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Abstract 

Infant brain magnetic resonance imaging (MRI) is a promising approach for studying early neurodevelopment. How-
ever, segmenting small regions such as limbic structures is challenging due to their low inter-regional contrast and 
high curvature. MRI studies of the adult brain have successfully applied deep learning techniques to segment limbic 
structures, and similar deep learning models are being leveraged for infant studies. However, these deep learning-
based infant MRI segmentation models have generally been derived from small datasets, and may suffer from 
generalization problems. Moreover, the accuracy of segmentations derived from these deep learning models relative 
to more standard Expectation–Maximization approaches has not been characterized. To address these challenges, 
we leveraged a large, public infant MRI dataset (n = 473) and the transfer-learning technique to first pre-train a deep 
convolutional neural network model on two limbic structures: amygdala and hippocampus. Then we used a leave-
one-out cross-validation strategy to fine-tune the pre-trained model and evaluated it separately on two independ-
ent datasets with manual labels. We term this new approach the Infant Deep learning SEGmentation Framework 
(ID-Seg). ID-Seg performed well on both datasets with a mean dice similarity score (DSC) of 0.87, a mean intra-class 
correlation (ICC) of 0.93, and a mean average surface distance (ASD) of 0.31 mm. Compared to the Developmental 
Human Connectome pipeline (dHCP) pipeline, ID-Seg significantly improved segmentation accuracy. In a third infant 
MRI dataset (n = 50), we used ID-Seg and dHCP separately to estimate amygdala and hippocampus volumes and 
shapes. The estimates derived from ID-seg, relative to those from the dHCP, showed stronger associations with behav-
ioral problems assessed in these infants at age 2. In sum, ID-Seg consistently performed well on two different datasets 
with an 0.87 DSC, however, multi-site testing and extension for brain regions beyond the amygdala and hippocampus 
are still needed.
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1  Introduction
Identifying early neurobiological markers of psychi-
atric risk is a critical step toward developing targeted 
early intervention strategies. Brain imaging studies 
in the early postnatal period are increasingly used to 
help achieve this goal [1, 2]. Imaging the brain early 
in life limits postnatal influences, and thus may help 
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isolate, for instance, the impact of prenatal exposures 
on neurodevelopment. However, an important stum-
bling block curtailing progress in infant neuroimaging 
is developing accurate, reliable, and efficient methods 
for segmenting brain regions on anatomical infant MRI 
scans.

The amygdala and hippocampus are two candidate 
brain regions that may help identify psychiatric risk. 
For example, studies of anxiety and mood disorders, as 
well as externalizing disorders, have consistently shown 
that the structure and function of the amygdala and hip-
pocampus, along with other brain regions, are altered. In 
infants, amygdala–prefrontal functional connectivity is 
associated with internalizing symptoms at age 2 [3]; pre-
natal maternal depression is associated with altered white 
matter connectivity between the amygdala and prefron-
tal cortex on infant diffusion MRI scans [4]; and maternal 
anxiety is correlated with slowed development of the hip-
pocampus over the first 6 months of life [5].

Despite the promise of infant neuroimaging, assessing 
the structure of key brain regions, including the amyg-
dala and hippocampus, remains a challenging task. First, 
both structures are relatively small in volume, so even 
minor segmentation errors may lead to significant mis-
calculations of morphometric estimates. Second, the cur-
vature of both structures, especially of the hippocampus, 
makes it difficult for automated segmentation software to 
correctly delineate them from surrounding neural tissue. 
Third, the amygdala is adjacent to the hippocampus and 
has low inter-regional contrast. This makes it difficult for 
one structure to be distinguished from the other. Because 
of these challenges, segmentation techniques like atlas-
based [6, 7], thresholding or clustering [8], are not always 
accurate.

Publicly available, automatic segmentation pipelines 
for infant MRI research have been developed and are 
widely used [9–11]. However, the agreement between 
these automated techniques and expert manual segmen-
tation has not been extensively tested, and the testing 
that has been done has been disappointing. For exam-
ple, one study [12] reported a 0.39 dice similarity score 
between an automatic method [9] and manual segmenta-
tion for the amygdala and hippocampus. Agreement with 
"ground-truth” manual labels may be worse when auto-
mated techniques are applied to datasets acquired from 
different MRI scanners or imaging protocols. Infant Free-
Surfer [11], a novel automated pipeline, can segment the 
hippocampus and amygdala on T1w scans, but it cannot 
accommodate T2w MRI images, which are collected by 
many laboratories doing infant MRI research. While the 
dHCP pipeline[10] can handle both T1w and T2w, test-
ing of dHCP segmentations against manual segmenta-
tions has not been documented.

