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Abstract 

In this paper, a hardware-optimized approach to emotion recognition based on the efficient brain-inspired hyperdi-
mensional computing (HDC) paradigm is proposed. Emotion recognition provides valuable information for human–
computer interactions; however, the large number of input channels (> 200) and modalities (> 3 ) involved in emotion 
recognition are significantly expensive from a memory perspective. To address this, methods for memory reduction 
and optimization are proposed, including a novel approach that takes advantage of the combinatorial nature of the 
encoding process, and an elementary cellular automaton. HDC with early sensor fusion is implemented alongside the 
proposed techniques achieving two-class multi-modal classification accuracies of > 76% for valence and > 73% for 
arousal on the multi-modal AMIGOS and DEAP data sets, almost always better than state of the art. The required vec-
tor storage is seamlessly reduced by 98% and the frequency of vector requests by at least 1/5. The results demonstrate 
the potential of efficient hyperdimensional computing for low-power, multi-channeled emotion recognition tasks.
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1  Introduction
Affective computing for informed human–computer 
interaction (HCI) is an area of growing research interest 
[1]. Traditional interfaces such as keyboards and mouse 
are limited to conveying explicit information; the HCI 
experience can be enhanced through the inclusion and 
interpretation of additional implicit information [2]. For 
example, context-dependent human behavioral patterns 
can be learned and used to inform feedback systems of 
user intention in a wide variety of applications, such as 
driver warning systems, smart environments, automated 

tutoring systems, etc. [2–4]. Providing computers with 
emotional skills will allow them to intelligently react to 
subtle user context changes, such as emotional state [5].

Though a common approach is interpreting audio–
visual signals such as facial expressions and voices, these 
may not be the primary source of expression. Emotion is 
not always easily observable, rather it requires a combina-
tion of various behavioral observations and physiological 
indices that together can provide sufficient information 
[6]. Existing data sets collected for affective computing 
include various forms of physiological signals to create a 
comprehensive observation of emotional state [7, 8]. In 
the era of Internet-of-things (IoT), advances in wearable 
devices make the inclusion of various sensing modalities 
in intelligent HCI applications increasingly feasible [9].
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A representation of emotion used for affective com-
puting is the circumplex model of affect [10]. This model 
proposes that all affective states come from two neuro-
physiological systems, valence (pleasure vs. displeas-
ure) and arousal (alertness). Discrete emotional states 
can be described as a linear combination of these two 
dimensions. Joy, for example, can be described as posi-
tive valence system activation and moderate arousal 
system activation [10]. Other emotions consist of differ-
ent degrees of activation of the two neurophysiological 
systems. For emotion recognition classification, these 
are reduced to high and low arousal and valence values 
which can, in combination, be used to define the nature 
of the emotion.

The emotion recognition system must also be able to 
address the challenge of multi-modal classification which 
results from the inclusion of diverse physiological sensors 
[11]. For this work, the AMIGOS and DEAP data sets 
were selected specifically for the large number of sensor 
channels and modalities. The AMIGOS data set contains 
electroencephalogram (EEG), galvanic skin response 
(GSR) and electrocardiogram (ECG) sensors [7]. The 
DEAP data set includes EEG, Electrooculography (EOG), 
Electromyography (EMG), GSR, blood volume pressure 
(BVP), temperature and respiration sensors [8].

Previous work on multi-modal fusion for the AMIGOS 
data set includes Fisher’s linear discriminant with Gauss-
ian Naive Bayes, which was shown to achieve F1 scores of 
57% and 58.5% on valence and arousal [7, 9]. Wang et al. 
implemented recursive feature elimination (RFE) with a 
support vector machine (SVM) and obtained 68% and 
66.3% accuracy on valence and arousal [11]. Wang et al. 
also implemented Extreme Gradient Boosting (XGBoost) 
for accuracies of 80.1% and 68.4% on valence and arousal. 
Siddharth et  al. used extreme learning machines (ELM) 
for accuracies of 83.9% and 82.7% on valence and arousal 
[12]. Previous binary classification multi-modal fusion 
approaches for the DEAP data set include a restricted 
boltzmann machine (RBM) with an SVM classifier, with 
accuracies of 60.7% and 64.6% for valence and arousal, 
respectively [13]. Wang et al. used a deep belief network 
(DBN) through multi-layer RBMs for valence and arousal 
accuracies of 51.2% and 68.4% [14]. Yin et al. used a mul-
tiple-fusion-layer based ensemble classifier of stacked 
autoencoder (MESAE) for accuracies of 76.2% and 77.2% 
for valence and arousal [1].

Since emotion recognition can provide valuable infor-
mation for HCI, a hardware-efficient platform that allows 
for extended-use, on-board classification, would increase 
the feasibility of long-term wearable monitoring and 
thus increase the scope of potential feedback applica-
tions. While previous work shows strong results for the 
AMIGOS and DEAP data sets in terms of classification 

accuracy, the ease of hardware implementation for 
training and inference are not considered while design-
ing the models; these methods have high computational 
complexity that reduces implementation feasibility on 
resource-limited wearable platforms. SVMs, for exam-
ple, while demonstrating high accuracy, are challenging 
to implement efficiently on hardware, and demonstrate 
a trade-off between precise accuracy and meeting hard-
ware constraints [15, 16]. In addition, multi-modal fusion 
approaches require parallel encoding schemes prior to 
the fusion point which further increase the complexity 
creating a bottleneck for real-time wearable classification.

