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Abstract 

Acquisition of neuronal signals involves a wide range of devices with specific electrical properties. Combined with 
other physiological sources within the body, the signals sensed by the devices are often distorted. Sometimes these 
distortions are visually identifiable, other times, they overlay with the signal characteristics making them very difficult 
to detect. To remove these distortions, the recordings are visually inspected and manually processed. However, this 
manual annotation process is time-consuming and automatic computational methods are needed to identify and 
remove these artefacts. Most of the existing artefact removal approaches rely on additional information from other 
recorded channels and fail when global artefacts are present or the affected channels constitute the majority of the 
recording system. Addressing this issue, this paper reports a novel channel-independent machine learning model to 
accurately identify and replace the artefactual segments present in the signals. Discarding these artifactual segments 
by the existing approaches causes discontinuities in the reproduced signals which may introduce errors in subse-
quent analyses. To avoid this, the proposed method predicts multiple values of the artefactual region using long–
short term memory network to recreate the temporal and spectral properties of the recorded signal. The method 
has been tested on two open-access data sets and incorporated into the open-access SANTIA (SigMate Advanced: a 
Novel Tool for Identification of Artefacts in Neuronal Signals) toolbox for community use.
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1  Introduction
When recording neural signals, other electrical sources 
either instrumental or physiological may distort the pro-
cess. They are commonly known as artefacts, and their 
identification and removal are of importance to further 
analyse and infer insights from them. They produce 
longer review times [5], misdiagnosis of diseases or brain 
conditions (as in the diagnosis of Schizophrenia, sleep 
disorders and Alzheimer’s disease [32]) or produce false 
alarms (as in generating false alarms for brain seizures 
[49]). One of the most common approaches is to discard 

the affected epochs; however, it causes information loss 
and sharp discontinuities in the signal. This can impact 
the use of a brain–computer interfaces as the system can-
not obtain the decoding results during the correspond-
ing time. Another case would be where the signal is not 
meant to be evaluated by a physician but instead pro-
cessed by an algorithm, causing distortions in the output.

As an alternative to keeping or discarding the cor-
rupted segments, there are techniques that allow for 
their removal, such as filtering, template subtraction, or 
advanced computational techniques. Invasively recorded 
signals are less susceptible to external artefacts, but must 
be processed nonetheless. Local Field Potentials (LFP) 
are low-pass filtered signals of the extracellular electrical 
potential recorded in deeper layers of the brain through 
micro-electrodes [28, 34]. In case of LFP, several signal 
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analysis and processing toolboxes offer a range of com-
putational techniques for artefact removal including sig-
nal filtering for unwanted components, removal of power 
line noise, rejection of channel with incompatible inter-
ference, automated removal of noisy signal components 
etc. [18, 26, 27, 38]. Most of these techniques involve the 
removal of segments that have been corrupted by the 
noise/artefacts and this often distorts the overall integrity 
of the signal, which is undesirable in cases, where further 
processing relies on the completeness of the signal.

To recover the original signal with the aim of preserv-
ing the information, machine learning (ML) techniques 
have been applied to this task. These techniques gather 
information presented to them to construct a model 
which can be used to make inferences about unseen data, 
and have been widely used in diverse fields, for example: 
outlier detection [11, 14, 57], data mining of biological 
data [29, 30], detection of diseases [35, 39, 47, 50, 59], 
elderly monitoring[2, 22, 37], financial forecasting [40], 
image processing [3, 45],natural language processing [44, 
56] and monitoring patients [1, 52]. Among the many ML 
methods, deep neural networks stand out. Their design 
was inspired by the biological counterpart, and they 
allow for non-linear processing of information.

Within the ML-based solutions, the research found in 
the literature commonly employs multi-channel solu-
tions. This generates a shortcoming, as they are invali-
dated if the number of affected channels are more than 
the ones not affected, or if a global artefact appears. 
Therefore, channel independent solutions are needed, 
which can be used in low-channel applications and 
expanded as needed. This work extends the conference 
contribution presented at the 14th International Con-
ference on Brain Informatics [12]. In that work, a deep 
learning-based approach was proposed as an artefact 
removal module for the SANTIA (SigMate Advanced: 
a Novel Tool for Identification of Artefacts in Neuronal 
Signals) open-source artefact removal toolbox [13]. SAN-
TIA allows the detection and subsequent removal of arte-
facts in LFPs by replacing the artefactual segments with 
signals generated using a single-layer Long–Short-Term 
Memory (LSTM) network. This current work extends the 
conference work by validating and testing it using a sec-
ond data set. It also reports the robustness of the method 
by expanding the methodology to a more complex net-
work architecture as well as a non-ML method for com-
parison. Overall, this extended version provides an 
in-depth description of the methodology and describes 
the implementation of the improvements.