Deep learning approaches, such as convolutional neu-
ral networks (CNN), have been successfully applied in 
adolescent and adult MRI scans to improve the segmen-
tation accuracy of subcortical regions [13–18]. Variants 
of CNNs have also been developed for infant research 
[19–22]. However, the performance of CNNs is directly 
dependent on the type, quality, and quantity of training 
data. Limitations in any of these three areas may result 
in CNN models with poor reproducibility or poor stabil-
ity across datasets whose acquisition or protocols differ 
from the training dataset. To address differences across 
imaging protocols or MRI scanners, transfer-learning has 
been used to improve CNN-based brain segmentation 
accuracy for adults [18, 23]. In the deep learning commu-
nity, transfer-learning refers to a technique to fine-tune 
a model, which has already been pre-trained on a large 
dataset, such that the model can accommodate specific 
domains within smaller datasets. Transfer learning has 
not been used in infant brain research, but it holds prom-
ise for improving the generalization of CNN-based seg-
mentation models.

This study aimed to use several independent infant MRI 
datasets and a transfer-learning strategy to improve the 
generalization of CNN-based segmentation models. We 
termed this new approach the Infant Deep learning SEG-
mentation Framework, or "ID-Seg”. We quantitatively 
and rigorously compared amygdala and hippocampus 
segmentations derived from ID-Seg with “ground-truth” 
manual segmentations. Specifically, we first pre-trained a 
classic U-shape convolutional neural network model on a 
large, public infant MRI dataset (n = 473, collected on a 
Phillips scanner) on two limbic structures: amygdala and 
hippocampus. Henceforth, we refer to this dataset as the 
“training dataset”. Then we fine-tuned and evaluated this 
pre-train CNN model on two independent datasets sepa-
rately using leave-one-out cross-validation (LOOCV). 
These two additional datasets both had manual segmen-
tations of the amygdala and hippocampus. One dataset, 
which included 20 infant MRI scans, was collected on a 
GE scanner and then segmented by trained analysts in 
our research group. Henceforth, we refer to this dataset as 
the “internal dataset”. Another dataset, which included 10 
infant MRI scans, was collected on a Siemen scanner and 
then segmented by an expert from an external research 
group. Henceforth, we refer to this dataset as the “exter-
nal dataset”. The segmentation accuracy of ID-Seg against 
manual segmentations was calculated by three met-
rics: Dice similarity coefficients (DSC), intra-class cor-
relation (ICC), and average surface distance (ASD). We 
similarly calculated the segmentation accuracy against 
manual segmentations of an existing infant segmentation 
pipeline, the Developmental Human Connectome pipe-
line (dHCP), which uses an Expectation–Maximization 
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approach. To justify the contribution of the proposed 
transfer-learning and pre-training strategy, we also con-
ducted an ablation study by comparing the performance 
from ID-Seg with pre-trained weights to ID-Seg without 
pre-trained weights.

Lastly, we conducted a proof-of-concept analysis. 
Detecting brain–behavior relationships is often an 
important goal in neurodevelopmental research. We 
therefore tested whether ID-Seg improves the detec-
tion of brain–behavior relationships as compared with 
an existing infant segmentation pipeline, the dHCP. We 
hypothesized that ID-Seg-derived morphometric meas-
ures would provide stronger brain–behavior associations. 
To test this hypothesis, we included another dataset 
with 50 T2w infant MRI scans (henceforth termed the 
“proof-of-concept” dataset) and parent-reported behav-
ioral problems at age 2 as indexed by the Child Behavior 
Checklist (CBCL) [24]. Brain measures included amyg-
dala and hippocampus volumes and shapes, and behav-
ioral measures included internalizing, externalizing, and 
total problems.

2 � Infant MRI datasets
We curated four infant MRI datasets (from 3 different 
MRI scanners) to test the segmentation performance of 
ID-Seg. All structural MRI scans went through minimal 
preprocessing including skull stripping [25] and N4 bias 
field correction [26]. Demographics and imaging param-
eters of each dataset are presented in Table 1.

2.1 � Training dataset—developmental human connectome 
(dHCP) project

We included 473 bias-corrected infant T2-weighted 
(T2w) structural MRI scans from the dHCP v1.0.2 data 
release The dHCP structural segmentation pipeline 
[10] generated the bilateral hippocampus and amygdala 
segmentations.

