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Abstract 

Background:  Alzheimer’s disease (AD) is a neurodegenerative brain pathology formed due to piling up of amyloid 
proteins, development of plaques and disappearance of neurons. Another common subtype of dementia like AD, Par‑
kinson’s disease (PD) is determined by the disappearance of dopaminergic neurons in the region known as substantia 
nigra pars compacta located in the midbrain. Both AD and PD target aged population worldwide forming a major 
chunk of healthcare costs. Hence, there is a need for methods that help in the early diagnosis of these diseases. PD 
subjects especially those who have confirmed postmortem plaque are a strong candidate for a second AD diagnosis. 
Modalities such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) 
can be combined with deep learning methods to diagnose these two diseases for the benefit of clinicians.

Result:  In this work, we deployed a 3D Convolutional Neural Network (CNN) to extract features for multiclass clas‑
sification of both AD and PD in the frequency and spatial domains using PET and SPECT neuroimaging modalities 
to differentiate between AD, PD and Normal Control (NC) classes. Discrete Cosine Transform has been deployed as a 
frequency domain learning method along with random weak Gaussian blurring and random zooming in/out aug‑
mentation methods in both frequency and spatial domains. To select the hyperparameters of the 3D-CNN model, 
we deployed both 5- and 10-fold cross-validation (CV) approaches. The best performing model was found to be AD/
NC(SPECT)/PD classification with random weak Gaussian blurred augmentation in the spatial domain using fivefold 
CV approach while the worst performing model happens to be AD/NC(PET)/PD classification without augmentation 
in the frequency domain using tenfold CV approach. We also found that spatial domain methods tend to perform 
better than their frequency domain counterparts.

Conclusion:  The proposed model provides a good performance in discriminating AD and PD subjects due to 
minimal correlation between these two dementia types on the clinicopathological continuum between AD and PD 
subjects from a neuroimaging perspective.
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1  Introduction
Alzheimer’s disease (AD) is a widely spread subtype of 
dementia and a major target for healthcare applications. 
It is an irremediable and progressive disease with mil-
lions of cases worldwide. Staggering costs are associated 
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with the management of AD due to which this disease 
remains a focal point of healthcare authorities world-
wide. The brain parts that are normally affected during 
the course of progression of AD are hippocampus, lat-
eral ventricle, insula, putamen, entorhinal cortex, lingual 
gyrus, amygdala, thalamus, supramarginal gyrus, caudate 
nucleus, uncus, etc. [1, 2].

Parkinson’s disease (PD) is another brain disorder that 
is affecting millions of people worldwide and has variable 
prevalence rates with aged individuals getting affected 
substantially in comparison to younger counterparts just 
like AD. This disease is defined by neuronal loss in the 
region known as substantia nigra pars compacta located 
in the midbrain and formation of neuromelanin. PD is 
prevalent in both males and females with higher preva-
lence in males. It affects speech resulting in dysarthria, 
hypophonia, tachyphemia, etc., affecting the voice of an 
individual [3, 4].

Both AD and PD are incurable diseases, but medica-
tion is available to keep the symptoms under control [5]. 
Coexistence of both these subtypes of dementia is pos-
sible in the presence of visual hallucinations, sleep behav-
ior disorder, fluctuations in attention or cognition, tau 
phosphorylation, inflammation, and synaptic degenera-
tion [6].

Deep learning methods are widely deployed in the lit-
erature for classification, action recognition, speech rec-
ognition as well as other tasks, etc. These methods are 
extremely good at learning features that optimally repre-
sent data for the problem at hand. They tend to act like 
black boxes where information is processed by keeping 
the operator of the loop. Features learned by Convolu-
tional Neural Networks (CNNs) are known to possess 
invariance, equivariance and equivalence properties. 
Architectures such as 3D-CNNs can extract both spec-
tral and spatial domain features simultaneously from the 
input volume. The building blocks of these architectures 
are convolutional layer, pooling layer, batch normaliza-
tion, dropout regularization as well as fully connected 
layer, etc. [7].

In the literature, studies have been proposed for the 
classification tasks such as AD vs Normal Control (NC), 
progressive mild cognitive impairment (pMCI) vs static 
mild cognitive impairment (sMCI), pMCI vs NC using 
a combination of modalities such as magnetic reso-
nance imaging (MRI), positron emission tomography 
(PET), functional MRI as well as other modalities and 
non-imaging data such as ApoE genotype, cerebrospinal 
fluid (CSF) concentration of Aβ1–42, Mini-Mental State 
Examination (MMSE), Alzheimer’s Disease Assessment 

Scale-Cognitive subscale (ADAS-Cog), Rey Auditory 
Verbal Learning Test (RAVLT), Functional Assessment 
Questionnaire (FAQ) Neuropsychiatric Inventory Ques-
tionnaire (NPI-Q), etc., using different deep learning 
models [8–10].

