respectively.

When compared to the ground truth, the commonal-
ity measure shown in Table 8 indicates a percentage of 
accuracy for a participant-level treatment recommen-
dation for domain and targets.

We observed a broader domain recommendation 
scores on commonality measure of more than 90% for 
three participants, 80–90% for 14 participants, between 
70 and 80% for 11 participants, and less than 70% for 
one participant, implying that the recommendations are 
robust.

Similarly, for target recommendations on commonal-
ity measure, we observed between 80 and 90% score for 
20 participants, greater than 90% but less than 70% for 
none, and between 70 and 80% for nine participants. 
These values imply that the output of machine learn-
ing models is stable and consistent in its performance. 
The average commonality scores for all 29 participants 
for domain and target recommendations were 81.8 and 
82.32, respectively. The domain recommendation meas-
ure demonstrated a broader frequency distribution than 
the target recommendation on commonality measure.

4.2 � Effectiveness measure
Additionally, we computed recommendation outcomes 
on efficacy measures using both patient similarity and 
CF models using data from months 1–3, 4–6, and 1–6. 
Treatment effectiveness (TE) results are listed in Table 9 
and suggest how many of the participant’s recommended 
targets were mastered or acquired by the participant.

For months 1–3, 4–6, and 1–6, the patient similarity 
model’s domain code recommendations for TE measure 
were 82.1%, 85.31%, and 84.0%. The results for CF in the 
same period were 74.82%, 62.06%, and 76.89% points.

Similarly, for months 1–3, 4–6, and 1–6, the patient 
similarity model’s domain code recommendations for 
TE measure were 90.68%, 89.96%, and 90.34%. The TE 
results for CF in the same period were 65.51%, 55.51%, 
and 58.27% points, significantly lower than the patient 
similarity model.

The experiment results demonstrate that recommenda-
tions for patient similarity and CF models are comparable 
on commonality measures. However, the patient similar-
ity model outperformed the CF model on effectiveness 
measures.

There are a few reasons for the poor outcomes shown 
by the CF model. Firstly, the CF incorporates a feature 
vector or embedding of each participant and their clini-
cal meta-data, including assessment records and treat-
ment histories. However, at the start of the treatment 
recommendation, no treatment history is available to the 

algorithm for analysis. This is a typical cold start chal-
lenge as CF algorithms generate suggestions based on 
the item’s interactions that build over time. Therefore, as 
participant-level recommendations are generated based 
on item interactions, the CF will unlikely recommend 
an item during the cold-start stage because of the spar-
sity and limited user base in the recommendation matrix. 
The limitation would lead to the CF model’s inability to 
find similarities between the two participants, rendering 
CF recommendations ineffective.

Secondly, compared to the patient similarity model, the 
CF and other matrix factorization models utilize latent 
features in latent space, complicating recommendation 
selection. However, treatment recommendation for par-
ticipants based on their similarity is typically denoted by 
a dot product number, with a higher value indicating a 
higher degree of similarity.

Thirdly, whereas the patient similarity model considers 
the degree of similarity between two participants, the CF 
model also considers item interactions at the treatment 
effectiveness level among participants. The treatment 
efficacy interactions are constructed temporally, have 
unique trajectories for each participant, and are thus 
bound by the sparsity ratio, meaning that there is insuf-
ficient interaction between participants and assessment 
features to make an effective recommendation.

Further, CF, compared to the patient similarity model, 
has computational challenges and performance issues. 
Due to the complexity of latent sparse matrix optimi-
zation, computations are slow at retraining new data 
in terms of performance. In comparison, retraining a 
patient similarity model takes only a few minutes.

5 � Discussion
Over 6 months of treatment data, we built and validated 
two machine learning algorithms, patient similarity 
and collaborative filtering to recommend and personal-
ize ABA treatment. The model of patient similarity was 
trained using sociodemographic data from the partici-
pants’ ages, genders, and clinical evaluation records. In 
addition, the CF model was trained using age, gender, 
assessment records, treatment history, and effectiveness 
data. On commonality and effectiveness criteria, the rec-
ommended treatment goals of the two machine learning 
models were compared to those included by clinicians 
(ground truth) in the treatment plan.