2.2 � Internal dataset—Environmental Influences on Child 
Health Outcomes (ECHO)‑Dataset 1

We used 20 high-quality, term-born infant T2w MRI 
scans to create our internal dataset. These 20 scans were 
randomly drawn from the following two Environmental 
influence on Children’s Health Outcomes (ECHO) stud-
ies [27]. Additional information about the two studies, 
including subject enrollment, imaging parameters, and 
inclusion/exclusion criteria, can be found in Additional 
file  1: ECHO Datasets. We manually segmented the 
bilateral hippocampus and amygdala using a multi-rater 
method (see Sect. 3.1).

2.3 � External dataset—Melbourne Children’s 
Regional Infant Brain (M‑CRIB)

For our external dataset, we used a publicly available 
dataset that includes T2w MRI scans from 10 term-born 
infants. The manual segmentations were performed by 
a single rater from the Melbourne group [7]. Additional 
details about the manual segmentation procedures and 
imaging parameters can be found elsewhere [7].

2.4 � Proof‑of‑concept dataset—ECHO‑Dataset 2
 We examined prospective brain–behavior associations 
in 50 infants. Participants had T2w MRI scans during 
infancy and then CBCL assessments completed at age 
2 as part of the aforementioned ECHO studies. These 
infants do not overlap with those of ECHO-Dataset 1. 
The MRI scans were collected between 1 and 4 months 
after birth, and then the parent-report CBCL assess-
ments were performed at 2 years of age.

3 � Materials and methods
The study contains two modules. First, we built and 
validated an infant deep learning segmentation frame-
work (ID-Seg) to segment the infant hippocampus 
and amygdala on T2-weighted (T2w) MRI brain scans 

Table 1  Demographics and MRI sequence information

For quantitative variables, data are presented as mean ± standard deviation unless otherwise noted. PMA: postmenstrual age. *The large training DHCP dataset with 
corresponding dHCP labels was used to pre-train the model with sufficient data. ƒThe ECHO-Dataset1 dataset was used to test the model’s performance as an internal 
source. †The M-CRIB dataset was used as an external test dataset to further test the reliability of our proposed deep learning framework. ‡The proof-of-concept ECHO-
Dataset2 was used to test the association between brain morphometric measures at birth and corresponding CBCL measures at age 2-year-old.

Training DHCP* 
(N = 473)

ECHO-Dataset1ƒ 
(N = 20)

M-CRIB† (N = 10) ECHO-Dataset2‡ (N = 50)

PMA at scan, weeks 40.65 ± 2.19 46.90 ± 4.14 39.78 ± 1.31 48.06 ± 4.69

Sex

 Female, N(%) 266 (43.8%) 13 (65.0%) 4 (40.0%) 25 (50%)

 Male, N (%) 207 (56.2%) 7 (35.0%) 6 (60.0%) 25 (50%)

MRI scanners 3  Philips 3T GE 3T Siemens 3T GE

MRI resolution (mm3) [0.5, 0.5, 0.5] [0.9, 0.9, 0.9] [0.63, 0.63, 0.63] [0.9, 0.9, 0.9]

MRI dimensions [290,290,203] [130,256,256] [304,304,157] [130, 256, 256]
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(Fig.  1a). Second, we conducted a proof-of-concept 
analysis to explore prospective associations between 
brain structure in infancy and behavioral problems at 
age 2 (Fig. 1b).

3.1 � Multi‑rater manual segmentation
Three research assistants (KS, GKCAA, EB) received 
instruction and training from a board-certified radiolo-
gist (AM) to perform infant hippocampus and amygdala 

Fig. 1  Overview of this study. a Using 3 independent infant MRI datasets through a transfer-learning approach, we trained, fine-tuned, and 
cross-validated a deep-learning segmentation framework (ID-Seg) for hippocampus and amygdala, both with internal and external datasets; b 
we further explored the prospective associations between morphometric measures (left and right hippocampus and amygdala) in infants and 
behavior problems at age 2. *Cyan color represents segmented hippocampus, and red represents segmented amygdala. LOOCV leave-one-out 
cross-validation
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segmentation using ITK-SNAP software [28]. Manual seg-
mentation protocols are available in the Additional file  1: 
Manual Segmentation Protocols using ITK-SNAP. Inter-
rater reliability for these manual tracings was assessed by 
Dice Similarity Score (DSC) and ensured a minimum 0.6 
DSC for each brain region before proceeding. Based on 
all three raters’ manual segmentation, a bilateral reference 
manual segmentation for the amygdala and hippocampus 
was generated with the Simultaneous Truth And Perfor-
mance Level Estimation (STAPLE) algorithm [29]. STAPLE 
is an expectation–maximization algorithm that estimates 
the optimal combination of segmentations based on each 
rater’s performance level. We established the "ground 
truth" segmentation using STAPLE and based on all three 
study raters instead of only one rater. We visually inspected 
and edited STAPLE output if needed.