To address this, in this work brain-inspired Hyper-
dimensional Computing (HDC) is used for emotion 
recognition. HDC is an area of active research that has 
been successfully demonstrated for classifying physi-
ological signals such as the wearable EMG classifica-
tion system implemented from Moin et al. that achieves 
97.12% accuracy in recognizing 13 different hand ges-
tures [17], the iEEG seizure detection system developed 
by Burrello et al. [18], and the EEG error-related poten-
tials classification for brain–computer interfaces imple-
mented by Rahimi et al. [19]. It is based on the idea that 
human brains do not perform inference tasks using scalar 
arithmetic, but rather manipulate large patterns of neu-
ral activity. These patterns of information are encoded 
in binary hypervectors, with dimensions ranging in 
the thousands to ensure that any two random HVs are 
likely to be nearly orthogonal to each other [20]. There 
are three operations that are performed on these hyper-
vectors: bundling, binding, and permutation. Bundling 
is a componentwise add operation across input vectors, 
binding is a componentwise XOR operation, and per-
mutation is a 1-bit cyclical shift. The simplicity of these 
operations suggests that HDC is very hardware efficient, 
as confirmed in previous work [16, 21]. Montagna et al. 
demonstrated that HDC computing achieved 2× faster 
execution and lower power at iso-accuracy on an ARM 
Cortex M4 compared to an optimized SVM [16].

HDC has additional properties that demonstrate its 
potential for a wearable emotion recognition system. 
Previous work by Chang et  al. developed a baseline, 
unoptimized architecture for emotion classification 
on the AMIGOS data set, which was able to achieve 
valence and arousal accuracies of 83.2% and 70.1%, 
respectively, demonstrating higher performance than 
SVM, XGB and gaussian naive bayes for all amounts 
of training data [9]. HDC encodes information in the 
same form no matter the type, number or complexity 
of the inputs. This is accomplished through basic vec-
tors (items) that are random, and typically stored in an 
item memory (a codebook). Each channel is assigned 
a unique item memory vector, and feature values are 
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typically encoded through a discretized mapping to 
additional unique hypervectors representing val-
ues within a set range. Each stream of information is 
encoded into this representation as shown in Fig.  1, 
which lends HDC well to sensor fusion.

HDC inherently binds features extracted from vari-
ous physiological data streams. This suggests early 
fusion with reduction of parallel encoding schemes 
will have little effect on its accuracy, breaking the com-
plexity–accuracy tradeoff. HDC offers a reduction of 
computation and memory requirements in contrast to 
traditional machine learning models, demonstrated by 
Montagna et al. [16]. It also offers the ability to use the 
same hardware for training & inference, rapid training, 
and robustness to noise/variations in input data making 
it a viable choice for wearable, hardware-constrained 
sensor fusion applications.

Datta et  al. synthesized an implementation of a 
generic HDC application-specific integrated circuit 
(ASIC) processor that provided a power breakdown 
between the various blocks involved [21]. The item 
memory, which stores channel identification vectors, 
contributed the most, 42%, to the overall power of the 
processor. For the emotion recognition-specific appli-
cation, the large number of channels (> 200) and modal-
ities (> 3) requires advance storage of a correspondingly 
large number of unique vectors in the item memory. 
More channels translates into more memory. This 
would result in memory storage consuming ∼50% of 
the overall processor power similar to [21]. Reduction 
of memory usage would allow HDC to meet stricter 

power/complexity constraints, improving its potential 
for implementation on wearable platforms.

In this work, use of pseudo-random vector genera-
tion through computation using a cellular automata is 
proposed and implemented for this purpose. A cellular 
automata consists of a grid of cells which evolve with 
complex, random behavior over time through a set of 
discrete computations using the current state and that 
of nearby cells [22]. Cellular automata rule 90 assigns the 
next state in a method shown to be equivalent to an XOR 
of the two nearest cells [22]. For a hypervector, each cell 
represents a single bit and rule 90 can be implemented 
through XOR of the cyclical left-shift and cyclical right-
shift of the original vector. If HVn is the hypervector state 
at step n, and ρ is the cyclical shift operation (+1 for 
right, −1 for left), then HVn+1 can be generated by

These operations are vectorizable and computationally 
minimal. The emotion recognition architecture uses a 
fixed sequential channel (item) access pattern; therefore, 
this technique, with which the item memory vectors are 
sequentially evolving, can be used. Cellular automata grid 
sizes over 24 have been shown to generate new degrees 
of freedom for more than 103 steps before saturating 
[23]. Hypervectors, with tens of thousands of cells in 
the grid, provide linearly longer randomization periods; 
this is sufficient for most applications including emo-
tion recognition. Using a single random seed vector, full-
dimension random item memory hypervectors can be 
generated during the encoding process instead of being 

(1)HVn+1 = ρ+1(HVn)⊕ ρ−1(HVn)

Fig. 1  Sensor fusion datapath from electrodes to a fused hypervector for the three-modality emotion recognition system used in AMIGOS with 
GSR, ECG, and EEG sensor inputs. The sensor inputs are pre-processed into a set of features which are then mapped into the HD space to create a 
set of spatial encoder (SE) inputs. These vectors are encoded within each modality, and then finally fused together to create one vector representing 
information from all of the channels. The process is detailed in Sect. 2
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precomputed and stored. With this approach, the mem-
ory is constant regardless of the number of channels, 
increasing hardware efficiency.