5.1 � Patient similarity model
The patient similarity model recommended the three 
most similar patients for each study participant. We 
then matched that participant’s treatment record to 
those of three similar patients. on commonality and five 
other metrics, i.e., precision, recall, accuracy, F1 score, 
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and AUROC for domain and target codes recommenda-
tions as specified in Algorithm  1. Thus, we assess each 
participant’s relevance to a treatment recommendation 
inherently captured by sociodemographic data (age and 
gender of participants), SRS-2, and VB-MAPP assess-
ment scores. Tables  3 and 4 demonstrate the robust-
ness of five psychometric measures for recommending 
domain and target codes. For the top three similar 
patients, the outcome of five psychometric measures var-
ied from 0.74 to 1, with metrics for target recommen-
dation outperforming that of the domain. Additionally, 
Table  5 shows that participant-level commonality accu-
racy metrics averaged 82.8 and 84.07% for domain and 
target recommendation, respectively. Further on effec-
tiveness measures, the mean TE accuracy of domain rec-
ommendation for months 1–3, 4–6, and 1–6 is listed in 
Table  9 and ranged from 82.1%, 85.31%, and 84% accu-
racy points. The target-level accuracy metric was 90.68%, 
89.96%, and 90.34% points in the same period, exceeding 
domain-level accuracy measurements.

5.2 � Collaborative filtering model
We calculated commonality and three other metrics on 
the top five CF model recommendations for domain 
and target codes per the logic specified in Algorithm  2. 
Thus, we assess each participant’s relevance to a treat-
ment recommendation inherently captured by sociode-
mographic data, treatment history and effectiveness, and 

SRS-2 and VB-MAPP assessment scores. Tables 6 and 7 
demonstrate the robust evaluation results of treatment 
recommendations for domain and target codes on evalu-
ation metrics consisting of P@5, MAP@5, and NDCG@5 
measures. On commonality measures for the top five 
treatment suggestions, the outcomes of evaluation 
metrics ranged between 0.75 and 0.79 for the domain 
(Table  6) and 0.77–0.85 for the target recommendation 
(Table 7). Like the patient similarity model, the outcome 
metrics of target recommendation outperformed that 
of domain’s. The mean accuracy commonality meas-
ure for the participant-level metrics in Table  8 ranged 
between 81.85 and 82.32% for domain and target code, 
respectively. However, on the effectiveness measure, the 
CF model performed poorly with results mentioned in 
Table 9. The mean accuracy of domain recommendation 
for months 1–3, 4–6, and 1–6 ranged from 74.82, 62.06%, 
and 76.89%. The target-level accuracy metric was 65.51, 
55.51, and 58.27% points in the same period, performing 
poorly than the domain-level accuracy measurements.

On commonality measures, the evaluation metrics for 
precision, recall, and accuracy scores are comparable at 
participant and aggregate levels, with the patient similar-
ity model outperforming the CF model slightly. Further 
on commonality measure, the target recommendations 
metrics outperformed domain recommendations for 
patient similarity and the CF recommendation model. 
The reason can be attributed to the low volume and wide 
variety of data for training ML models resulting in poor 
recommendations. However, on the effectiveness meas-
ure, the patient similarity model outperformed the CF 
model majorly because of three reasons: 

1.	 Cold start with no treatment effectiveness informa-
tion at the start of the treatment available for the CF 
model. However, the patient similarity model can 
effectively generate the first treatment prescription.

2.	 Limited treatment and effectiveness records at the 
initial treatment stages limit the CF model’s perfor-
mance.

3.	 A sparse multi-dimension matrix generated from 
user-level interaction with treatment records for 
training the CF model limits its performance.

5.3 � Comparison of recommendation models
Many real-world data sets are 99 percent (or even more) 
sparse and have been used to generate robust recom-
mendations. The matrix factorization model simplifies 
user–item ratings by transforming them into the product 
of two smaller matrices. One is for users, while the other 
is for products. In our case, CF aims to recommend treat-
ment based on a user’s prior treatment records and their 

Table 3  Psychometric properties for domain code 
recommendations

Metric Similar 
participant A

Similar 
participant B

Similar 
participant 
C

Precision 0.64 0.71 0.92

Recall 1.0 1.0 1.0

Accuracy 0.72 0.77 0.94

F1 score 0.78 0.83 0.96

AUC score 0.65 0.78 0.74

Table 4  Psychometric properties for target code 
recommendations

Metric Similar 
participant A

Similar 
participant B

Similar 
participant 
C

Precision 0.85 0.87 0.90

Recall 0.96 0.96 0.96

Accuracy 0.83 0.84 0.87

F1 score 0.90 0.91 0.93

AUC score 0.78 0.80 0.80
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effectiveness. Using the matrix factorization approach, 
when we factor a M × N matrix into two M × K and K × N 
matrices, we reduce “n” items to “k” factors.

