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Convolutional neural network optimizes 
the application of diffusion kurtosis imaging 
in Parkinson’s disease
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Abstract 

Objectives:  The literature regarding the use of diffusion-tensor imaging-derived metrics in the evaluation of Parkin-
son’s disease (PD) is controversial. This study attempted to assess the feasibility of a deep-learning-based method for 
detecting alterations in diffusion kurtosis measurements associated with PD.

Methods:  A total of 68 patients with PD and 77 healthy controls were scanned using scanner-A (3 T Skyra) (DATA-
SET-1). Meanwhile, an additional five healthy volunteers were scanned with both scanner-A and an additional 
scanner-B (3 T Prisma) (DATASET-2). Diffusion kurtosis imaging (DKI) of DATASET-2 had an extra b shell compared to 
DATASET-1. In addition, a 3D-convolutional neural network (CNN) was trained from DATASET-2 to harmonize the qual-
ity of scalar measures of scanner-A to a similar level as scanner-B. Whole-brain unpaired t test and Tract-Based Spatial 
Statistics (TBSS) were performed to validate the differences between the PD and control groups using the model-
fitting method and CNN-based method, respectively. We further clarified the correlation between clinical assessments 
and DKI results.

Results:  An increase in mean diffusivity (MD) was found in the left substantia nigra (SN) in the PD group. In the right 
SN, fractional anisotropy (FA) and mean kurtosis (MK) values were negatively correlated with Hoehn and Yahr (H&Y) 
scales. In the putamen (Put), FA values were positively correlated with the H&Y scales. It is worth noting that these 
findings were only observed with the deep learning method. There was neither a group difference nor a correlation 
with clinical assessments in the SN or striatum exceeding the significance level using the conventional model-fitting 
method.

Conclusions:  The CNN-based method improves the robustness of DKI and can help to explore PD-associated imag-
ing features.

Keywords:  Parkinson’s disease, Diffusion kurtosis imaging, Convolutional neural network, Mean kurtosis, Kurtosis 
fractional anisotropy, Mean diffusivity

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

1  Introduction
Parkinson’s disease (PD) is a common neurodegenerative 
disease characterized by bradykinesia, resting tremor, 
rigidity, postural balance disturbance, and non-motor 
manifestations [1]. Beyond the deficiency of dopamin-
ergic neurons and aggregation of Lewy bodies in the 
basal ganglia, pathological changes in PD are associated 
with axonal lesions and synaptic dysfunction, which 
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contribute to the impairment of white matter integ-
rity [2]. Given the limitation of discerning the intrinsic 
details and pathological heterogeneity in brain tissues, it 
is challenging to identify PD-associated microstructural 
changes using conventional magnetic resonance imag-
ing (MRI). Diffusion-weighted MRI techniques, such as 
diffusion-tensor imaging (DTI), can non-invasively probe 
the microstructural properties via the diffusion of water 
molecules in vivo [3–7]. It has been reported that DTI-
derived metrics, such as fractional anisotropy (FA) and 
mean diffusivity (MD), showed significant differences in 
the substantia nigra (SN) and some white matter areas 
between PD patients and controls [8]. Furthermore, dif-
fusion kurtosis imaging (DKI), which is based on DTI and 
considers the non-Gaussian diffusion of water molecules, 
was reported as a more sensitive technique to evaluate 
the pathological characteristics of PD patients [3, 8].

However, previous studies have yielded inconsistent or 
controversial findings. For example, while some studies 
reported decreased FA, increased MD, and/or increased 
mean kurtosis (MK) values in the SN [6, 9–11], other 
studies [6, 12] observed increased FA values in the SN 
in PD patients. It has been reported that the FA value of 
the SN was higher in PD patients than in healthy controls 
(HCs) [11]. Additionally, Kamagata et al. found decreased 
MK and FA values of white matter, such as the infe-
rior fronto-occipital fasciculus (IFOF), anterior corona 
radiata (ACR), and superior longitudinal fasciculi (SLF) 
[7], while Wen et al. showed increased FA values of the 
IFOF and bilateral SLF in tremor-dominant PD patients 
[13].

It is speculated that the heterogeneity of PD patients 
being recruited and various acquisition protocols of dif-
fusion MRI scanning may have contributed to these con-
troversial findings [4, 5, 8, 14]. DKI can sensitively reflect 
microstructural complexity, particularly in isotropic tis-
sues such as the gray matter [15]. However, because the 
gray matter microstructure lacks evident directionality, 
diffusion-weighted imaging (DWI) signals can be easily 
affected by noise and limited spatial resolution [16], thus 
leading to inaccurate findings of alterations in DKI sca-
lar measures. Another limitation to the wide application 
of DKI is that high b-value diffusion signals, which are 
required for the accurate calculation of DKI scalar meas-
ures, are often difficult to obtain in clinical settings.