Emotion recognition can provide valuable informa-
tion for HCI. Long-term wearable monitoring of user’s 
emotional state enables usage of implicit user informa-
tion beyond the traditional keyboard and mouse. This 
has direct applications in feedback systems such as 
driver warning systems, smart environments, and auto-
mated tutoring systems. A hardware-efficient platform 
that allows for extended-use, on-board classification 
addresses these applications and also enables significant 
enhancement of the general interface between humans 
and computers. Towards this, this work presents the 
following contributions:

Design of an efficient sensor fusion HDC architecture. 
The early fusion approach reduces the parallel encod-
ing paths previously used for HDC sensor fusion to 
a single one by taking advantage of HDC’s inherent 
projection of features into large-capacity hypervector 
representations.

Algorithmic optimizations for memory reduction 
are proposed and implemented. This includes a novel 
approach that takes advantage of the combinatorial 
nature of the HDC encoding process, and the usage of 
an elementary cellular automata with rule 90 together to 
reduce vector storage and request frequency.

Reduction of hypervector dimension is explored. Dimen-
sion reduction is a method of comprehensive datapath 
reduction. The impact of this on the algorithm perfor-
mance is explored in conjunction with all memory reduc-
tion and optimization techniques.

Results are reported for the DEAP and AMIGOS multi-
modal emotion recognition data sets for all experiments.

2 � Methods
2.1 � HDC early fusion architecture
The HDC physiological architecture includes four main 
blocks: the map into the hyperdimensional space (HDS), 
the spatial encoder, the temporal encoder, and the asso-
ciative memory as shown in Fig. 2. The first block maps 
incoming data into HDS using an item memory or a gen-
erator. HDC depends on the pseudo-orthogonality of 
random vectors to be able to distinguish between vari-
ous classes; a random vector will be nearly orthogonal to 
another random vector in the hyperdimensional space. 
Random vectors are used for the channel item memory 
vectors so that the source channel of a feature value can 
be included as information in the encoding process. 
These are stored in an item memory (iM).

To encode feature values, in this implementation, addi-
tional feature projection vectors are randomly gener-
ated for each channel and stored as well. In traditional 
architectures, the feature projection vector {−1, 0, 1} is 

Fig. 2  HDC early fusion detailed architecture for m modalities with the four main blocks: map into HDS, spatial encoder, temporal encoder for 
n-gram of size n+1, and associative memory. Sensor fusion occurs early in the datapath, directly after the spatial encoder
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multiplied by the feature value and then binarized by 
reducing the positive values in the vector to 1s, and the 
zeros and negative values to 0s. This process can be sim-
plified to multiplexers selecting between a pre-generated 
random negative or positive binary feature projection 
vector depending on the feature value’s sign to eliminate 
computationally expensive multipliers. This allows the 
feature projection vectors to maintain pseudo-orthog-
onality but have the same sparsity as the item memory 
vectors, making them interchangeable. As a result, the 
feature projection vectors can also be stored in the item 
memory instead of separately.

In the spatial encoder, the binding operation (XOR) is 
utilized to generate a spatially encoded hypervector for 
each channel. If iMi represents the item memory vector 
for channel i and FPi,j represents the feature projection 
vector selected for channel i for sample j, then the spa-
tially encoded hypervector for sample j SEi,j is computed 
as

To develop a complete hypervector, the bundling opera-
tion (vertical majority count across vectors) combines 
the many spatially encoded hypervectors within a sen-
sor modality. If the sensor modality m has k channels and 
the bundling operation is represented as + , SEm,j is com-
puted as

Because emotion recognition involves various sen-
sor modalities, it requires fusion. Previous sensor fusion 
implementations fused after the temporal encoder, but in 
this work, an early fusion approach is taken, which fuses 
the modalities directly after the spatial encoding process. 
Therefore, this architecture requires only a single tempo-
ral encoder as opposed to one per modality, as shown in 
Fig. 3. This reduces the parallel encoding paths while still 
allowing each modality to be weighted equally instead of 
by number of features. If there are m sensor modalities, 
the fused spatially encoded hypervector for sample j is

HDC also has the ability to encode temporal changes 
through the use of n-grams based on a sequence of N 
samples. This is invaluable for physiological signals that 
are time-varying as it allows for the capturing of time-
dependent emotional fluctuations within the same class 
or between segments of the same class. The permutation 
operation (cyclical shift, represented as ρ ) is used to keep 
track of previous samples. Hypervectors coming from 
the spatial encoder are permuted and then bound with 