As for item–item interaction, the objective is to pre-
dict or prescribe treatment based on the efficacy of simi-
lar ABA treatments consisting of domains or targets. 

Table 5  Results of patient similarity recommendations for domain and target on commonality measure

Participant Age in months Gender Domain code 
recommendation

Target code 
recommendation

Relevant percentage 
of recommended 
domain code

Relevant percentage of 
recommended target 
code

Participant 1 50.4 Male 2, 4, 5, 14 2.1, 2.3, 4.2, 5.1, 14.1 94.4 80.0

Participant 2 60 Male 1, 2, 4, 5, 6, 7, 11, 14 0.0, 1.1, 2.1, 2.3, 5.1, 
5.13, 5.2, 5.8, 6.1, 7.12, 
7.3, 11.1, 14.1, 14.3

83.3 66.6

Participant 3 60 Male 1, 2, 4, 7, 14 1.3, 2.1, 2.3, 7.12, 14.1, 
14.3

94.4 81.4

Participant 4 72 Male 2, 4, 14, 20 4.2 83.3 85.1

Participant 5 48 Male 1, 2, 4, 7, 14 2.1, 2.3, 7.12, 14.1, 14.3 94.4 82.4

Participant 6 57.6 Male 1, 5 5.4, 9.1 66.6 84.2

Participant 7 66 Female 1, 4, 5, 11 1.1, 4.2, 11.1 77.7 83.3

Participant 8 55.2 Female 2, 4, 5 2.1, 2.3, 5.1 88.8 89.8

Participant 9 31.2 Male 1, 4, 5 1.1, 5.1 83.3 87.0

Participant 10 57.6 Male 1, 2, 4, 5, 17 1.1, 4.2, 5.1 83.3 87.0

Participant 11 45.6 Male 1, 2, 4, 5, 11, 17 1.1, 2.1, 4.2, 5.1, 11.1, 
11.2

88.8 81.5

Participant 12 50.4 Male 2, 4, 5, 6, 14 4.2, 5.1, 6.3 95.2 87.0

Participant 13 54 Male 2, 4 2.1, 4.2 66.6 83.3

Participant 14 46.8 Male 1, 5, 11, 20 1.1, 1.3, 5.1, 5.2, 11.1, 
11.2

77.7 80.5

Participant 15 49.2 Male 4 1.3 55.5 77.2

Participant 16 49.3 Male 1, 2, 4, 5, 11 1.1, 2.3, 5.1, 11.2 94.4 87.9

Participant 17 33.6 Male 1, 4, 5, 6, 7 0.0 93.3 58.3

Participant 18 62.4 Male 4 1.3, 2.1, 2.3, 7.12 77.7 87.9

Participant 19 45.6 Female 2, 4 4.2, 5.1 72.2 91.6

Participant 20 37.2 Male 1, 2, 4, 5 1.1, 5.1 88.8 97.8

Participant 21 40.8 Male 2, 4, 5, 6 5.1, 6.25 88.8 84.2

Participant 22 48 Male 1, 4, 5 1.1, 5.1 83.3 87.0

Participant 23 27.6 Male 4, 5 5.1 77.7 82.4

Participant 24 55.2 Male 2, 4, 5, 6, 14 4.2, 5.1, 6.3 83.3 82.4

Participant 25 54 Male 1, 4, 5 1.1, 5.1 83.3 87.0

Participant 26 62.4 Male 1, 2, 4, 5 1.1, 2.1, 5.1 88.2 89.8

Participant 27 48 Male 7 7.12 77.7 89.8

Participant 28 26.4 Male 4, 5 5.1 77.7 88.8

Participant 29 56.4 Male 1, 4, 5 1.1, 5.1 83.3 87.0

Average scores 50.03 26 male, 3 female 82.86 84.07

Table 6  Evaluation metrics of domain recommendation

Metric Value

P@k 0.77

MAP@k 0.75

NDCG@k 0.79

Table 7  Evaluation metrics of target recommendation

Metric Value

P@k 0.85

MAP@k 0.77

NDCG@k 0.81
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Therefore, instead of many treatment records in the sys-
tem, say 25000, we can have those treatments distributed 
over 22 domains (verbal operants), each of which has a 
linear combination with each treatment line item. Thus, 
a domain may refer to manding, tacting, visual percep-
tion, academic language, and social skills and will usu-
ally have a relationship with the treatment record. The 
critical point is that recommending based on factors 
is more robust than comparing individual patients and 
their treatments. For example, a user may not have been 
assigned an ABA treatment goal within the manding 