Similarly for PD diagnosis, research has been con-
ducted using voice datasets [11, 12], using isosurfaces-
based features, using statistics-based learning methods, 
to discover hidden patterns of PD using CNNs, and also 
using neuromelanin-sensitive MRI modality achieving 
high performance on assessment metrics [13]. While 
learning features in the spatial domain using CNNs has 
its own advantages, learning in the frequency domain 
might offer advantages that spatial domain methods are 
unable to provide. In the CNN models, low-frequency 
domain components are better learned than the higher 
ones offering advantages such as better preservation of 
image information in the pre-processing stage as well as 
other advantages [14]. Discrete Cosine Transform (DCT) 
is a frequency domain method often used to define a 
sequence of data points using cosine functions offering 
advantages in terms of compactness of information.

Data augmentation methods such as adversarial tech-
niques improve the performance of models expanding 
limited datasets so as to enable them to expand their gen-
eralization power.

There is a growing body of works available in the lit-
erature to study correlation between different types of 
dementia. David Irwin et  al. [15] examined PD cases 
along with correlates of co-morbid AD confirming that 
there is an abundance of AD pathology in PD subjects 
which may result in modifying the clinical phenotype. As 
a matter of fact, co-morbid AD is also strongly associated 
with the changes in PD suggesting a potential clinico-
pathological continuum between AD and PD.

To add to the growing body of works available in the 
literature for understanding the clinicopathological con-
tinuum between co-morbid AD and PD cases from a 
neuroimaging perspective, this research effort is aimed 
at studying correlation between these two dementia sub-
types using PET and SPECT neuroimaging modalities 
and deep learning methods for joint multiclass classifica-
tion task.

In this work, we utilized both spatial and frequency 
(DCT) domain methods to learn features extracted from 
whole-brain images of PET scans and single photon emis-
sion computed tomography (SPECT) scans of AD and 
PD subjects using a 3D-CNN architecture. We deployed 
random weak Gaussian blurring and random zoomed 
in–out as data augmentation methods individually and 
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in combination. Different from other studies in the lit-
erature where focus is on the binary or multiclass clas-
sification of AD or PD subjects, we focused on the joint 
multiclass classification of both AD and PD subjects and 
extracted features from whole-brain image scans using 
3D-CNN architectures.

Rest of the paper is organized as follows. A 
description of the datasets is given in Sect. 2, meth-
odology in Sect.  3, experiments in Sect.  4, results 
and their discussion in Sect.  5, and finally, conclu-
sion in Sect. 6.

2 � Datasets description
We used PPMI [16] and ADNI databases [17] for the 
experiments. We utilized 3D-SPECT scans from the 
PPMI database and 3D-PET scans from the ADNI 
database. Demographics of the subjects considered for 
this study are given in Table 1 and Table 2.

3 � Methodology
To carry out the experiments for the joint multiclass 
(3-classes) classification between AD, PD and NC classes, 
we deployed a 3D-CNN architecture for all the experi-
ments as shown in Fig.  1. An input layer accepts a vol-
ume of size 79 × 95 × 69 normalized through zero-center 
procedure. It works by dividing each channel with its 
standard deviation, subtracting the mean in the process 
to center the volume towards the origin. Then, a convo-
lutional layer extracts the features from this volume. The 
tensor of convolutional filter weights is dependent on the 
number of channels, temporal depth, width and height of 
the filter. Mathematically, this process can be defined as:

where Pi, Qi, Ri are the kernel sizes along the three 
dimensions, respectively. vabcij  is the value of the (a, b, c)
th element of the jth feature map in the ith layer, wpqr

ijm  
denotes the value of (p, q, r)th element of the 3D convolu-
tion kernel connected to the mth feature map.