(2)SEi,j = iMi ⊕ FPi,j

(3)SEm,j = (iM1 ⊕ FP1,j)+ · · · + (iMk ⊕ FPk ,j)

(4)SEj = SE1,j + SE2,j + · · · + SEm,j

the next hypervector N times in the temporal encoder. 
This results in an output that observes changes over time, 
TE j , that can be computed as

During the training process, many such encoded hyper-
vectors are generated, bundled to represent a class and 
then stored into the final block, the associative memory. 
During inference, the encoded hypervector is compared 
against each trained hypervector using Hamming dis-
tance. For binary vectors, this involves an XOR and then 

(5)
TEj = SEj ⊕ ρ+1(SEj−1)⊕ · · · ⊕ ρ+(N−1)(SEj−(N−1))

Fig. 3  HDC a late fusion and b early fusion architectures for 
a three-modality emotion recognition system. The late fusion 
architecture fuses after the temporal encoder, resulting in 3 parallel 
temporal encoders—one per modality. In comparison, the early 
fusion architecture fuses before the temporal encoder, resulting in 
only 1 temporal encoder
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popcount. The comparison with least distance is the 
inferred label.

2.2 � Implementation
The HDC early fusion architecture is implemented on 
both the AMIGOS and DEAP data sets with a standard 
dimension of 10,000 for the full datapath in the baseline 
implementation. In the AMIGOS study, GSR recorded 
at 128 Hz (1 channel across middle and index fingers), 
ECG recorded at 256 Hz (2 channels on right and left 
arm crooks) and continuous EEG recorded at 128 Hz 
(14 channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 
FC6, F4, F8, AF4) were measured for 33 subjects as they 
watched 16 videos [7]. Each video for each subject was 
classified to have either led to a positive or negative emo-
tion (valence), and the strength of the emotion was classi-
fied as either strong or weak (arousal). From the 3 sensor 
modalities, Wang et al. selected 214 time and frequency 
domain features relevant to accurate emotion classifica-
tion [11]. GSR has 32 features, ECG has 77 features, and 
EEG has 105 features. Similar preprocessing and features 
are used in this work as this feature selection demon-
strated excellent performance on the AMIGOS data set 
in previous work [9, 11]. The features used include GSR 
skin response/conductance and skin conductance slow 
response, ECG heart rate spectral power, variability and 
heart rate time series, and EEG average power spectral 
density and asymmetry of theta band, alpha band, beta 
band, and gamma band. The data for all 33 subjects was 
appended and a moving average of 15 s over 30 s was 
applied. The signals were scaled to be between −1 and +1 
to meet the HDC encoding process and downsampled 
by a factor of 8 for more rapid processing and usage of 
the HDC classification algorithm. Previous work uses the 
leave-one-subject-out approach to evaluate performance, 
this was also implemented for the early fusion architec-
ture [7, 11, 12]. The temporal encoder was tuned and an 
optimal n-gram of 3 feature windows was selected. For 
both data sets, transitionary ngrams (those with sam-
ples from both classes) were excluded from training and 
testing.

The DEAP study was collected in a similar format as 
the AMIGOS with 32 subjects watching 40 one-minute 
highlight excerpts of music videos selected to trigger 
distinct emotional reactions; however, it contains more 
extensive sensor modalities all recorded at 512 Hz: con-
tinuous EEG (32 channels placed according to the inter-
national 10–20 system), EMG (2 channels: neck and 
corner of mouth), GSR (1 channel across middle and 
index fingers), BVP (1 channel on the thumb), EOG (4 
channels above and below each eye), temperature (1 
channel on skin) and respiration amplitude (1 channel) 
[8]. The arousal and valence scores were self-assessed by 

the participants on a scale between 1 and 9. A binary clas-
sification system is maintained for high and low valence 
and arousal by thresholding the scale at 5. Preprocessing 
and feature selection were done using the TEAP tool-
box which selected time and frequency domain features 
for 5 of the modalities based on previous work in those 
areas [24]. These features have been shown to enable 
high performance on the DEAP data set in prior work 
and hence were selected for this work [25]. EMG has 10 
features including power and statistical moments over 
two channels. EEG has 192 features across the 32 chan-
nels including power spectral density in delta, theta, slow 
alpha, alpha, beta and gamma bands. GSR has 7 features 
including number of peaks, amplitude of peaks, rise time 
and statistical moments. BVP’s 17 features include inter-
beat intervals, multiscale entropy at 5 levels, tachogram 
power, power spectral density in multiple bands, and 
statistical moments. Respiration has 12 features includ-
ing main frequency, power spectral density and statisti-
cal moments. This results in 40 samples with a total of 
238 features per video from 5 modalities per subject. The 
signals were then scaled to be between −1 and +1 for the 
HDC encoding scheme. Previous work for this data set 
does training and inference independently by subject 
which was adopted in this work as well [13, 1, 8]. Typi-
cally, 90% of the data set is used for training per subject 
with the remaining 4 videos used for testing. For HDC, 
due to the inclusion of the temporal encoder, this would 
result in limited number of inferences leading to impre-
cise classification accuracies. As a result, the size of 
the training set was decreased to be 80% of the data set 
with 20% used for testing. A temporal n-gram of 3 was 
selected for this data set as well.