or tacting domain but may have other treatment goals 
related to the tacting domain via some latent factors. 
Therefore, the factors are latent because they exist in our 
data, but are not detected until the reduced rank matrix 
factorization makes those factors emerge. The CF con-
fronts somewhat the issue of cold start due to its reli-
ance on feedback or activity from other users when it has 
a large user base, even with sparse matrix user interac-
tions. It recommends a treatment ‘x’ to user ‘a’ based on 
user ‘b”s treatment path and effectiveness. The users ‘a’ 
and ‘b’ must have previously received similar treatment 

Table 8  Results of domain and target recommendation of all participants using collaborative filtering model on commonality 
measure

Participant Age in months Gender Domain code 
recommendation

Target code recommendation Percentage of 
relevant domain 
code

Percentage of 
relevant target 
code

Participant 1 50.4 Male 1, 2, 3, 4, 5, 14 2.1, 2.3, 2.4, 3.2, 3.4, 14.3 87.5 88.3

Participant 2 60 Male 2, 4, 5, 6 2.1, 2.2, 2.3, 2.4, 5.1, 5.13, 5.2, 5.8, 
6.1, 6.11, 6.14, 11.1, 14.1, 14.3

88.0 77.6

Participant 3 60 Male 1, 2, 4, 7 1.1, 1.2, 1.3, 2.1, 2.4, 2.3, 7.12, 7.19 89.2 87.3

Participant 4 72 Male 2, 4, 14, 20, 21 2.2, 2.3, 2.4, 4.2, 4.7, 20.3, 21.02 77.5 78.9

Participant 5 48 Male 1, 2, 4, 14 1.5, 1.6, 1.7, 2.1, 2.3, 4.1, 4.2, 14.1, 
14.3

94.4 82.4

Participant 6 57.6 Male 1, 5, 6 1.3, 5.4, 6.2 73.0 88.4

Participant 7 66 Female 4, 5, 11 4.1, 4.2, 11.1, 11.2, 11.3 73.7 79.4

Participant 8 55.2 Female 2, 4, 5 2.1, 2.2, 4.2, 4.5, 5.1, 5.4 91.2 86.4

Participant 9 31.2 Male 4 4.1, 4.2, 4.4 72.3 81.0

Participant 10 57.6 Male 1, 4, 5, 17 1.1, 1.2, 4.2, 4.3, 4.4, 5.1, 5.2, 17.2 84.2 87.2

Participant 11 45.6 Male 1, 2, 4, 5, 11 1.1, 2.1, 4.2, 5.1, 5.4, 11.1, 11.2 85.9 77.4

Participant 12 50.4 Male 2, 4, 6 2.1, 4.2, 6.21, 6.3, 6.6 95.2 87.0

Participant 13 54 Male 2, 4 2.1, 4.1, 4.2 70.4 88.8

Participant 14 46.8 Male 1, 5, 11, 20  1.1, 1.3, 5.1, 5.2, 11.1, 11.2, 11.3, 
20.1, 20.5

75.5 82.4

Participant 15 49.2 Male 4, 9 4.2, 4.3, 9.1, 9.2, 9.4 77.1 76.4

Participant 16 49.3 Male 1, 2, 4, 5 1.1, 1.3, 2.1, 2.3, 5.1, 5.2 88.2 83.6

Participant 17 33.6 Male 1, 4, 6 1.2, 1.4, 1.5, 4.1, 4.5, 6.1 86.0 74.4

Participant 18 62.4 Male 2, 4 2.1, 2.3, 2.4, 4.1, 4.3, 4.5 82.5 84.3

Participant 19 45.6 Female 2, 4, 6 2.2, 2.3, 4.1, 4.2, 6.2 76.6 71.0

Participant 20 37.2 Male 1, 2, 4, 5 1.1, 1.2, 4.1, 5.1 85.5 88.7

Participant 21 40.8 Male 1, 2, 4, 5, 6 1.2, 1.4, 1.5, 4.2, 5.1, 6.22, 6.25 83.1 85.6