Stride of the layer is another important parameter 
that represents the number of pixels skipped during 
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Table 1  Demographics of subjects with PET scans presented in 
mean (min–max) format

Research group NC AD

Number of subjects 102 94

Age 76.01 (62.2–86.6) 75.82 (55.3–88)

Weight 75.7 (49–130.3) 74.12 (42.6–127.5)

FAQ total score 0.186 (0–6) 13.67 (0–27)

NPI-Q total score 0.402 (0–5) 4.074 (0–15)

Table 2  Demographics of subjects with SPECT scans presented 
in mean (min–max) format

Research group NC PD

Number of subjects 94 99

Gender Females: 31, males: 63 Females: 40, males: 59

Age 65.97 (50–84) 66.49 (50–85)

Fig. 1  Schematic diagram of the 3D-CNN architecture
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the convolution operation. Setting its value to one con-
volves every input pixel with the kernel. Another impor-
tant parameter is L2 regularization also known as weight 
decay that is used to drive the weights towards the origin 
without making them exactly zero. We add L2 regulariza-
tion to convolutional and fully connected layers to help 
the network in avoiding over-fitting. Batch normaliza-
tion technique is then used on the mini-batches to effec-
tively avoid over-fitting and for speeding up the learning 
process. We then used Exponential Linear Unit (ELU) 
as activation function for nonlinear mapping of inputs. 
Mathematically, it can be defined as:

We deployed max pooling to learn effective fast repre-
sentations of inputs by reducing the dimensions. After 
that, we deployed dense or fully connected layers and a 
dropout layer with a probability of 10%. Finally, a com-
bination of softmax and classification layers classify the 
input into one of the three classes: AD, PD and NC. 
Table 3 shows our detailed architecture hyperparameters.

In the model design, to mitigate the internal covari-
ance shift between the batch normalization and dropout 
techniques, we added only one dropout layer right before 
the softmax layer to reduce over-fitting since there are no 
following batch normalization layers. We add five max-
pooling layers to our model with kernel and stride size 
2 × 2 × 2 in order to scale down the output feature map 
size by a factor of 25 compared with the original input.

We used small spatial receptive field of size 3 × 3 × 3 
to increase the performance of our convolutional layers 

(2)ELU :

{

x, x ≥ 0

α
(

ex − 1
)

, x < 0
.

and we add padding in these layers. The softmax layer is a 
1 × 1 convolutional layer followed by softmax activation. 
Our model is designed efficiently to get maximum per-
formance while offering less number of computations.

4 � Experiments
We performed splitting at the subject level for the 
experiments for the multiclass classification task. We 
deployed two data augmentation methods: (1) random 
weak Gaussian blurring and (2) random zooming in/out. 
We set the σ value to 1.5 for the random weak Gaussian 
blurring, and scale value to 0.99 and 1.03 for the random 
zooming in/out augmentations to decrease as well as 
increase the size of the input volumes at random. We per-
formed experiments in the spatial and frequency (DCT) 
domain without augmentation and in the presence of 
single and combined augmentation methods. Here com-
bined augmentations are methods that used samples of 
both random weak Gaussian blurred augmentation and 
random zoomed in/out augmentation in the training set. 
We used augmented samples for training purposes and 
non-augmented samples for validation and test purposes.

We deployed fivefold and tenfold CV procedures for 
the experiments on balanced datasets. We also created 
a test subset, and in this subset, we placed 4 samples of 
NC(SPECT) class, 9 samples of PD class, 4 samples of AD 
class, and 12 samples of NC(PET) class.

Other settings are as follows. Mini-batch is set to a size 
of 2, initial learning rate is set to 0.001, maximum num-
ber of epochs are set to 30, and optimizer is set to Adam. 
We run a total of 170 experiments and completed all of 
our simulations in approximately 3242 min or 54.03 h.

Table 3  Architecture hyperparameters for our proposed 3D-CNN model

BN batch normalization; Conv convolutional layer; FC fully connected; MaxPoolmax pooling

Layer Filter size Number of filters Stride size Dropout rate Output size

Conv1  +  BN  +  ELU 3 × 3 × 3 11 1 – 11 × 79 × 95 × 69

MaxPool1 2 × 2 × 2 – 2 – 11 × 40 × 48 × 35

Conv2  +  BN  +  ELU 3 × 3 × 3 11 1 – 11 × 40 × 48 × 35

MaxPool2 2 × 2 × 2 – 2 – 11 × 20 × 24 × 18

Conv3  +  BN  +  ELU 3 × 3 × 3 11 1 – 11 × 20 × 24 × 18

MaxPool3 2 × 2 × 2 – 2 – 11 × 10 × 12 × 9

Conv4  +  BN  +  ELU 3 × 3 × 3 11 1 – 11 × 10 × 12 × 9

MaxPool4 2 × 2 × 2 – 2 – 11 × 5 × 6 × 5

Conv5  +  BN  +  ELU 3 × 3 × 3 11 1 – 11 × 5 × 6 × 5

MaxPool5 2 × 2 × 2 – 2 – 11 × 3 × 3 × 3

FC 1 – 300 – – 300

FC 2 – 100 – – 100

FC 3 – 3 – – 3

Dropout – – – 0.1 3

Softmax – – – – 3
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Table 4  A description of methods employed in the study