The remainder of this paper is organised as follows: 
Section 2 describes the state-of-the-art for artefact detec-
tion and removal, Section  3 presents the methods pro-
posed in the current work, Section 4 shows the usage of 

the proposed artefact removal methods after their incor-
poration into the SANTIA toolbox, Section 5 reports the 
results obtained on publicly available open-access data 
sets, and finally, Section 6 provides the conclusion of the 
work.

2 � Related work
When attempting to remove artefacts, there are several 
computational approaches that are typically used. For 
illustration’s sake, Fig. 1 displays signal segments with and 
without artefacts, alongside their frequency components 
of the two data sets used in this paper (1a represents the 
data set in section 3.2 and 1b shows a representative arte-
fact from the data set described in section 3.3). Brief dis-
cussions about these existing approaches are provided in 
the following paragraphs.

Regression A regression method begins by defining the 
amplitude relationship between a reference channel and 
a neural signal using transmission factors, then remov-
ing the estimated artefacts from the signal [55]. In a sin-
gle-channel approach without a reference channel, this 
approach is not possible.

Adaptive Filtering To apply adaptive filtering, a refer-
ence channel is given as one of the inputs to the filter, 
so the degree of artefactual contamination in the neural 
signal is measured by iteratively changing the weights 
according to the optimisation method and then removed 
[23]. As with regression, the lack of a reference channel 
invalidates applying this approach.

Template subtraction When artefacts have a unique 
shape, as they come from a specific source, it can be 
approximated and subtracted to restore the neural signal 
[36]. As a result of the variance of the shapes of the arte-
facts in the data sets, as they can be of different unidenti-
fied sources, make it impossible to accurately subtract it 
without introducing further error.

Inter-channel interpolation When a channel in an array 
is impacted locally by an artefact, that segment can be 
replaced using the average or other methods that take 
into consideration the surrounding channels, which isn’t 
possible in a single channel approach [4].

Decomposition One major drawback of decomposition 
methods (e.g., wavelet, empirical mode) is that they can-
not remove artefacts completely if the spectral properties 
of the measured signal overlap with the spectral proper-
ties of the artefacts [20]. In the data sets, artefactual seg-
ments manifest in the same bands as the physiological 
signal.

Blind source separation Blind source separation is a 
popular method for removing artefacts in neuronal 
signals and includes methods, such as independent 
component analysis, canonical correlation analysis 
and principal component analysis [21]. However, these 
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Fig. 1  Examples of signal segments with (red) and without (blue) artefacts along with their respective periodograms for data set 1 (a) and data set 
2 (b)
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methods assume that the number of artefact sources 
should at least be equal to the number of channels, lim-
iting the single channel applications.

This is clear from the above discussion that most tra-
ditional methods fail to recreate the artefactual region 
of the signal. To this end, we propose an alternative 
to discarding the segment, which is to replace it with 
a model-generated sequence of “normal” behaviour of 
the signal. This way, subsequent analyses of the sig-
nal are not hampered by the absence of segments. To 
demonstrate the accuracy of the model-generated 
replacement segments, we applied it to two completely 
different publicly available data sets (see sections  3.2 
and 3.3). From a perspective of restoration of missing 
values in neuronal signals, there have been cases of 
both ML or non-ML approaches in electroencephalo-
gram (EEG) signals.

From the first group, Svantessona et al. [53] trained a 
convolutional neural network (CNN) with 4, 14 and 21 
EEG channel inputs to up-sample to 17, 7 and 21 chan-
nels, respectively. A visual evaluation by board-certified 
clinical neurophysiologists was conducted, and the 
generated data was not distinguishable from real data. 
On a similar approach, Saba-Sadiya et al. [46] employed 
a convolutional autoencoder, which takes as an input a 
padded EEG electrode map during 16ms (8x8x8 tensor) 
with 1 occluded channel, which is expected as the out-
put. They compared it to spherical splines, euclidean 
distance and geodesic length methods, outperforming 
them and showing the method is able to restore the 
missing channel with high fidelity to the original signal. 
Finally, Thi et al. [54] utilised a linear dynamical system 
(Kalman Filter) to model multiple EEG signals to recon-
struct the missing values. This method showed 49% and 
67% improvements over singular value decomposition 
and interpolation approaches, respectively.