3.2 � Infant deep learning segmentation (ID‑Seg)
We adopted a transfer-learning approach to train and test 
ID-Seg on multiple datasets. In Fig. 1a, ID-Seg was initially 
trained (termed “pre-train” in the AI literature) on our 
training dataset, consisting of 473 T2w infant MRI scans. 
Then we tested this trained model on our internal dataset 
(ECHO-Dataset 1) and external dataset (M-CRIB). For our 
internal dataset, we used our multi-rater manual segmen-
tation framework as described above to generate manual 
segmentations; for out external dataset, researchers from 
an independent group [7] generated manual segmenta-
tions and have made these publicly available (https://​osf.​
io/​4vthr/). All deep learning models below were written 
in Python using PyTorch libraries, and relative training 
procedures were completed in the NVIDIA Geforce Titan 
RTX GPU workstation. Relevant code is open access via 
GitHub repository (https://​github.​com/​wangy​uncol​umbia/​
ID-​Seg-​V2).

3.2.1 � Model architecture
We used a multi-view fully convolutional neural network, 
the most cited MRI brain segmentation model [18]. This 
model was initially developed for adult whole-brain seg-
mentation and has been demonstrated to be capable of seg-
menting small subcortical structures with skip connections 
and unpooling layers in the decoding path. The flowchart of 
this model’s architecture can be found in Additional file 1: 
Fig. S1, and more detailed information can be found in the 
original work [18]. Specifically, we trained three 2D CNN 
models separately for each of the three principal views 
(axial, coronal, and sagittal). Of note, each 2D CNN has the 
same architecture. In the end, we merged predicted prob-
abilities from multi-view models using formula (1) below to 
calculate the final predicted label for each voxel:

In formula (1), pAxial(x), pCoronal(x), pSagittal(x) are the 
predicted probabilities of a voxel from axial, coronal, 
and sagittal deep learning models. We set the weights 
�1, �2, �3 to 0.4, 0.4, and 0.2, respectively.

When using this model, there is no fixed dimension 
requirement for the input size of MRI images, how-
ever, the input size should be divisible by 16 because 
this model consists of 4 down-sampling layers – each 
layer reduces the image by a factor of 2. Therefore, for 
each dataset in this project, we changed the size of the 
input image to meet this divisibility rule by cropping 
background borders (equally from both sides) or up-
sampling the field of view to ensure a fair comparison if 
the input size were significantly smaller than the train-
ing dHCP dataset. Detailed information can be found 
in Additional file 1:Table S1.

3.2.2 � Model learning
3.2.2.1  Initial network training  The goal of training ID-
Seg on a large training dataset first was to provide robust 
weight initialization. We randomly split this training data-
set into two parts: 80% for training and 20% for validat-
ing model performance. As noted above, we applied the 
dHCP structural segmentation pipeline, which bilaterally 
segments and labels 87 regions within the infant brain, 
including the hippocampus and amygdala. We started 
with these automated segmentations because we rea-
soned that this large sample would provide strong prior 
initialization of the network, such that we could then opti-
mally utilize the smaller sample of manually segmented 
scans to achieve high segmentation accuracy. We antici-
pated that the segmentations from the automated soft-
ware (i.e., dHCP) would not be as accurate as the manual 
annotations. However, these segmentations would allow 
our model to recognize a wide range of morphological 
variations in brain structures. This training procedure 
affords strong prior weights for the ID-Seg network, 
where robustness to data heterogeneity is enhanced by 
the diversity of the training dataset (e.g., different scan-
ners and sites). For each 2D model, trainable param-
eters are 3,520,871 and the total trainable parameters 
are 10,562,613 for the multi-view 2D model. During the 
training process, we selected a set of model hyperparam-
eters including epoch, dropout, convolutional kernel size, 
optimizer, learning rate, loss function, and batch size. We 
chose an optimal configuration that results in a model that 
achieves the best performance on the validation dataset. 

(1)

LPred(x) =argmax(�1pAxial(x)

+�2pCoronal(x)

+�3pSagittal(x)
)

.

https://osf.io/4vthr/
https://osf.io/4vthr/
https://github.com/wangyuncolumbia/ID-Seg-V2
https://github.com/wangyuncolumbia/ID-Seg-V2
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The optimal hyperparameter configuration can be found 
in Additional file 1: Table S2.