Serial # Methods

1 AD/NC(SPECT)/PD classification with random weak Gaussian blurred augmentation in the spatial domain using fivefold CV approach

2 AD/NC(SPECT)/PD classification with random weak Gaussian blurred augmentation in the spatial domain using tenfold CV approach

3 AD/NC(SPECT)/PD classification with combined augmentations in the spatial domain using tenfold CV approach

4 AD/NC(SPECT)/PD classification with random zoomed in/out augmentation in the frequency domain using fivefold CV approach

5 AD/NC(SPECT)/PD classification with combined augmentations in the frequency domain using tenfold CV approach

6 AD/NC(SPECT)/PD classification with random zoomed in/out augmentation in the spatial domain using fivefold CV approach

7 AD/NC(SPECT)/PD classification with random weak Gaussian blurred augmentation in the frequency domain using fivefold CV approach

8 AD/NC(SPECT)/PD classification with combined augmentations in the spatial domain using fivefold CV approach

9 AD/NC(SPECT)/PD classification with random zoomed in/out augmentation in the spatial domain using tenfold CV approach

10 AD/NC(SPECT)/PD classification with combined augmentations in the frequency domain using fivefold CV approach

11 AD/NC(SPECT)/PD classification without augmentation in the frequency domain using fivefold CV approach

12 AD/NC(SPECT)/PD classification without augmentation in the frequency domain using tenfold CV approach

13 AD/NC(SPECT)/PD classification without augmentation in the spatial domain using fivefold CV approach

14 AD/NC(SPECT)/PD classification with random weak Gaussian blurred augmentation in the frequency domain using tenfold CV approach

15 AD/NC(SPECT)/PD classification with random zoomed in/out augmentation in the frequency domain using tenfold CV approach

16 AD/NC(SPECT)/PD classification without augmentation in the spatial domain using tenfold CV approach

17 AD/NC(PET)/PD classification without augmentation in the spatial domain using fivefold CV approach

18 AD/NC(PET)/PD classification without augmentation in the spatial domain using tenfold CV approach

19 AD/NC(PET)/PD classification without augmentation in the frequency domain using fivefold CV approach

20 AD/NC(PET)/PD classification without augmentation in the frequency domain using tenfold CV approach

Table 5  RCI, CEN and IBA performance metrics for the methods

Serial # RCI CEN IBA

AD NC PD AD NC PD

1 0.916 0 0.093 0.091 1 0.958 0.921

2 0.9046 0 0.1071 0.1022 1 0.9171 0.9404

3 0.9046 0 0.1071 0.1022 1 0.9171 0.9405

4 0.8976 0 0.1124 0.1115 1 0.9576 0.8829

5 0.8862 0 0.1255 0.1236 1 0.9372 0.8831

6 0.885 0 0.129 0.123 1 0.897 0.921

7 0.8848 0 0.1281 0.1243 1 0.9171 0.9021

8 0.885 0 0.128 0.124 1 0.917 0.902

9 0.8848 0 0.1282 0.1243 1 0.9171 0.9021

10 0.8675 0 0.1458 0.1436 1 0.9169 0.8646

11 0.862 0 0.149 0.15 1 0.937 0.828

12 0.858 0 0.1568 0.1533 1 0.897 0.8647

13 0.858 0 0.156 0.153 1 0.897 0.864

14 0.8491 0 0.167 0.1622 1 0.8773 0.8647

15 0.8412 0 0.1749 0.1712 1 0.8773 0.8463

16 0.8332 0 0.1863 0.1759 1 0.8195 0.883

17 0.7519 0.279 0.265 0 0.729 0.748 1

18 0.7464 0.2859 0.2702 0 0.7116 0.7483 1

19 0.7308 0.3054 0.2838 0 0.6605 0.7478 1

20 0.6266 0.3272 0.3924 0.0983 0.6279 0.61 0.998
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5 � Results and discussion
The methods and results of the experiments are pre-
sented in Tables  4, 5, 6, 7 and 8, respectively. We used 
Relative Classifier Information (RCI), Confusion Entropy 
(CEN), Index of Balanced Accuracy (IBA), Geomet-
ric Mean (GM), and Matthew’s Correlation Coeffi-
cient (MCC) as our performance assessment metrics. A 
description of methods employed in the study is given in 
Table 4. The Serial # column in Table 4 through Table 8 is 
the same.    