Participant 22 48 Male 1, 4, 5, 7 1.2, 1.3, 4.2, 4.4, 5.1, 5.2, 7.1 77.3 82.4

Participant 23 27.6 Male 3, 4, 5 3.1, 4.2, 4.4, 5.1, 5.2 73.7 85.8

Participant 24 55.2 Male 1, 2, 4, 5, 6, 14 1.2, 1.3, 1.5, 1.6, 2.2, 2.3, 4.2, 4.7, 
5.1, 5.4, 6.1

79.4 88.2

Participant 25 54 Male 1, 4, 5 1.3, 4.1, 4.2, 5.2, 5.4 88.5 72.4

Participant 26 62.4 Male 1, 2, 4 1.1, 2.1, 2.3, 4.3, 4.4 80.7 82.5

Participant 27 48 Male 7, 14 7.1, 14.2 68.3 75.2

Participant 28 26.4 Male 1, 4, 5 1.2, 1.4, 4.1, 4.3, 5.1, 5.2 83.4 81.0

Participant 29 56.4 Male 1, 2, 4, 5 1.1, 1.3, 2.2, 2.4, 5.1, 5.2 85.5 83.5

Average scores 50.03 26 Male, 3 Female 81.85 82.32



Page 18 of 25Kohli et al. Brain Informatics            (2022) 9:16 

Ta
bl

e 
9 

M
on

th
-w

is
e 

re
co

m
m

en
da

tio
ns

 a
cc

ur
ac

y 
of

 m
as

te
re

d 
do

m
ai

ns
 a

nd
 ta

rg
et

s 
on

 e
ffe

ct
iv

en
es

s 
m

ea
su

re

Pa
rt

ic
ip

an
t

A
ge

 in
 

m
on

th
s

G
en

de
r

 S
im

ila
ri

ty
 m

od
el

Co
lla

bo
ra

tiv
e 

fil
te

ri
ng

 m
od

el

M
on

th
s 

1–
3

M
on

th
s 

4–
6

 M
on

th
s 

1–
6

 M
on

th
s 

1–
3

 M
on

th
s 

4–
6

M
on

th
s 

1–
6

 D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 c

od
e

Pa
rt

ic
ip

an
t 1

50
.4

M
al

e
88

98
94

91
82

93
80

40
80

50
80

80

Pa
rt

ic
ip

an
t 2

60
M

al
e

88
87

94
89

82
84

60
60

60
60

80
60

Pa
rt

ic
ip

an
t 3

60
M

al
e

71
96

94
92

76
92

60
40

10
0

60
80

40

Pa
rt

ic
ip

an
t 4

72
M

al
e

71
90

94
96

76
90

60
60

80
40

80
80

Pa
rt

ic
ip

an
t 5

48
M

al
e

10
0

78
94

90
94

91
10

0
10

0
60

80
60

50

Pa
rt

ic
ip

an
t 6

57
.6

M
al

e
10

0
99

94
96

94
89

80
50

80
60

60
50

Pa
rt

ic
ip

an
t 7

66
Fe

m
al

e
88

87
94

93
10

0
91

60
60

60
40

80
40

Pa
rt

ic
ip

an
t 8

55
.2

Fe
m

al
e

88
97

94
91

10
0

92
10

0
10

0
10

0
80

10
0

80

Pa
rt

ic
ip

an
t 9

31
.2

M
al

e
65

98
71

96
53

99
80

80
80

60
10

0
80

Pa
rt

ic
ip

an
t 

10
57

.6
M

al
e

65
89

71
90

53
60

80
60

10
0

10
0

60
60

Pa
rt

ic
ip

an
t 

11
45

.6
M

al
e

94
92

53
99

82
82

80
80

60
80

80
40

Pa
rt

ic
ip

an
t 

12
50

.4
M

al
e

94
96

53
60

82
92

10
0

40
40

40
80

40

Pa
rt

ic
ip

an
t 

13
54

M
al

e
71

99
94

87
94

93
60

60
50

50
60

40

Pa
rt

ic
ip

an
t 

14
46

.8
M

al
e

71
60

94
99

94
91

40
40

40
60

40
40

Pa
rt

ic
ip

an
t 

15
49

.2
M

al
e

94
93

88
87

88
92

70
60

40
40

80
50

Pa
rt

ic
ip

an
t 

16
49

.3
M

al
e

94
95

88
91

88
90

10
0

10
0

80
60

10
0

50

Pa
rt

ic
ip

an
t 

17
33

.6
M

al
e

71
91

65
98

88
87

10
0

10
0

40
50

40
60

Pa
rt

ic
ip

an
t 

18
62

.4
M

al
e

71
91

65
89

88
91

60
60

60
50

10
0

60

Pa
rt

ic
ip

an
t 

19
45

.6
Fe

m
al

e
88

87
94

85
76

99
80

40
40

40
50

50

Pa
rt

ic
ip

an
t 

20
37

.2
M

al
e

88
91

94
88

88
90

60
80

80
60

80
60

Pa
rt

ic
ip

an
t 

21
40

.8
M

al
e

76
92

88
83

94
92

60
60

60
40

40
40

Pa
rt

ic
ip

an
t 

22
48

M
al

e
76

90
88

93
94

96
10

0
10

0
60

40
10

0
80



Page 19 of 25Kohli et al. Brain Informatics            (2022) 9:16 	