2.3 � Memory optimization
For both the AMIGOS and DEAP data sets, there are 
over 200 features that need to be spatially encoded. This 
requires advance storage of 214/238 iM vectors and 
420/476 feature projection (FP) vectors—positive (PFP) 
and negative (NFP)—totalling to 642/714 vectors that 
need to be stored in the item memory. Use of a unique 
iM and FP vector set per channel is shown in first column 
of Fig.  4. Without significant reduction of the memory 
requirements, optimizations of other blocks will provide 
limited benefits to the overall efficiency.

In the spatial encoder, the iM vector and the FP vec-
tor are bound together to form a unique representation 
containing feature information that is specific to a fea-
ture channel. However, both the iM and FP vectors do 
not need to be unique to the feature channel in order 
to generate a unique combination of the two. The bind-
ing operation will inherently create a vector different, 
and pseudo-orthogonal to both of its inputs. Therefore, 
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as long as one of these inputs is different for a specific 
feature channel, the spatially encoded feature chan-
nel vector (represented by the SE vectors in Fig. 4) will 
be unique. Using this idea, a set of optimizations were 
developed and implemented on the DEAP and AMI-
GOS data sets:

‘iM vectors constant per modality’: the iM is replicated 
across the various modalities, shown in the second col-
umn of Fig. 4. If, between each modalities, the FP vectors 
are different, then orthogonality and input feature chan-
nel uniqueness are maintained even if the iM is the same.

‘FP constant per feature channel’: though the iM is now 
the same between each modalities, each feature channel 
within a modality still has a unique iM vector. There-
fore, it is possible to re-use the same FP vectors for every 
feature channel within a modality, as shown in the third 
column of Fig. 4. This requires maintaining 2 unique FP 
vectors (PFP and NFP) for each modalities, and unique 
iM vectors within a modality.

‘Combinatorial pairs’: taking this combinatorial bind-
ing strategy to its limit, the 2-input binding operation can 
be used to generate many unique vectors from a smaller 
set of vectors by following an algorithmic process. Each 
feature channel requires a distinct set containing an iM 
vector, and two FP (positive & negative) vectors: {iM, 
PFP, NFP}. If the vectors for feature channel 1 are {A, B, 

C}, then the bound pairs that could result from spatial 
encoding (iM ⊕ PFP or iM ⊕ NFP) are:

•	 A ⊕ B
•	 A ⊕ C

B ⊕ C will not occur, because they are both FP vectors. 
However, it is a unique pairing that could be re-used for 
another channel. For example, the set for feature channel 
2 could be: {B, C, D}. The encoding process would use the 
following pairings:

•	 B ⊕ C
•	 B ⊕ D

This re-use strategy is the key to saving memory; it can 
be applied across all channels using a bank of the mini-
mal required vectors, as shown in the first part of Fig. 5.

Each vector can be paired with every other vector only 
once to maintain orthogonality and paired uniqueness 
across all feature channel. For a feature channel, one vec-
tor (the iM) must have two other available vectors (PFP 
and NFP) to pair with. With ⌊x⌋ defined as the floor func-
tion of x, the following equation can be used to calculate 
the total feature channels, TFC, possible given a bank of 
v vectors:

Fig. 4  iM and FP vectors used to map into HDS to generate unique SE vectors per channel for a ‘unoptimized’ with distinct iM and FP vectors for all 
channels, b ‘iM vectors constant per modality’ with the same iM vectors between different modalities, and c ‘FP constant per feature channel’ with 
the same FP vectors between channels of the same modality
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The formula can be derived by looping through each vec-
tor in the vector bank and sequentially grouping it with 
pairs of the other vectors. The generation of feature chan-
nel sets can be algorithmic, following the pattern shown 
in the tables in Fig. 5.

‘Rule 90 generation’: implementation of the cellular 
automata with rule 90 will allow trading off vector stor-
age with vector generation. If there are m modalities, 
the first 2×m generated vectors would be used for the 
PFP and NFP vector for each modality. These would be 
maintained throughout training and inference resulting 
in 2×m+ 1 locally stored vectors including an initial 
seed vector. However, the rest of the iM vectors would be 
generated on the fly for each feature channel during the 
encoding process, requiring no additional vector storage. 
This is possible because of the fixed access pattern of the 
iM. The generation process requires use of rule 90 across 
the entire hypervector, and local storage of the most 
recently generated vector to use as the next seed. 1 vector 
is requested and then generated for each feature channel.

‘Hybrid’: to reduce vector requests and hence the 
computation for rule90, the last two schemes: ‘com-
binatorial paired binding’ and ‘rule 90 generation’, can 
be combined. This hybrid strategy could include burst 
generation of a small set of vectors which could be 
locally stored. From this set, combinatorial pairs are 

(6)TFC =

v−2
∑

n=1

⌊

v − n

2

⌋ assigned to feature channels and spatially encoded. 
This set can be gradually re-populated with new vec-
tors as the old vectors are exhausted in the encoding 
process providing new possible pairs. This provides 
further tradeoff between vector storage and com-
putation. The vector request rate (vector generation 
requests per feature channel) is minimized when the 
vector storage is large enough for the combinatorial 
paired binding scheme alone at which point no genera-
tion is required.