As given in Tables  5 and 6, we considered class-wise 
(AD, PD, NC classes) statistics for CEN, IBA, GM and 
MCC performance metrics. This is helpful in finding the 
impact of class imbalance on the performance metrics. 
In Table 5 which is derived from Table 4, we report val-
ues of the RCI metric, and average of CEN, IBA, GM and 
MCC values. This is helpful in finding the best perform-
ing architectures based on these metrics.

A consolidated view of the best performing models 
is given in Table  8. As given in Table  7, we considered 
minimum of the balanced average of the individual class-
based CEN values, while maximum of the balanced aver-
age of the individual class-based IBA, GM and MCC 
values. After that, as given in Table  8, we assigned a 

Table 6  GM and MCC performance metrics for the methods

Serial # GM MCC

AD NC PD AD NC PD

1 1 0.98 0.974 1 0.953 0.954

2 1 0.9708 0.9742 1 0.9445 0.9462

3 1 0.9708 0.9742 1 0.9445 0.9462

4 1 0.9738 0.964 1 0.9378 0.9381

5 1 0.9685 0.9615 1 0.9296 0.9304

6 1 0.963 0.966 1 0.93 0.93

7 1 0.9657 0.964 1 0.929 0.9304

8 1 0.965 0.964 1 0.929 0.93

9 1 0.9657 0.964 1 0.929 0.9304

10 1 0.9606 0.9537 1 0.914 0.915

11 1 0.96 0.946 1 0.908 0.907

12 1 0.9552 0.9511 1 0.9057 0.9071

13 1 0.955 0.951 1 0.905 0.907

14 1 0.9498 0.9485 1 0.8975 0.8995

15 1 0.9473 0.9433 1 0.8899 0.8916

16 1 0.936 0.9457 1 0.8806 0.8854

17 0.8898 0.8945 1 0.7814 0.79 1

18 0.8842 0.892 1 0.773 0.7832 1

19 0.8673 0.8845 1 0.7477 0.7628 1

20 0.8528 0.8333 0.9778 0.7198 0.678 0.9361

Table 7  Average values of CEN, IBA, GM and MCC performance 
metrics for the methods

Serial # Average CEN Average IBA Average GM Average MCC

1 0.0613 0.9597 0.9847 0.969

2 0.0698 0.9525 0.9817 0.9636

3 0.0698 0.9525 0.9817 0.9636

4 0.0746 0.9468 0.9793 0.9586

5 0.083 0.9401 0.9767 0.9533

6 0.084 0.9393 0.9763 0.9533

7 0.0841 0.9397 0.9766 0.9531

8 0.084 0.9397 0.9763 0.953

9 0.0842 0.9397 0.9766 0.9531

10 0.0965 0.9272 0.9714 0.943

11 0.0997 0.9217 0.9687 0.9383

12 0.1034 0.9206 0.9688 0.9376

13 0.103 0.9203 0.9687 0.9373

14 0.1097 0.914 0.9661 0.9323

15 0.1154 0.9079 0.9635 0.9272

16 0.1207 0.9008 0.9606 0.922

17 0.1813 0.8257 0.9281 0.8571

18 0.1854 0.82 0.9254 0.8521

19 0.1964 0.8028 0.9173 0.8368

20 0.2726 0.7453 0.888 0.778
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ranking to every method based on RCI, CEN, IBA, GM 
and MCC values. Then, we sum the ranking scores as 
given under overall score column in Table 8 and find the 
minimum among these scores. We form a new ranking 
system where minimum among these scores is given the 
best possible ranking.

As given in Tables 5 and 6, there is a variation between 
performances of different architectures which is natural. 
The architectures are correlating well with each other 
especially when it comes to learning the intricacies of 
AD class under CEN, IBA, GM and MCC metrics. It can 
be observed that average CEN metric is offering much 
greater variation in its values as compared to other per-
formance metrics. On the other hand, RCI, average GM, 
average IBA and average MCC are offering better cor-
relation among their values. For example, average CEN 
between AD/NC(SPECT)/PD classification with com-
bined augmentations in the spatial domain using tenfold 
CV approach and AD/NC(SPECT)/PD classification with 
combined augmentations in the frequency domain using 
tenfold CV approach is ≈ 16% while other performance 
metrics offer a variation between 1 and 4%.