In the second group, there are published papers, 
such as de Cheveigne and Arzounian [8] and Chang 
et  al. [6]. In [8] authors have detected EEG and 

magnetoencephalography artefacts by their low cor-
relation to other channels, and replaces them with the 
weighted sum of normal channels, a method called 
’Inpainting’. On the other hand, Chang et al. employed 
artefact subspace reconstruction on twenty EEG 
recordings taken during simulated driving experiments, 
in which large-variance components were rejected 
and channel data were reconstructed from remain-
ing components improving the quality of a subsequent 
independent component analysis decomposition. Sole-
Casals et al. [51] evaluated the performance of four ten-
sor completion algorithms and average interpolation 
across trials on missing brain–computer interface data 
(across 6 channels and segments), and evaluated the 
reconstruction by the performance of machine-learn-
ing-based motor imagery classifiers.

Overall these approaches rely on the information from 
other channels of the arrays, which fails when a global 
artefact is present, the number of affected channels are 
more than the ones not affected, or they have poor qual-
ity. For those situations, we propose the usage of the sur-
rounding information of the affected channel instead to 
accurately replace the segments affected by artefacts via 
the use of deep learning.

3 � Methods
In this section, the ML methods as well as the data sets 
used are described.

3.1 � Machine learning model
We hypothesise that by training an LSTM network to 
reliably forecast artefact-free data, it may be successfully 
utilised to substitute artefactual sections of signals when 
information from other channels has been corrupted and 
cannot be used to approximate its real behaviour. Fig-
ure 2 shows how an LSTM network was trained to pre-
dict typical behaviour using a sliding window method. 
The sliding window approach consists of employing data 

Fig. 2  Sliding window approach diagram, based on [7]
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at a time t to predict the value at t + 1 , and then uses the 
new predicted value when forecasting the value at t + 2.

The neural network architecture was chosen due to the 
known capabilities of Recurrent Neural Network (RNN), 
specifically LSTM, in recognising patterns from sequen-
tial data. Kim et al. [25] has proven that it is possible to 
predict the behaviour of local field potentials from 10 to 
100 ms forward in time via the use of a regressive LSTM 
network. A similar approach was established by Paul [42], 
who used a stacked LSTM to forecast a single point of 
an EEG signal by feeding the previous 70 ms. Their test 
data was composed of 9 subjects, in which they achieved 
correlation coefficients of over 0.8 across all of them. In 
addition, there have been recently reported applications 
of LSTM in artefact detection [15, 19, 24, 31] as well as 
RNN in artefact removal [10, 41, 43, 48]. The LSTM cells 
include a forget gate which decides what information 
is kept and what information is discarded from the cell 
state. If the value of the forget gate ft or f(t) is 1, the rel-
evant information is saved, but if the value of the forget 
gate is 0, it is forgotten. Equation 1 shows the mathemati-
cal expression of this specific LSTM cell.

where the variable xt is the input vector, W holds the 
weights, b is the bias and σ is the sigmoid function. In 
addition, ft is the forget gate, it is the update gate, c̃t is the 
cell input, ct is the cell state, ot is the output gate and ht 
the hidden state or output vector of the cell at time t.

The testing set was used to calculate the root mean 
squared error (RMSE), as defined in Eq. 2, of the output 
over an unseen segment.

where xij is a forecasted data point, x̂ij the real value of 
the LFP at that data point, S is the output sequence length 
and N the number of examples in the test set. This was 
chosen over the mean absolute percentage error (MAPE) 
due to the fact that the signal has been zero centred dur-
ing the pre-processing, so the number of zero crossings a 
segment has is significant, which distorts the MAPE as it 
takes an undefined value in those points and they must be 
removed. Matlab’s Deep Learning Toolbox [33] was used 
to build and train the network of LSTM cells. The LSTM 

(1)

ft = σ(Wfhht−1 +Wfxxt + bf ),

it = σ(Wihht−1 +Wixxt + bi),

c̃t = tanh(Wc̃hht−1 +Wc̃xxt + bc̃),

ct = ft · ct−1 + it · c̃t ,

ot = σ(Wohht−1 +Woxxt + bo),

ht = ot · tanh(ct)

(2)RMSE =

√

∑S
i=1

∑N
j=1(xij − x̂ij)2

N

models were made up of the following layers: an input 
layer, a hidden layer equal to one-tenth of the input, and 
an output layer equal to the number of predicted points. 
For comparison, we trained a more complex architecture 
composed of convolutional and recurrent layers CNN-
LSTM described in Table 1. The optimisation algorithm 
used was Adam, with an initial learning rate of 0.0001, 
momentum of 0.9 and a batch size of 516 for the first 
data set and 128 for the second data set, due to having a 
smaller sample size. The loss function of the regression 
layer was the half-mean-squared-error of the predicted 
responses for each time step, not normalised by N:

where xi is a forecasted data point, x̂i the real value of the 
LFP at that data point, S is the output sequence length 
and N the number of examples in the training or valida-
tion set.