3.2.2.2  Internal fine‑tuning and leave‑one‑out cross‑vali‑
dation  We next applied the initially trained ID-Seg and 
fine-tuned it on our internal dataset (ECHO-Dataset 1). 
Specifically, we first passed weights of the initially trained 
ID-Seg, and we then trained ID-Seg for 5 epochs while 
only unfreezing the last few layers to prevent propagation 
errors due to random initialization weights and to save 
computation time. Lastly, we unfroze all layers and fine-
tuned the whole network for another 15 epochs. Simi-
larly, we evaluated ID-Seg’s performance against manual 
segmentations that we conducted on the internal data-
set using a multi-rater framework and the leave-one-out 
cross-validation (LOOCV) technique. The training loss 
versus epochs plot on this dataset can be found in Addi-
tional file 1: Fig. S2a. The hyperparameters used to fine-
tune the network, including learning rate, batch size, and 
epoch number, were 5*10–4, 8, and 15, respectively.

3.2.2.3  External fine‑tuning and  leave‑one‑out cross‑val‑
idation  To test the reliability of ID-Seg, we applied 
ID-Seg to our external dataset (M-CRIB). We evaluated 
the accuracy of ID-Seg’s segmentations against manual 
segmentations performed by an independent group. 
The training loss versus epochs plot on this dataset can 
be found in Additional file  1: Fig. S2b. We used similar 
hyperparameters as in our internal fine-tuning.

For comparison, we also segmented the internal and 
external datasets with (1) ID-Seg without pre-training on 
dHCP dataset; and (2) an automated pipeline, the dHCP, 
that uses an Expectation–Maximization approach, rather 
than deep learning.

3.3 � Segmentation evaluations and comparisons
We calculated three commonly used evaluation met-
rics to compare the segmentation output of our ID-Seg 
against manual segmentations: Dice similarity coefficient 
(DSC), intra-class correlation (ICC), and average surface 
distance (ASD). DSC is a metric used to calculate the 
similarity between two images and measure the overlap 
across the two images [30]. ICC is a measure of consist-
ency between two raters, or in this case, two segmented 
images [31]. ASD is a surface-based metric and measures 
the average Hausdorff Distance over all points between 
surfaces of a prediction structure (i.e., ID-Seg’s segmenta-
tion of the hippocampus and amygdala) and the “‘ground 
truth”’ (i.e., manually segmented hippocampus and 
amygdala). Relevant code can be found at https://​github.​
com/​deepm​ind/​surfa​ce-​dista​nce. For each structure, 

we calculated DSC, ICC, and ASD to compare the out-
put of each method with manual segmentation. One-
way ANOVA tests were used to compare the accuracy of 
three methods: ID-Seg without pre-training, ID-Seg with 
pre-training and the dHCP pipeline based on DSC, ICC, 
and ASD.

3.4 � Brain and behavior relationship—a proof‑of‑concept 
analysis

3.4.1 � Volumetric and shape analysis for the hippocampus 
and amygdala

We applied the optimized version of ID-Seg to directly 
segment infant MRI scans in our proof-of-concept data-
set (ECHO-Dataset 2)—that is, infant MRI scans that 
were not used in any of the previous training/testing pro-
cedures (Fig. 1b). Using ID-Seg, we calculated volumetric 
and shape measurements for the bilateral hippocampus 
and amygdala. The volume (in mm3) of each region was 
adjusted with respect to total brain volume. Then, we 
performed shape analysis for each structure using Slic-
erSALT software (Kitware, Inc., United States). Here, 
we used an average spherical harmonics description 
(SPHARM) to represent the shape measurements of a 3D 
structure [32].

3.4.2 � Brain and behavior relationship
We conducted Spearman rank partial correlation analysis 
to examine prospective associations between morpho-
metric measures of the hippocampus and amygdala at 
infancy with behavioral outcomes at age 2. The behav-
ior outcomes included internalizing, externalizing, and 
total behavioral problems and were assessed using the T 
score from parent-report CBCL. We adjusted for post-
menstrual age of the infant at MRI scan, maternal edu-
cation, and maternal post-partum mood symptoms (as 
indexed by the 10-item Edinburgh Postnatal Depression 
Scale [33]). Infant sex was not adjusted for because this is 
already accounted for in CBCL T scores.

4 � Results
4.1 � Multi‑rater manual segmentation
With our internal dataset ECHO-Dataset1 (n = 20), 
our multi-rater manual segmentation framework (see 
Sect.  3.1) generated “ground-truth” segmentation of the 
bilateral hippocampus and amygdala. For each structure, 
the mean and standard deviation DSC was 0.78 (0.05) for 
right hippocampus, 0.77 (0.05) for left hippocampus, 0.73 
(0.05) for right amygdala, and 0.74 (0.06) for left amyg-
dala. The inter-rater agreement across all structures was 
an average DSC of 0.76.