‘Dimensionality reduction’: the final method of mem-
ory reduction is in the form of hypervector dimension 
reduction. The algorithm outlined in 2 stays exactly the 
same, but the length of the HD vectors used through-
out is shortened. This changes the size of the entire 
datapath, impacting both the logic complexity and 
the memory storage approximately linearly. However, 
smaller hypervectors also have reduced pseudo-orthog-
onality—random lower dimensional vectors are less 
likely to be nearly orthogonal in the hyperdimensional 
space than higher dimensional vectors. The capacity 
for information that can be stored within a hypervec-
tor is reduced. This especially impacts the output of the 
bundling operation that occurs in the spatial encoder 
which no longer represents as much information about 
each input channel, impacting classification accuracy. 
This optimization is a tradeoff between algorithm accu-
racy performance and overall efficiency. The impact of 
changing dimensions on emotion recognition accuracy 
for the various memory optimizations is also explored.

Fig. 5  ‘Combinatorial pairs’ feature channel vector set generation demonstrated for 7 stored vectors. iM loops through vector bank after exhausting 
available sequential pairs for FP. Hybrid method follows by burst re-generating the vector bank with rule 90 so that new combinatorial pairs can be 
formed for more feature channels. Generation of 18 feature channel vector sets using a bank of only 7 vectors is shown
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3 � Results
The HDC early fusion architecture was implemented on 
the AMIGOS and DEAP data sets for classification of 
high vs. low arousal and high vs. low valence. HDC early 
fusion achieved the highest average valence and arousal 
accuracy on AMIGOS, with the Rule 90 generation 
encoding method. A comparison against other AMIGOS 
binary classification multi-modal work using SVM, XGB, 
Gaussian Naive Bayes (GaussianNB) and ELM is shown 
in Table 1. The early fusion encoding process provided a 
boost of 3.9% for valence and 10.4% for arousal from the 
late fusion HDC architecture previously implemented by 
Chang et  al. [9] and demonstrates higher average accu-
racy than state of the art.

On the DEAP data set, HDC early fusion achieved the 
highest average valence and arousal accuracy with the FP 
constant per feature channel encoding method. A com-
parison against other DEAP binary classification multi-
modal work using GaussianNB, RBM with SVM, MESAE, 
and DBN is shown in Table 2. HDC early fusion accuracy 
is very comparable with other high performance multi-
modal approaches to the DEAP data set.

One of the key benefits of HDC is the hardware effi-
ciency, which is further improved for large-channeled 
emotion recognition tasks through the memory optimi-
zations discussed earlier. The results for both valence and 
arousal accuracy as well as the resulting stored vector 
count for AMIGOS and DEAP across all memory-opti-
mizing encoding methods are shown in Fig. 6.

For AMIGOS, with 214 channels and 3 modalities, 
the unoptimized method requires 3 unique vectors per 

feature channel {iM, PFP, NFP}—a total of 642 vectors. 
The ‘iM vectors constant per modality’ scheme is limited 
by the largest modality which is EEG with 105 feature 
channels. This results in a total of 105+ 214 × 2 = 533 
vectors. The ‘FP constant per feature channel’ reduces 
the total vector set to 105+ 2× 3 = 111 . The ‘combina-
torial pairs’ method uses Eq. 6 and results in a required 
31 vectors. Finally, the ‘rule 90 generation’ stores one FP 
pair {PFP, NFP} for each modality along with the seed 
vector, a total of 2× 3+ 1 = 7 . The memory optimiza-
tions result in an overall decrease in required vector 
storage by 98.91% from 642 vectors to 7, while the accu-
racy actually increased by 1.9% for arousal and 2.7% for 
valence. For DEAP the overall memory storage is higher 
due to increased feature channels, 238, and modalities, 5. 
The memory optimizations result in an overall decrease 
of 98.46% from 714 vectors to 11, while the accuracy 
actually increased by 0.6% for arousal and minimally 
decreased by 1.4% for valence.

Using the combinatorial pair method alone, the rela-
tionship between feature channel sets generated and 
number of stored vectors is shown in Fig.  7. Linear 
increases in number of stored vectors will cause result 
in a quadratically increasing number of available feature 
channel sets. This plot demonstrates that with 7 vectors, 
9 feature channel sets are available, but with 50 vectors, 
600 feature channel sets are available.

The combinatorial pair method can be used together 
with rule 90 in a hybrid scheme to provide options for 
tradeoff between memory and vector requests. In the 
solely rule 90 version, 7 vectors are stored for AMIGOS 
and 11 vectors for DEAP; a total of 214 and 238 vector 
requests are made during the encoding process for AMI-
GOS and DEAP for a single sample—a vector request 
rate of 1. However, using the burst generation technique, 
a small subset of vectors could be generated in one shot 
using rule 90, stored, and then used for spatially encod-
ing a quadratically larger number of feature channels to 
reduce the total number of vector requests made. The 
relationships between vector request rate (total vector 
requests / number of feature channels) and vector stor-
age for AMIGOS and DEAP are shown in Fig. 8.