To have a performance reference, the linear approxi-
mator autoregressive moving average with extra input 
(ARMAX) was applied on the same testing and model 
evaluation data. Following the description by Yan et  al. 
[58], given a LFP time series (Xt , yt) for t = 1 to N, where 
Xt = t(xt1, xt2, ..., xtk) is the input vector at time t with k 
elements and yt is the corresponding neuronal activity 
voltage at time t, this model approximates a polynomial 
equation, written as:

(3)loss =
1

2S

S
∑

i=1

N
∑

j=1

(xij − x̂ij)
2

(4)A(q)yt =

k
∑

i=1

Bi(q)xti + C(q)e(t)

Table 1  CNN-LSTM structure

Layer Type Description

1 sequenceInput –

2 sequenceFolding –

3 convolution2d size=5, filters=32, dilation=1

4 batchNormalization+elu –

5 convolution2d + elu size=5, filters=32,dilation=2

6 convolution2d + elu size=5, filters=32,dilation=4

7 convolution2d + elu size=5, filters=32,dilation=8

8 convolution2d + elu size=5, filters=32,dilation=16

9 averagePooling2d size=1,stride=5

10 sequenceUnfolding with flattening

11 gru 128

12 lstm 64

13 dropout 0.25

14 lstm 32

15 dropout 0.25

16 regression –
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where A(q), B(q) and C(q) are the polynomials expressed 
with a time shift term q−1 shown in Eq. 5 and e(t) is the 
white-noise disturbance value.

Here, the hyper-parameters na, nb, nc denote the orders of 
the ARMAX model’s auto-regressive part, external input 
vector with k elements and moving average, respectively. 
Finally, ai, bik and ci are the polynomial coefficients deter-
mined using polynomial curve fitting. Having described 
the methodology, we proceed to describe the data sets 
used to evaluate it.

3.2 � Data set 1
Open-access data was utilised to evaluate the toolbox 
[16]. The data set is linked to an article that provides a 
detailed report on the recordings and trials [17]. Male 
Long Evans rats (280 to 300 g) trained to walk on a cir-
cular treadmill were used to generate the recordings. The 
obtained LFPs were sampled at a rate of 2 kHz, and then 
pre-processed first by low-pass filtering them, second by 
amplifying times a thousand and finally applying a band-
pass filter from 0.7 to 150 Hz.

To evaluate the toolbox, a subset of the repository 
composed of baseline recordings (i.e., before Keta-
mine administration) was used. The baseline recordings 
included at least two 5-min counter-clockwise walking 
loops on a slow-moving treadmill and two 40-s rest inter-
vals free of artefacts. Artefact-free intervals of 100 s in 
treadmill-on epochs and 40–100 s periods in treadmill-
off epochs were classified using visual inspection and 
recorded motor activity, which are detailed in Table  2. 
The threshold power value for each channel was calcu-
lated using these labelled artefact-free epochs, defined 
as the maximum power of windows of 50 ms duration 
within them, where the window length was chosen based 
on prior classification findings.

(5)















A(q) = 1+ a1q
1
+ ...+ anaq

na

Bi(q) = 1+ b1iq
1
+ ...+ bnbiq

nbi+1

C(q) = 1+ c1q
1
+ ...+ cncq

nc

One-second artefact-free windows were extracted for 
each of the rodents and then aggregated to a cross-sub-
ject data set, which was divided into training (80%), vali-
dation (10%) and testing (10%) sets. Out of the training 
and validation sets, 54 data sets were constructed based 
on the length of the input from 0.1 to 0.9 in 0.1 incre-
ments and the prediction of posterior 1, 5, 10, 25, 50, 
and 100 data points. To be able to compare the different 
forecasting output sizes, the test set was used to evaluate 
the performance over 0.1 s (i.e., 200 points at 2 kHz) of 
unseen data.

3.3 � Data set 2
A second open-source data set [9] was used to test the 
methodology. We have selected this data set based on the 
amplitude of the artefacts, which were ranging between 
0.15% and 13.48% of the recordings, as highlighted by the 
authors on the related work. The open-access data set is 
composed of uninterrupted baseline recording days for 
sleep research, where local field potentials were recorded 
from 9 male Sprague–Dawley rats (3–4 months). The 
data set contains LFP that were acquired at the prefrontal 
and cortex parietal cortex, sampled at 250 Hz. Recordings 
were cut into 4-s long epochs and labelled depending on 
the state of the animal (awake, rapid eye movement, or 
non-rapid eye movement sleep).