Detailed inter-rater agreement is summarized in Addi-
tional file 1: Table S1.

https://github.com/deepmind/surface-distance
https://github.com/deepmind/surface-distance
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4.2 � Segmentation evaluations and comparisons
On our internal (ECHO-Dataset1) and external 
(M-CRIB) datasets, the accuracy of ID-Seg was bet-
ter than that of the dHCP pipeline. Specifically ID-Seg 
generated segmentations were more accurate relative 
“ground truth” manual segmentations than those gener-
ated by the dHCP pipeline. This was true across all three 
metrics of accuracy: DCS, ICC, and ASD. Complete sta-
tistical results are available in Table 2. As shown in Fig. 2, 
as compared with the dHCP pipeline, segmentation from 
ID-Seg generally had smaller volumes, smoother surface, 
and shapes that more closely match expected anatomical 
features.

With ID-Seg with pre-training, on our internal data-
set ECHO-Dataset1, the average and standard deviation 
DSC of ID-Seg across four structures was 0.86 (0.03); ICC 
was 0.93 (0.02);ASD was 0.29 (0.11) mm. On the exter-
nal dataset M-CRIB, ID-Seg’s performance was similar: 
0.87 (0.02) for DSC, 0.93 (0.01) for ICC, and 0.32 (0.10) 
for ASD. With the dHCP segmentation pipeline, on our 
internal dataset ECHO-Dataset1, dHCP’s average DSC 

was 0.77 (0.13), average ICC was 0.86 (0.11) and dHCP’s 
average ASD was 0.57 (0.40). On the external data-
set M-CRIB, we noticed the performance of dHCP sig-
nificantly dropped: 0.66 (0.06) for DSC, 0.79 (0.04) for 
ICC, and 2.0 (1.1) mm for ASD. Each feature’s mean and 
standard deviation can be found in Table 2.

We also compared ID-Seg’s results with and without 
pre-trained weights. As expected, the results of ID-Seg 
without pre-trained weights were less accurate as com-
pared to ID-Seg with pre-trained weights.

4.3 � Brain at birth and behavioral problems at age 2
In the proof-of-concept dataset (ECHO-Dataset2), mean 
and standard deviation T scores on the CBCL at child 
age 2 were 48.3 (10.6) for total problems, 47.6 (9.12) for 
internalizing problems, and 48.2 (10.9) for externalizing 
problems. As seen from Fig.  3a, we identified multiple 
significant correlations (13 out of 24) between ID-Seg 
derived brain features and age 2 behavioral outcomes. 
For example, we found significant correlations between 

Table 2  Segmentation evaluations and comparisons

DSC Dice similarity coefficients, ICC intra-class correlation, ASD average surface distance, measured in mm. Segmentation metrics for each method are shown in mean 
(standard deviation). Higher DSC and ICC, and lower ASD indicate better segmentation accuracy. Amyg Amygdala, Hippo hippocampus; L left; R right

Dataset Metric Region Segmentation method F p.adj

dHCP ID-Seg without 
pre-training

ID-Seg with pre-
training

Internal dataset: ECHO-Dataset1 DSC L Amyg 0.79 (0.12) 0.76(0.07) 0.86(0.03) 8.81 0.001

(n = 20) L Hippo 0.76 (0.09) 0.75 (0.08) 0.87 (0.03) 14.10  < 10−4

R Amy 0.77 (0.14) 0.76 (0.08) 0.86 (0.03) 6.31 0.003

R Hippo 0.74 (0.15) 0.76 (0.08) 0.87 (0.03) 10.67  < 10−4

ICC L Amyg 0.87 (0.09) 0.86 (0.05) 0.92 (0.02) 3.41 0.05

L Hippo 0.86 (0.08) 0.85 (0.06) 0.93 (0.02) 4.75 0.024

R Amyg 0.86 (0.13) 0.86 (0.05) 0.92 (0.02) 3.79 0.05

R Hippo 0.84 (0.13) 0.86 (0.05) 0.93 (0.01) 5.89 0.02

ASD L Amyg 0.49 (0.34) 0.41 (0.09) 0.32 (0.11) 5.89 0.007

L Hippo 0.60 (0.37) 0.61 (0.59) 0.26 (0.11) 10.38 0.001

R Amyg 0.53 (0.47) 0.79 (1.3) 0.31 (0.09) 3.97 0.024

R Hippo 0.65 (0.43) 0.66 (0.57) 0.26 (0.11) 6.43 0.006

External dataset: M-CRIB DSC L Amyg 0.73 (0.02) 0.81 (0.03) 0.88 (0.02) 184.47  < 10−4