The only rule 90 method stores 7 and 11 vectors regard-
less which, if used with the hybrid scheme, could be used 
to generate 9 feature channels with every burst instead 
of only 7 for AMIGOS, or 25 feature channels instead of 
just 11 for DEAP. This results in a reduction in frequency 
of vector requests by 22.22% and 56.00% for AMIGOS 
and DEAP, respectively, even while using the same num-
ber of stored vectors.

Finally, the impact of reducing dimension on the 
overall accuracy performances of the algorithm for 
emotion recognition tasks are shown for AMIGOS 

Table 1  AMIGOS classification accuracy comparison table

*F1 score. Accuracy value not available

Method HV vs. LV (%) HA vs. LA (%)

GaussianNB* [7, 9] 57 58.5

SVM [11] 68.0 66.3

ELM [12] 83.9 82.8

XGB [11] 80.1 68.4

HDC late fusion [9] 83.2 70.1

HDC early fusion 87.1 80.5

Table 2  DEAP classification accuracy comparison table

Method HV vs. LV (%) HA vs. LA (%)

GaussianNB [8] 57.6 62.0

RBM with SVM [13] 60.7 64.6

MESAE [1] 76.2 77.2

DBN [14] 51.2 68.4

HDC early fusion 76.7 74.2
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and DEAP in Fig. 9. For the AMIGOS data set, a grad-
ual decrease in accuracy is observed particularly from 
dimensions of 7000 by which point the average accu-
racy has dropped by 1%. Steeper decreases of ∼0.6% 
and ∼4.4% are seen between dimensions 3000 and 2000 
and between 2000 and 1000. Overall, between a dimen-
sion of 10,000 and 1000, there is a decrease in average 
accuracy of ∼7%.

For the DEAP data set, there is greater variation in 
accuracy across the dimensions and between meth-
ods; however, an overall trend of decreasing accuracy 
can still be seen, particularly past dimensions of 5000 
at which point the accuracy drops below 74.5% and 
continues to decrease rapidly including a ∼4.4% drop 
between 2000 and 1000. Overall, between 10,  000 and 
1000 there is a decrease in average accuracy of ∼5.4%.

Fig. 6  Arousal and valence accuracies and required vector storage for the various memory optimization as compared to unoptimized for a AMIGOS 
and b DEAP data sets. Optimizations include ‘unoptimized’ with distinct iM and FP vectors for all channels, ‘iM vectors constant per modality’ with 
the same iM vectors between different modalities, ‘FP constant per feature channel’ with the same FP vectors between channels of the same 
modality, and ‘Rule 90 generation’ with generated FP and iM vectors on top of the previous optimizations

Fig. 7  Number of unique feature channel vector sets {iM, PFP, NFP} 
that can be generated, and hence the number of channels that can 
be encoded, using the combinatorial pair technique as the number 
of stored vectors increases
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4 � Discussion
The first change that was implemented was an overall 
architecture shift from late to early fusion. The results 
demonstrate an improvement in performance on the 
AMIGOS data set despite moving the fusion point to 
combine the parallel data streams earlier in the encod-
ing process. The boost in accuracy may come from the 
fact that different modalities may have different temporal 
behavior, which may lead to different optimal n-grams. 
For late fusion, an n-gram of 4 was used for all modali-
ties without individual tuning. For early fusion, an opti-
mal n-gram of 3 was selected for the fused modalities 
temporal behavior, improving the overall performance. 
The early fusion method requires tuning of only a sin-
gle temporal encoder and still achieves higher accuracy 
even with reduction of the overall encoding complex-
ity. This indicates the potential, benefits, and feasibility 
of early fusion encoding processes in HDC. Information 
is retained in the high-capacity vectors even with only a 
single encoding path after the spatial encoder.

In addition, compared to other works, as shown 
in Table  1, HDC early fusion performed better than 
GaussianNB, SVM, XGB, ELM and HDC late fusion on 

AMIGOS. It also performed better, as shown in Table 2 
than GaussianNB, RBM with SVM and DBN and showed 
similar performance to MESAE on the DEAP data set. 
Given its high performance, HDC early fusion appears 
well-suited for emotion recognition tasks.

The difference in performance between valence and 
arousal classification accuracies of 2.5–6.6% for AMI-
GOS and and DEAP may be attributed to selection of 
n-gram size based on maximizing overall performance 
instead of selecting different n-gram sizes per category 
which would result in duplicate datapaths for valence 
and arousal classifications. The difference in perfor-
mance between AMIGOS and DEAP (6.3% and 10.4% for 
arousal and valence) may be attributed to the difference 
in features and modalities present in each data set, their 
class separability, and the ability of HDC to differentiate 
while using the selected early fusion encoding scheme.