Ta
bl

e 
9 

(c
on

tin
ue

d)

Pa
rt

ic
ip

an
t

A
ge

 in
 

m
on

th
s

G
en

de
r

 S
im

ila
ri

ty
 m

od
el

Co
lla

bo
ra

tiv
e 

fil
te

ri
ng

 m
od

el

M
on

th
s 

1–
3

M
on

th
s 

4–
6

 M
on

th
s 

1–
6

 M
on

th
s 

1–
3

 M
on

th
s 

4–
6

M
on

th
s 

1–
6

 D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 

co
de

D
om

ai
n 

co
de

Ta
rg

et
 c

od
e

Pa
rt

ic
ip

an
t 

23
27

.6
M

al
e

76
88

88
93

82
97

60
50

40
40

10
0

80

Pa
rt

ic
ip

an
t 

24
55

.2
M

al
e

76
92

88
81

82
87

80
50

10
0

60
80

40

Pa
rt

ic
ip

an
t 

25
54

M
al

e
94

87
10

0
91

94
90

80
40

40
60

80
60

Pa
rt

ic
ip

an
t 

26
62

.4
M

al
e

94
99

10
0

92
94

96
80

50
40

50
80

60

Pa
rt

ic
ip

an
t 

27
48

M
al

e
82

93
82

93
71

91
60

10
0

40
60

10
0

10
0

Pa
rt

ic
ip

an
t 

28
26

.4
M

al
e

82
84

82
84

76
91

80
10

0
40

40
10

0
40

Pa
rt

ic
ip

an
t 

29
56

.4
M

al
e

65
91

76
92

71
92

60
40

50
60

60
80

A
vg

. S
co

re
50

.3
26

M
,3

F
82

.1
90

.6
8

85
.3

1
89

.9
6

84
90

.3
4

74
.8

2
65

.5
1

62
.0

6
55

.5
1

76
.8

9
58

.2
7



Page 20 of 25Kohli et al. Brain Informatics            (2022) 9:16 

or may have similar assessments and sociodemographic 
records, so they are clustered together and form a recom-
mendation basis.

However, item-based recommendations require some 
historical data to incorporate an implicit feedback loop. 
Large-item interactions are prohibitively expensive and 
time-intensive. A small user data volume consisting of a 
sparse treatment effectiveness matrix with limited inter-
actions may yield modest treatment recommendations.

Further, a collaborative filtering system’s primary 
objective is to overcome the drawbacks of patient simi-
larity. The CF recommendations consider all users and 
group them according to their similarities and latent 
factor associations rather than focusing on a single user. 
Therefore, rather than combining outcomes of multi-
ple recommendation engines into one, another method 
is to deliver concurrent recommendations, for example, 
from patient similarity and CF, and allow the clinician to 
choose between them. A comparison of patient similarity 
and CF model is listed in Table 10. The proposed solution 
may contribute to a pleasant user experience if appro-
priate explanations are shared to assist the clinician in 
appreciating the rationale behind the recommendations 
and their robust psychometric properties.

5.3.1 � Clinical relevance
ASD is a developmental disorder that affects around 1 
in every 44 individuals. The demand for evidence-based 
interventions such as ABA has outstripped the supply of 
qualified and licensed clinicians, resulting in a decline in 
quality, accessibility, and affordability. The findings of this 
study can increase clinician capacity, allowing them to 
manage a more significant ASD population, and improve 
treatment quality through the use of an integrated treat-
ment recommendation and personalized decision sup-
port system.