(n = 10) L Hippo 0.67 (0.04) 0.81 (0.03) 0.88 (0.03) 156.2  < 10−4

R Amyg 0.67 (0.03) 0.83 (0.04) 0.87 (0.02) 68.78  < 10−4

R Hippo 0.60 (0.04) 0.83 (0.03) 0.87 (0.03) 109.61  < 10−4

ICC L Amyg 0.86 (0.05) 0.90 (0.01) 0.93(0.01) 195.48  < 10−4

L Hippo 0.83 (0.06) 0.91 (0.02) 0.94(0.01) 393.73  < 10−4

R Amyg 0.83 (0.06) 0.90 (0.02) 0.93(0.01) 88.13  < 10−4

R Hippo 0.78 (0.09) 0.91 (0.01) 0.93(0.02) 373.74  < 10−4

ASD L Amyg 0.94 (0.13) 0.55 (0.06) 0.36 (0.11) 190.95  < 10−4

L Hippo 2.5 (0.29) 0.37 (0.17) 0.25 (0.06) 158.59  < 10−4

R Amyg 1.1 (0.11) 0.45 (0.09) 0.41 (0.09) 70.13  < 10–4

R Hippo 3.3 (0.44) 0.41 (0.18) 0.28 (0.06) 112.71  < 10–4
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Fig. 2  Visual comparisons between the “ground-truth” manual, dHCP, and ID-Seg segmentations for the left hippocampus’s 3D shape using our 
internal (ECHO-Dataset1) and external (M-CRIB) datasets, respectively. Red arrow highlights the areas with notable differences

Fig. 3  Brain–behavior relationships (in black rectangles) for a ID-Seg, b dHCP. X indicates that the p value of spearman correlation is not significant 
at the threshold of p = 0.05. t_total CBCL total problems T score, t_inter CBCL internalizing problems T score, t_exter CBCL externalizing problems T 
score, amyg amygdala, hippo hippocampus
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the volume of right amygdala and CBCL total prob-
lems, rho(47) = -0.62, p < 10–3; internalizing problems, 
rho(47) = −  0.43, p < 10–3; and externalizing problems, 
rho(47) = -0.59, p < 10–3. Conversely, we detected on two 
significant correlations between dHCP-derived brain fea-
tures and age 2 behavioral outcomes (Fig. 3b).

5 � Discussion
In this study, we pre-trained a 3D deep learning infant 
segmentation (ID-Seg) model on a large sample of infant 
MRI scans. Using a transfer-learning technique, we then 
fine-tuned and evaluated the performance of ID-Seg 
on two datasets with manual segmentations. We found 
that ID-Seg had a high degree of segmentation accuracy. 
Lastly, in a proof-of-concept analysis, ID-Seg was more 
effective in detecting brain–behavior associations than 
an existing infant MRI pipeline.

Human neuroimaging research requires reliable, effi-
cient and accurate methods for segmenting structural 
brain MRI scans. This is particularly important for large, 
multi-site studies that obtain data from several different 
MRI scanners and use large sample sizes. For example, 
studies such as the Adolescent Brain Cognitive Develop-
ment (ABCD) includes over 10,000 MRI scans, collected 
across multiple sites. Progress toward this goal of opti-
mizing structural MRI segmentation has been achieved 
for studies of adults and youth. However, structural MRI 
scans of infants requires special consideration because of 
the marked differences in tissue contrast in the infant rel-
ative to adult or child brain. For example, imaging pipe-
lines such as FreeSurfer that are widely used in adult and 
youth studies are not able to segment common subcorti-
cal structures on infant structural MRI scans. The NIH 
has recently expanded its support of infant MRI research 
with the Healthy Brain and Child Development Study 
(HBCD) [34], that launched in 2021 and aims to obtain 
more than 10,000 infant MRI scans. The need for relia-
ble, efficient and accurate methods for segmenting infant 
brain MRI data will continue to grow.

Currently, only two publicly available automated pipe-
lines are capable of infant subcortical segmentation—
infant FreeSurfer [11] and the dHCP pipeline. Both offer 
significant advances to the field, yet they also have limi-
tations. The Infant FreeSurfer pipeline can be used only 
for T1w scans, yet many structural MRI studies in infant 
research prefer T2w images because they offer clearer 
grey–white boundaries. The dHCP pipeline can segment 
T2w images; however, validation of dHCP segmenta-
tion against the “gold-standard” manual segmentations 
has been limited. It is worth to mention that the manual 
segmentation protocols between dHCP and Infant Free-
surfer are significantly different. The dHCP also requires 

a high level of computing power and can take several 
hours to segment a single infant MRI scans, limiting it 
practical utility for large scale scales such as the afore-
mentioned HBCD.