As given in Table  8, the best performing model has 
been found to be AD/NC(SPECT)/PD classification with 

random weak Gaussian blurred augmentation in the spa-
tial domain using fivefold CV approach while the worst 
performing one has been found to be AD/NC(PET)/PD 
classification without augmentation in the frequency 
domain using tenfold CV approach. We can see that there 
is a strong correlation between the rankings provided by 
the individual performance metrics such as RCI, CEN, 
IBA, GM and MCC and the overall ranking for a method. 
We can see the advantages brought forth by the assess-
ment based on multiple performance metrics rather than 
just one metric alone. Methods that employed augmenta-
tions clearly outperformed those that do not. In addition, 
we can see that methods that do not combine augmen-
tations have a slight edge over those that combine them. 
We can also see that the spatial domain methods fared 
better in comparison to frequency domain counterparts 
which could be due to the fact that intensity values of 
image pixels in the spatial domain allow for a better rep-
resentation of data than in frequency domain. Another 
point worth mentioning is that methods deploying less 
data have an edge over those that used more. Further, we 
can see that methods that employ NC(PET) class per-
formed the worst and those that employed random weak 
Gaussian blurred augmentation fared better than their 
random zoomed in/out augmentation counterparts. We 
also noticed that methods that employed NC(PET) class 
are able to detect PD class instances perfectly while those 

Table 8  Ranking of the methods

Serial # RCI-based 
ranking

CEN-based 
ranking

IBA-based 
ranking

GM-based 
ranking

MCC-based 
ranking

Overall score Overall 
ranking

1 1 1 1 1 1 5 1

2 2 2 2 2 2 10 2

3 2 2 2 2 2 10 2

4 3 3 3 3 3 15 3

5 4 4 4 4 4 20 4

6 5 5 6 6 4 26 5

7 6 6 5 5 5 27 6

8 5 5 5 6 6 27 6

9 6 7 5 5 5 28 7

10 7 8 7 7 7 36 8

11 8 9 8 9 8 42 9

12 9 11 9 8 9 46 10

13 9 10 10 9 10 48 11

14 10 12 11 10 11 54 12

15 11 13 12 11 12 59 13

16 12 14 13 12 13 64 14

17 13 15 14 13 14 69 15

18 14 16 15 14 15 74 16

19 15 17 16 15 16 79 17

20 16 18 17 16 17 84 18
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that employed NC(SPECT) class are able to detect AD 
class instances perfectly. One reason for this accurate 
detection could be attributed to very weak correlation 
between the samples of both AD and PD subjects which 
are considered for this study.

In exploring the clinicopathological continuum 
between AD and PD subjects using PET and SPECT neu-
roimaging modalities and deep learning methods, we 
found that 3D-CNN architectures are an effective tool 
in discriminating the subjects of both these dementia 
types. The impairment of the brain in PD increases at a 
rapid pace due to a large number of factors such as age, 
tau pathology and lower CSF Aβ levels [18, 19]. Neuro-
imaging abnormalities in PD could be due to co-morbid 
AD developing memory impairment and dementia in 
patients [20].

In the experiments that we performed, we can com-
pletely discriminate between AD and PD subjects using 
different deep learning methods. However, there is a 
need for further research in this domain using more rep-
resentative samples of AD and PD subjects as well as co-
morbid AD/PD subjects using deep learning methods. In 
addition, there is a need for explaining the findings of a 
black box deep learning model in the exploration of clin-
icopathological continuum between AD and PD subjects.

6 � Conclusion
To conclude, we presented a study for the combined 
multiclass classification of AD, NC and PD subjects 
in the spatial and frequency domains using different 
data augmentation methods and a 3D-CNN architec-
ture. The best performing model is AD/NC(SPECT)/
PD classification with random weak Gaussian blurred 
augmentation in the spatial domain using fivefold CV 
approach while the worst performing model was AD/
NC(PET)/PD classification without augmentation in 
the frequency domain using tenfold CV approach. We 
found that spatial domain methods have an edge over 
their frequency domain counterparts.

In the future, we are planning to extend this study 
using other frequency domain methods, data from other 
modalities, data augmentation techniques and novel 
architectures such as graph convolutional networks.
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