We assume that an EMR application captures multiple 
information: Firstly, sociodemographic participant infor-
mation (age and gender); secondly, diagnostic assess-
ment records, for example, from CARS-2 [117], ADI-R 
[118], ADOS-2 [119]; thirdly, functional assessments 
records, for example, from VSMS [120], VABS [121], and 

SRS-2 , and lastly longitudinal treatment records and its 
effectiveness.

These data points can identify a child’s strengths, skill 
gaps, and potential improvement areas in social commu-
nication, motivation, cognition, motor skills, restricted 
interests, and repetitive behavior and assist clinicians in 
developing a personalized treatment plan. However, the 
design and development of ABA treatment are challeng-
ing. Children with ASD typically exhibit a wide range 
of challenges, and the disorder affects males four times 
more than females. Further, sociodemographic charac-
teristics such as age, gender, place of residence, access to 
healthcare, family income, and educational background 
can affect the treatment design and delivery. The above 
challenges can be overcome by designing a feature vector 
during the patient intake to capture diagnostic and func-
tional assessment scores, age, gender, and other sociode-
mographic characteristics. At the intake stage, using the 
feature vector, the patient similarity model can compare 
incoming patients to an extensive patient database to 
recommend the most similar patients and correlate their 
treatment trajectory with outcomes, allowing physicians 
to select the ideal treatment strategy. This can solve the 
cold-start challenge with no treatment data availability 
during the treatment initiation stage.

During the intervention steady-stage, the CF model 
with a feature vector capturing patient treatment records, 
latent factors, and their effectiveness can recommend 
and personalize the treatment trajectory based on the 
treatment outcomes of similar patients.

Therefore, patient initial diagnostic and age, gender, 
treatment records, treatment effectiveness, and func-
tional assessment records at various temporal data 
points can pave the way for treatment recommenda-
tion and personalization using patient similarity and the 
CF recommendation model. In addition, we addressed 
the limitations identified in [41], as our results apply to 
individuals under the age of six. In contrast, most stud-
ies do not include this age group, and we employed data 
from the participants, only from low- and middle-income 
country i.e. India.

5.4 � Limitations
The study’s primary limitation is the small sample size of 
29 participants. The reason for limited data and partici-
pant availability can be attributed to only 2% of the popu-
lation being diagnosed with ASD. Further, the study was 
executed online at the peak of COVID-19. The partici-
pants were recruited if they fulfilled the inclusion criteria 
and shared the ASD diagnosis report. Therefore, we may 
not have been able to include a diverse sample of partici-
pants with a wide range of baseline ASD severity level.

Table 10  Comparison of patient similarity and collaborative 
filtering model

Parameter Patient 
similarity 
model

Collaborative 
filtering 
model

Quality of recommendations Similar Similar

Retraining Easy Difficult

Recommendation explainability Simple Complex

Performance constraint No Sparsity ratio
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Further, we compared the patient similarity model 
recommendations with the top three most similar study 
participants; however, for CF recommendations, all 29 
participants’ top five recommendations were included in 
calculating psychometric properties. This could be one 
of the additional reasons for the poor performance of the 
CF recommendation model when compared to patient 
similarity, in addition to the cold start challenge. The 
performance of these models, particularly CF, could be 
improved by recruiting additional participants who may 
have extensive interactions with treatment records and 
their effectiveness.

Further, as SRS-2 and VB-MAPP are manually per-
formed assessments by clinicians, we expected a certain 
degree of human subjectivity in performing assessments 
and, therefore, impact the two models’ recommendation 
outcomes.

Scalability: As the number of users increases, the CF 
model becomes less scalable. For example, If we have 
ten million patients and one hundred thousand treat-
ment items, we must create a sparse matrix with a trillion 
elements.

Further, we have used only the cosine similarity met-
ric in the study. A single distance metric for computing 
similarity and subsequent recommendations system may 
result in a biased recommendation. Future studies can 
incorporate additional similarity metrics to improve the 
generalizability of the recommendation system.