It is worth noting that the data set has intra-subject var-
iability, as these recordings range from 3 to 8 consecutive 
days (out of 40 that are not shared), as well as inter-sub-
ject variability, since it has twice the number of subjects 
as the first data set. Furthermore, there are differences 
between states, such as high-frequency components 
which may distort the detection and removal of artefacts. 
Therefore, to reduce the variability we extracted the long-
est awake period of each day (see Table 3), and chose the 
rodent with the longest consistent awake recordings (i.e., 
rodent ‘MuensterMonty’). The final data set is composed 
of the recordings of one rodent during the awake state 
across five recording sessions for a total of 26956 s.

Afterwards, we measured the signal’s power with a 1-s 
moving window, and if it exceeded the threshold defined 

Table 2  Guide to determine the best channels and epochs to use of baseline walk and rest recordings in medial prefrontal cortex 
(mPFC) and the mediodorsal (MD) thalamus, as mentioned in the file named “Coherence Phase Plot Guide”. Column 1 denotes animal 
id, columns 2 and 3 shows two good channels of the mPFC recordings and coumns 4 and 5 of the MD recordings. Finally, columns 6 
and 7 show the range of artefact free epochs during walking and at resting, respectively

Rat mPFC chan1 mPFC chan2 MD chan1 MD chan2 Walk epoch Rest epoch

KF9 5 6 3 7 960–1160 3780–3820

KF10 3 4 3 8 670–860 1260–1390

KF14 2 6 5 7 740–940 3350–3550

KF15 3 4 5 7 450–640 1600–1700
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manually defined in the toolbox, the segment was clas-
sified as artefacts. Due to the small sampling rate, we 
extracted 4-s non-artefact segments from each of the 
recordings. These were divided into training (80%), vali-
dation (10%) and testing (10%) sets. Out of the train-
ing and validation sets, 15 data sets were constructed 
based on the length of the input from 1, 2, or 3 s and the 

prediction of posterior 1, 25, 50, 125, and 250 data points. 
To be able to compare the different forecasting output 
sizes, the test set was used to evaluate the performance 
over 1 s (i.e., 250 points) of unseen data.

4 � Implementation
The SANTIA toolbox is composed of four units that 
carry out different tasks on the neural recording files, 
these are: data labelling, neural network training, classi-
fying new unlabelled data, and artefact removal. While 
the first three are used for artefact detection, the first and 
fourth units are used for artefact removal. The labelling 
unit performs the following tasks:data loading, scaling, 
reshaping, channel selection, labelling, saving and 2D dis-
play. On the other hand, the fourth unit is composed of: 
data loading, normal segments extraction, hyper-param-
eter setting, network selection, network train, test set vis-
ualisation, replace segments, plot replaced channels, and 
saving.

The toolbox is available for download directly from the 
Github repository1. The GUI allows quick access to all 
modules when the toolbox has been launched. We high-
light that SANTIA is not a library of functions with a GUI 
added to make access easier but instead is a generic envi-
ronment built on a single interface with individual fea-
tures implemented. Interactions with the GUI are made 
by selecting functions, settings, and keyboard inputs, 
which are processed in the back-end. A check procedure 
runs before each function to ensure that the user hasn’t 
skipped a step or failed to include all of the needed inputs 
or parameter selections. This is done to minimise both 
the risk of human mistakes and the amount of time con-
sumed. If the user has a question, tool-tips with a brief 
explanation display when the pointer is held over a com-
ponent of the GUI.

We now proceed to describe the aforementioned units 
relevant to the task as well as the outputs produced.

4.1 � Data labelling
The first step is loading the neural recordings, which is 
done with the import wizard launched by the ‘Load Sig-
nals’ button of the first unit, as a matrix with m number 
of channels and n number of data points for each chan-
nel. ASCII-based text (e.g., .txt, .dat, .out, .csv), spread-
sheet files (e.g., .xls, .xlsx, .xlsm) , and Matab files (e.g., 
.set, .mat) are the formats that are compatible with the 
toolbox. To structure the data, the user must provide 
the sampling frequency in Hz and the window duration 
in seconds. The options for data scaling are available to 
avoid the common incorrect magnitude annotations.