As an additional option for infant subcortical segmen-
tation, we offer ID-Seg, which combines deep learning 
and a transfer-learning method, as a high-efficiency, pre-
cise, and reliable way to segment the amygdala and hip-
pocampus in the infant brain. Because infant Freesurfer 
requires T1w scans, we did not compare ID-Seg with 
infant Freesurfer, We did, however, compare ID-Seg with 
the dHCP pipeline. We found that structures segmented 
by ID-Seg had a high degree of segmentation accuracy. 
Specifically, ID-Seg-derived segmentations of the amyg-
dala and hippocampus were similar to the “ground truth” 
segmentations done by expert manual raters, and based 
on three different metrics of accuracy seemed to generate 
more accurate segmentations than the dHCP pipeline.

There are several possible reasons why the segmenta-
tion accuracy of dHCP pipeline is lower than ID-Seg 
when segmenting limbic structures. First, the dHCP seg-
mentation pipeline was developed based on 20 manually 
segmented infant brain scans. However, 15 of these were 
preterm infants. Our work used samples from full-term 
infants. Numerous studies have previously shown sig-
nificant structural brain differences in pre- and full-term 
infants [35, 36]. Second, MRI scans used in our work 
were obtained from multiple MRI vendors, including GE, 
Siemens, and Philips. This allowed ID-Seg to learn and 
adapt to the idiosyncratic features of specific MRI ven-
dors. The dHCP pipeline may have suffered from lower 
segmentation accuracy due to scanner differences. Third, 
raters from both internal and external dataset followed 
the Desikan–Killiany–Tourville protocol [37] to manually 
segment subcortical regions and our ID-Seg was capable 
of learning this protocol during the fine-tuning process. 
However, the protocol for dHCP pipeline[38] is different, 
potentially leading to lower segmentation accuracy.

Moderate negative associations were observed between 
ID-Seg-derived limbic structures and parent-reported 
behavioral problems at age 2. These inverse associations 
indicated that a smaller hippocampus and amygdala in 
infancy correlated with more behavioral problems at age 
2. The results from this proof-of-concept analysis were 
from a small sample (n = 50), and thus require replica-
tion. However, the findings suggest that quantifying mor-
phometrics from limbic substrates may offer valuable 
insights into future psychiatric impairment. Moreover, 
these brain–behavior associations were detected more 
often with ID-Seg-derived limbic segmentations rela-
tive to dHCP-derived limbic segmentations. This is con-
sistent with our finding that ID-Seg segmentations were 
more accurate than dHCP-derived segmentations when 



Page 10 of 11Wang et al. Brain Informatics            (2022) 9:12 

compared with “ground truth” manual segmentations. 
That is, we suspect that brain–behavior association were 
more often detected with ID-Seg because of its ability to 
generate accurate segmentations.

Although the reliability and accuracy of ID-Seg are 
promising, it is important to be aware of limitations. 
First, ID-Seg can only segment the amygdala and hip-
pocampus and it cannot segment hippocampus and 
amygdala subfields. Second, ID-Seg has not been tested 
in infants of different ages (e.g., 4–6 months). Third, ID-
Seg has not been tested on T1w MRI scans, nor has it 
been compared with infant Freesurfer. An indirect future 
comparison is possible with novel multi-model infant 
MRI synthesizing models [39]. For example, a T1w scan 
could be synthesized from T2w and then fed into infant 
Freesurfer pipeline. Forth, the ground-truth manu-
ally segmented dataset, against which we determined 
the accuracy of ID-Seg, was small. Novel methods, such 
as SparseGT [40], can be potentially used to save man-
ual workload and expense for generating ground-truth 
labels. Fifth, ID-Seg framework only adopted an exist-
ing popular deep learning architecture. Future work will 
need to continue developing ID-Seg (e.g., adding domain 
adaptation methods [41, 42] and T1-to-T2w MRI syn-
thesizing [39]) and expand the ground-truth manual 
datasets to include infants of different ages, subregions 
of amygdala and hippocampus, and other subcortical 
regions (e.g., caudate, putamen). Lastly, in our proof-of-
concept analysis, we found that morphometric measures 
derived from ID-Seg provided moderate brain–behavior 
associations; however, this was based on a small sample. 
These brain–behavior findings need to be replicated in 
larger, independent samples.

In sum, using transfer-learning we adopted a classic 
deep learning architecture for infant MRI segmentation 
of the hippocampus and amygdala. Our findings suggest 
that deep learning architectures may be used to improve 
the segmentation accuracy of infant MRI scans. Subse-
quent research can build upon this and continue to apply 
deep learning to meet the growing need for reliable, 
accurate, and fast segmentation of infant MRI scans.
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