The performance of various memory optimizations 
were explored and shown in Fig.  6. HDC depends on 
near-orthogonality between different data streams 
and feature values to ensure that samples from differ-
ent classes that vary in these ways are encoded into 

Fig. 8  Vector request rate (number of vectors requested per input 
channel) as the number of vectors stored increases while using rule 
90 on a small set of continuously re-populating vectors as compared 
to only rule 90 for a AMIGOS and b DEAP

Fig. 9  Average valence and arousal accuracy for the various memory 
optimizations proposed as the hypervector length decreases for 
a AMIGOS and b DEAP. The data labels are shown for the most 
optimized version: rule 90 generation
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sufficiently orthogonal class vectors. Each optimization 
reduces the total number of unique vectors that need to 
be stored in advance; however, there was no decrease in 
accuracy on AMIGOS between the most unoptimized 
and most optimized. There was actually an average 
increase of ∼2.3%; this accuracy change may be attributed 
to the random element of HDC vector initialization/gen-
eration which may result in either beneficial or detrimen-
tal random patterns. This is further demonstrated by the 
DEAP data set for which the optimizations increased the 
arousal accuracy by 0.6%, yet decreased valence accuracy 
by 1.4%. With an overall memory reduction of > 98%, the 
optimizations have a significant impact on the hardware 
requirements while displaying little to no performance 
degredation for both AMIGOS and DEAP, demonstrat-
ing that the techniques generalize across data sets.

A hybrid, burst generation technique was proposed, 
in which a small vector set would be used maximally, 
as shown in Fig.  7, and then re-generated. Using this 
method, the total number of vectors that need to be gen-
erated during training or inference of a single sample can 
be decreased, as shown in Fig. 8. Rule 90 alone requires 
generation of at least one vector per feature channel and 
doesn’t take advantage of the combinatorial pairs availa-
ble with its existing storage, hence implementation of this 
hybrid technique decreases the overall required vector 
generation. The benefit is higher for the DEAP data set 
with more modalities due to the prior storage of a larger 
number of vectors for rule 90.

This technique also allows for scalability while still 
maintaining memory size; existing vectors pairs can be 
used to their highest capacity and then the vector bank 
can be re-generated using rule 90 for the further capac-
ity required by additional channels or modalities. This 
could be done until the limits of the cellular automata are 
reached ( >>103 ). The trade-off between the computa-
tion for vector generation and additional storage provides 
options. The optimal performance point based on power 
or memory constraints can be determined for specific 
applications/platforms.

The dimension reduction shown in Fig. 9 demonstrates 
the trade-off between accuracy and comprehensive data-
path size reduction. An optimal point could be selected 
that provides the accuracy needs of the system with mini-
mum HDC dimensionality. With an accuracy tolerance 
of ∼2%, the dimension can be reduced by 70% to hyper-
vectors of 3000 bits for AMIGOS and by 80% to hyper-
vectors of 2000 bits for DEAP. These techniques allow 
reduction of overall power due to significantly reduced 
computation and memory storage. For applications such 
as smart environments and enhanced human–computer 
interactions, this enables ease-of-use through longer bat-
tery life for low-power wearable systems.

5 � Conclusions
In conclusion, this work proposed a solution to the 
many-channeled (> 200) memory-expensive emotion 
recognition task in the form of a brain-inspired early 
fusion hyperdimensional computing architecture along-
side several optimization techniques that make emo-
tion recognition feasible for hardware-constrained, 
low-power wearable applications. The various methods 
explored were able to achieve significant reduction >98% 
in required memory and > 20% decrease in frequency 
of vector requests. Finally, the impact of hypervec-
tor dimension on emotion recognition accuracy dem-
onstrated < 2% performance degradation for datapath 
reductions of 70–80%.

Though this work focuses on emotion recognition, 
all the proposed techniques maintain the properties 
required for successful hyperdimensional computing and, 
therefore, could generalize to other applications, and will 
be particularly useful for those with many, varied streams 
of input information.

To demonstrate the impact of the memory optimiza-
tions, the energy per prediction of an ASIC realization 
of the emotion-classification engine was reduced by 93% 
for the cellular automata rule 90 over prior HDC pro-
cessors in a recent implementation study [26]. Future 
work could include efforts to improve the accuracy of 
the HDC arousal classification to be higher by modifying 
the encoding scheme. The overall hardware could remain 
similar by reusing existing blocks for minimally differ-
ent functions depending on whether the classification is 
for valence or arousal. In addition, not all input channels 
may be relevant for the emotion recognition classification 
task. Reduction in overall input features would reduce 
the number of unique iM vectors needed. Future work 
could explore feature reduction/optimization for the 
HDC algorithm to determine which channels of informa-
tion are truly necessary to maintain high accuracy for this 
task. Next steps could also include implementation of 
the proposed techniques for other applications with sig-
nificantly larger numbers of channels and modalities to 
explore generalizability and scalability.

6 � Limitations
In this work, the focus was the implementation of hyper-
dimensional computing for a multi-modal sensor fusion 
task and algorithm exploration of improvements in mem-
ory storage and encoding complexity. Towards this, pre-
existing emotion recognition data sets were used with 
features selected based on prior work. Future work could 
include feature optimization for performance with the 
HDC algorithm towards integration of sensors and HDC 
processing into a user interface.
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