Table 3  Total time of awake segment per rodent of the data set

rodent recording ID longest awake 
segment 
(seconds)

Totals (seconds)

AsiagoBleu 180626 3508 9500

180627 1776

180628 1728

180629 2488

bobmarley 102819 4236 18196

102919 4776

103119 4228

110319 3012

110419 1944

cheaptrick 110619 2480 17240

110719 11608

111319 3152

EZBrie 180707 4320 19064

180708 4320

180709 3228

180710 7196

FetaMozz 180628 7124 17340

180629 6860

180630 3356

Manchego 180620 4456 16156

180621 5396

180622 2188

180623 4116

MuensterMonty 180720 3408 26956

180721 7648

180723 5024

180726 3380

180727 7496

NachoGouda 180705 2656 9140

180706 2496

180707 2136

180708 1852

neilyoung 111719 2840 26516

111819 3320

111919 3272

112119 3284

112219 4148

112619 4040

112819 3200

112919 2412

1  https://​github.​com/​Ignac​ioFab​ietti/​SANTI​Atool​box.

https://github.com/IgnacioFabietti/SANTIAtoolbox
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A function to structure the data is called via the ‘Gen-
erate Analysis Matrix’ button, which takes in the afore-
mentioned inputs. The following step consists of labelling 
the data, carried out by giving segments whose power 
exceeds a user-defined threshold a binary label. The tool-
box allows for three options, either of which the user can 
use to their preference. The first is table that hold the 
segment power in the first column and the values of the 
signal in the subsequent columns. The user may sort any 
column to define a value which divides both classes in the 
optimal way, and visualise any segment they select. The 
second option is the ‘histogram threshold’, where a histo-
gram of the segments’ power shows the distribution, and 
the user can select with a slider the cutoff value, or visu-
alise a segment.

As an alternative, the threshold values can be typed 
into the table displayed on the module. Once all chan-
nels have been filled, the signals are labelled and saved 
as a standardised struct, which includes the original file-
name, the structured data with its labels, the sampling 
frequency, window length, the scale, and the threshold 
values. The purpose of the format is to allow users to 
select and contrast the various data sets they build, due 
to different window lengths or threshold values they may 
have chosen. Users can see when each stage has been fin-
ished with the help of text in the ’Progress’ banner, which 
is duplicated across each unit.

4.2 � Artefact removal
The initial step of this unit is to load the structured file 
mentioned above. Once complete, the user must input 
the duration of artefact-free segments they wish to 
extract from the file to train the model. A progress bar 
indicates the progress of the extraction, followed by a 
notification of the number of segments extracted upon 
its completion. The following step is the configuration 
of the input and output of the model, with the option of 
selecting either data points or milliseconds as units. They 
must also input how to split the data for training, valida-
tion, and test sets, as they are crucial to avoid over-fitting.

For the third step, a new option has been incorporated 
which allows users to make use of the CNN-LSTM archi-
tecture presented in this work, the previously reported 
LSTM or for the user to load his/her custom set of layers, 
as shown in Fig. 3. The file must contain a Layer-type var-
iable, in other words, layers that define the architecture 
of neural networks for deep learning without the pre-
trained weights. These can be modified via console or the 
Deep Network Designer Toolbox, for more information, 
we direct the reader to the Mathworks page2.

A side panel allows the customisation of training 
hyper-parameters, such as the validation frequency, 
max epochs, verbose, mini-batch size, and others. These 
intentionally mirror the ones available in the Deep Net-
work Designer, making it easier to familiarise with it. The 
training process is run by clicking on the ‘Train Network’ 
button, which loads all the user-defined inputs so far and 
generates a training plot for the user to evaluate the pro-
cess and do an early stopping if required.

A pop-up notification alerts the user of the root mean 
square error of the test set, and the user can visualise the 
examples of the test set in contrast to their forecast. The 
user can either adjust the network and training param-
eters to get a desirable result, and once obtained, they 
can proceed to the last step. This consists of swapping the 
windows labelled as artefacts for the network’s forecast, 
where a progress bar is displayed to show the advance-
ment. The newly obtained signals can be visualised by 
first selecting which channel to display and the ‘Plot 
Channel’ Button. The last step is to save all the obtained 
information in the form of a struct with data’s filename, 
the trained network, the training information, the test 
set’s RMSE, the test set original, and replaced segments 
and the data with the artefactual data removed, where the 
user sets the file name and directory to store it.

4.3 � Performance evaluation
In order for the user to compare the different models, 
and adapt the network size, type or hyperparameters, the 
toolbox creates several windows. These are showcased in 
Fig.  4, which displays examples of the outputs of ‘View 
Test Results’ (A) and ‘Plot Channel’ (B). In the upper sub-
figure, we showcase an element of the test set in red in 
contrast to the forecast of the CNN-LSTM network in 
blue. In this particular example, while the forecast of the 
first peak is nearly identical to the signal the following 
peaks have slightly less amplitude, which can be attrib-
uted to the fact that they are taking in the previous fore-
casts of the network. The sub-figure below showcases a 
channel before (red) and after removal (blue). The high 
amplitude artefacts which spanned 2 mV peak-to-peak 
have been removed and replaced by 50 ms windows, and 
now the channel shows a uniform range of ±0.05 mV, 
indicating the success of the methodology.