5.5 � Future direction
In future studies, we must perform the following steps: 

1.	 Include additional machine learning recommenda-
tion models than patient similarity, and CF.

2.	 Include a broader range of assessments in addition to 
SRS-2 and VB-MAPP.

3.	 Include diagnostic scores as a vector item for recom-
mendation engine training.

4.	 Include other similarity metrics than cosine.
5.	 Include other mental health conditions than autism.
6.	 Baseline the ASD diagnosis for all participants using 

the same diagnostic tools.
7.	 The selection of the corresponding treatment plan 

by ML algorithm is more objective than through 
the subjective experience of conventional clinicians; 
yet, the subjective experience of conventional clini-
cians may be more effective in the therapy. Therefore, 
future studies must evaluate the degree to which ML-
selected outcomes reflect clinician’s goals, the degree 
to which they differ, and the significance of this dif-
ference.

6 � Conclusion
We evaluated the outcomes of two machine learning 
models using sociodemographic, assessment records, 
and treatment effectiveness data. This study highlights 
that machine learning models can predict ABA treatment 
programs for children with ASD with robust evaluation 
metrics and augment the capacity of the ABA clinicians. 
Our experimental findings suggest that by assigning goal 
prediction and personalization, we may be able to aid 
in the prioritization of scarce healthcare resources in 
the management of ASD. We conclude that healthcare 
systems should investigate the use of predictive models 
from the diagnostic to intervention stage to recommend 
and personalize ABA treatment and optimize health-
care resource prioritization and patient care. The results 
suggest that the patient similarity model during treat-
ment intake can recommend initial treatment goals with 
80-85% accuracy compared to ground truth. Further, 
CF models can learn from treatment records and treat-
ment effectiveness data during the steady treatment stage 
to personalize the treatment recommendations during 
various treatment points. Our multi-model personal-
ized recommendation algorithms provide clinicians with 
enhanced capacity to serve ASD children with personal-
ized therapy recommendations.

Appendix 1
SRS-2: Social Responsiveness Scale 2: The SRS-2 [94] is 
a user respondent-reported questionnaire that assesses 
the extent of social deficits and highlights associated 
ASD symptoms. The assessment takes only 15–20 min 
to complete and can cater to a population of broad age 
ranges, enabling it to track symptoms and skill deficits 
across the lifespan. Teachers, parents, and profession-
als can use the tool to rate symptoms using a numeri-
cal scale that depicts the severity spectrum. Along with a 
total score indicating the degree of social deficits in indi-
viduals with ASD, the SRS-2 gives scores for five Treat-
ment subscales: 

1.	 Social awareness,
2.	 Social cognition
3.	 Social communication
4.	 Social motivation, and
5.	 Restricted interests and repetitive behavior.

The SRS-2 results and T-scores are standardized by 
comparing a large sample population’s age, gender, and 
characteristics.
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VB-MAPP: Verbal Behavior Milestones Assessment 
and Placement Program: The VB-MAPP [95] is an 
assessment, curriculum guide, and skill tracking tool cre-
ated for children with ASD and language difficulties. The 
VB-MAPP comprises five components that allow: (1) 
capturing a baseline performance; (2) providing an inter-
vention direction; (3) monitoring skill acquisition; (4) 
tracking outcomes, and (5) a framework for curriculum 
design. Each VB-MAPP skill is quantifiable, developmen-
tally appropriate, and balanced across verbal operants 
and related skills. These are the details of VB-MAPP five 
main components: 

1.	 VB-MAPP Milestones Assessment—assesses a 
child’s existing verbal and related skills and includes 
170 measurable learning and language milestones 
sequentially and proportionately distributed across 
three developmental levels (0–18 months, 18–30 
months, and 30–48 months).

2.	 VB-MAPP Barriers Assessment—assesses children 
with autism or other developmental disabilities on 
24 common learning and language acquisition bar-
riers such as behavioral issues, instructional control, 
defective commands, defective scanning, defective 
conditional discriminations, and failure to generalize.

3.	 The VB-MAPP Transition Assessment consists of 18 
assessment areas that provide a quantifiable basis for 
a child’s IEP development, enabling the team to make 
decisions and establish priorities regarding the child’s 
educational needs.

4.	 Task Analysis and Supporting Skills—the VB-MAPP 
Protocol includes task Analysis and supporting Skills 
for 14 of the Milestones Assessment’s 16 domains. 
The supporting skills complement the milestones by 
emphasizing the importance of developing critical 
language, learning, and social skills concurrently with 
the milestones.

5.	 VB-MAPP Placement and IEP Goals—corroborate 
the four assessments above. The placement guide 
provides detailed guidance for 170 milestones and 
suggestions for IEP goals.
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