5 � Results
5.1 � Data set 1
Figure  5 shows performance of the 54 LSTM models 
in the form of validation loss and test set RMSE over 
100 ms. In regards to the output of the network, the 
test performance improves from single value predic-
tions to the fifty points one and then remains constant. 
In regards to the time input, larger sequences above 

2  https://​uk.​mathw​orks.​com/​help/​deepl​earni​ng/​ref/​nnet.​cnn.​layer.​layer.​html.

https://uk.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.layer.html
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0.6 s don’t present any major performance improve-
ments. The best performing LSTM model is the 600 ms 
input and 10 points prediction model with an RMSE of 
0.1538.

On the other hand, out of the 54 CNN-LSTM mod-
els, the best performance is achieved with an output of 
20 data points across all inputs, while the worst perfor-
mances are achieved with 50 or 100 output points. Over-
all, the performance of the CNN-LSTM is better than the 
LSTM models, with the best score being 0.1463 of the 
200 ms input and 20 points prediction model.

To confidently prove the effectiveness of this method, 
it has been compared to ARMAX. The ARMAX was 
given the same 200 ms examples for defining the model 
and the 100 ms to calculate the RMSE, which achieves 
a performance of 0.1449. This indicates a slightly bet-
ter performance than the neural networks; however, we 
must factor in that the signals have been significantly 
low-passed filtered and the signals have a near-sinusoidal 
shape. If used on a different set that retains higher fre-
quency components, the performance of the ARMAX 
model would be challenged, as we will show on the next 

Fig. 3  Architecture selection option of the artefact removal module in the SANTIA toolbox
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Fig. 4  Visualisation of the test set (a) and comparison of the original signal with artefacts removed (b) are the outputs of the artefact removal 
module. The original signal appears in red in both outputs, while the predicted or artefact-free signal appears in blue
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data set. Besides the forecasting ability of the models, we 
evaluated as well the computational time by forecasting 
0.1 s of recording and averaged over 100 iterations.

Results are depicted in Table  4, where the neural 
network method outperforms ARMAX significantly 
in computational time. The time difference is mainly 

due to the fact that the ARMAX needs to estimate 
the grades of the polynomials every new sequence for 
accuracy, unlike the CNN-LSTM that is able to forecast 
very rapidly, once it has been trained. All models were 
tested on a general-purpose Alienware m17 r4 laptop 
consisting of 32 gigabytes of RAM and Intel®Core

TM

 
i9-10980HK CPU @ 2.40 GHz processor. With both 
metrics, i.e., RMSE and computational time, we choose 
the CNN-LSTM as the best compromise between the 
two. Having defined the best model, a total of 7275 1-s 
artefactual segments were extracted from the data of 
the rodents, with the condition that the first 200 ms had 
to be artefact-free. The forecast produced by the net-
work replaced every 50 ms window labelled ‘artefact’ 
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Fig. 5  Validation loss (top) and test set RMSE (bottom) of each predicted points (column) vs time input (row) of the LSTM and CNN-LSTM models 
trained with data set 1

Table 4  Performance comparison for forecasting methods

Method RMSE Time (s)

LSTM 0.1538 0.0433

CNN-LSTM 0.1456 0.0547

ARMAX 0.1449 1.5425
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in each segment, which in turn was used as part of the 
input if the following window also shared the same 
label.

The first comparison of the results is done through 
visual inspection. Examples of normal, artefactual, and 

replaced-segments signals alongside their periodogram 
are illustrated in Fig. 6. The new signal after the process-
ing had had its high amplitude artefact removed, demon-
strating the method’s success. This can also be observed 
in the periodogram, where the artefactual example 

Fig. 6  Examples of normal (blue), artefactual (red) and replaced-segments signals (green) alongside their periodograms for data set 1. The method 
has been able to recreate the normal signal, both in amplitude as in spectral properties
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possesses a low-frequency component that exceeds the 
−20 dB, but the physiological as well as the processed sig-
nal have a power of approximately −40 dB.

In regards to segment’s power, Fig. 7 shows the violin 
plot3 distribution of the three groups: the normal seg-
ments, artefactual segments and after replacing them. 
The method has been successful in replacing the high 
power artefactual segments with ones that resemble 
normal activity. While the median is higher than the 
artefact-free, the distribution has shifted considerably 
to lower power levels. The presence of high-power seg-
ments indicates a shortcoming of the method, where 
surrounding information has high power, but only one 
or two windows do exceed the defined threshold, so the 
total sum of the processed segment still has a high value.

5.2 � Data set 2
The results of the different models are compiled in Fig. 8, 
where the validation loss and the RMSE over 1 s of the 
test set are shown. For the 15 LSTM models, the perfor-
mance improves with longer output sequences, but are 
best with 2 s of input. Thus, the best performing model 
is the 2-s input–1-s output, with a RMSE of 0.7418. In 
regards to the CNN-LSTM models, performance does 
not vary significantly across input nor output length; 
however, the best model is obtained with 1-s input–1-s 
output which has RMSE of 0.7341. Across all combina-
tions, the CNN-LSTM outperforms the LSTM, as it can 
extract richer features.

Subsequently, the comparison to the ARMAX model 
was carried out. The ARMAX was given 1 s of record-
ing to define the model and asked to forecast the subse-
quent second to calculate the RMSE, achieving a score of 
3.1813. The difference in the performance of the ARMAX 
between the two data sets can be attributed to the fact 
that the one being evaluated has not been heavily fil-
tered, and retains high-frequency components, making 
it more difficult to adjust a model. When looking at the 
overall performance of RMSE and computational time in 
Table 5, the CNN-LSTM stands out as the best perform-
ing method.

With these results, we proceed to extract 4-s (i.e., 1000 
data points at 250 Hz) artefactual segments with the con-
dition that the first second had to be artefact-free, for 
a total of 3826 examples. The forecast produced by the 
network replaced every 1-s window labelled “artefact” 
in each segment, which in turn was used as part of the 
input if the following window also shared the same label. 
To evaluate the results, examples of the three signals (i.e., 
normal, artefactual, and replaced-segments signals) with 
their corresponding periodogram are shown in Fig.  9. 
Compared to normal segments, artefacts have higher 
amplitude and frequency, in other words, a non-physio-
logical waveform. We observe this in the periodogram in 
the repeated round peaks and that the higher frequencies 
don’t decay as much powerwise. By replacing the seg-
ment, the smoothness of the spectrum power decay is 
returned.

Finally, the violin plot of the power of the 4-s segments 
of the three signals is displayed in Fig. 10. Despite the fact 
that the distribution has lowered significantly to values 
resembling normal activity, the shortcoming previously 
mentioned is still present, as cases with surrounding high 
power are not replaced as they have not exceeded the 
threshold.

6 � Conclusion
This paper has presented an artefact replacement algo-
rithm for in-vivo neural recordings in the form of local 
field potentials. This is particularly useful, where sig-
nal segments contaminated with artefacts can not be 
reconstructed with information from other channels 
due to the presence of a global artefact or the majority 
of the channels are affected or the signals are of poor 
quality (i.e., very low signal-to-noise ratio). This paper 
introduces a prediction method with the use of a slid-
ing window technique. Two neural networks architec-
tures with recurrent and convolutional layers, along 
with ARMAX were compared. The best performance 
was achieved by the CNN-LSTM model. Compari-
sons were made by observing examples of the classes 
and the mean power per band across two open-access 

Artefact Free Artefactual Artefact Removed
0

1

2

3

4

5

6

7

8

Po
w

er
 [m

illi
Vo

lts
²]

Fig. 7  Violin Plot of power in the normal (blue) 1 s segments, 
artefactual segments before (red) and after (green) processing from 
data set 1. The method has reduced the power of the artefactual 
segments to similar values to the artefact-free segments

3  function extracted from https://​github.​com/​basti​be/​Violi​nplot-​Matlab.

https://github.com/bastibe/Violinplot-Matlab
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data sets of LFP signals recorded during different tasks. 
This revealed that the forecasted data may be used to 
replace artefact parts successfully in LFP recordings. 
The model was incorporated into the artefact removal 
module of the simple and effective SANTIA toolbox is 
a simple and effective toolbox for researchers who want 
to automatically detect and remove artefacts.
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Fig. 8  Validation loss (top) and test set RMSE (bottom) of each predicted points (column) vs time input (row) of the LSTM and CNN-LSTM models 
trained with data set 2

Table 5  Performance comparison for forecasting methods

Method RMSE Time (s)

LSTM 0.7418 0.0035

CNN-LSTM 0.7341 0.0087

ARMAX 3.1813 0.3645
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Fig. 9  Examples of normal (blue), artefactual (red) and replaced-segments signals (green) alongside their periodogram from data set 2.The method 
has been able to recreate the normal signal, both in amplitude as in spectral properties
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