Recently, deep learning, an important branch of 
machine learning, has shown significant potential for 
improving the performance of neuroimaging find-
ings [17–21]. As one of the representative algorithms 
of deep learning, convolutional neural network (CNN) 
adopts convolution and down-sampling to certain lay-
ers with less computation; adjusts the network weights 
through the back-propagation and stochastic gradient 

descent algorithm; recognizes the features or patterns of 
the raw imaging inputs automatically; and then achieves 
the classification, identification, and prediction of inputs 
[21–23].

Li et  al. [22] recently proposed a three-dimensional 
hierarchical CNN (3D H-CNN) to improve the esti-
mation of DKI scalar measures from limited diffusion-
weighted (DW) images. Three-dimensional convolution 
kernels were introduced to automatically extract and 
learn the features of the DW-images. Only part scalar 
measures were of clinical interest instead of the full ten-
sors, and the 3D H-CNN (hereafter called CNN) method 
makes it possible to complete fast and optimized DKI 
acquisition within 1  min. This method also considers 
cross-voxel information, which was confirmed to provide 
enhanced efficiency for estimating DKI scalar measures 
and improved robustness against noise.

Therefore, in the current study, we aimed to use this 
CNN-based method to improve the estimation of DKI 
scalar measures and to determine whether the improved 
measures can help to delineate PD-associated imaging 
features.

2 � Materials and methods
2.1 � Participants
Sixty-eight patients with PD who met the Movement 
Disorder Society clinical diagnostic criteria for PD were 
recruited from the Movement Disorders Clinic of the 
Xuanwu Hospital of Capital Medical University. We 
recruited 77 HCs who met the following criteria: (1) 
aged ≥ 40  years; (2) no history of neurological or psy-
chiatric diseases; (3) no family history of neurodegen-
erative disorders, and (4) no apparent cerebral lesions 
on structural MRI. The Movement Disorder Soci-
ety Unified Parkinson’s Disease Rating Scale, part III 
(MDS- UPDRS III) and Hoehn and Yahr (H&Y) scale 
were performed in all PD patients while they were in the 
off-state. Their demographic details are summarized in 
Table 1. In addition, seven healthy volunteers (M/F = 1/6, 
age = 26.4 ± 1.6  years) were recruited and their DKI 

Table 1  Demographic and clinical assessments of subjects

M male, F female, SD standard variation, NA not applicable
§ Pearson’s Chi-square test

PD (n = 68) HC (n = 77) p value

Age in years, mean (SD) 58.94 (8.969) 59.58 (8.537) 0.659

Gender(M/F)§ 36/32 30/47 0.092

Education in years, mean(SD) 11.81 (3.316) 11.58 (4.143) 0.074

H&Y score, median(range) 2 (1–3) 0 NA

UPDRS III, mean (SD) 26.5 (12.261) NA NA

Duration in years, Median (range) 4 (0.5–20) NA NA
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data were collected using two different MRI scanners. 
This experiment was guided by and adhered to the Dec-
laration of Helsinki and was approved by the Institu-
tional Review Board of Xuanwu Hospital. All included 
participants have signed informed consent before the 
experiment.

2.2 � MRI
2.2.1 � DATASET‑1
For all PD patients and HCs, MRI data were acquired 
using a 3-T scanner-A (MAGNETOM Skyra, Siemens, 
Germany) equipped with a 20-channel receiver head 
and neck joint coil (opening 16 channels). DW-images 
were obtained in axial orientation using single-shot 
spin-echo echo-planar imaging sequences (SE-EPI). 
Diffusion weightings of b = 1000 and 2000s/mm2 were 
applied along 30 noncollinear sensitive gradient direc-
tions. One b = 0 image was acquired, resulting in a total 
of 61 DW-images. The other imaging parameters were 
as follows: repetition time (TR) = 5000  ms, echo time 
(TE) = 105  ms, resolution = 2 × 2 × 2  mm, field of view 
(FOV) = 220 × 220 mm, number of slices = 68.

2.2.2 � DATASET‑2
Seven healthy volunteers were scanned using two dif-
ferent MRI scanners. We randomly included five vol-
unteers in the CNN training dataset and assigned the 
remaining two volunteers to the test dataset. Scan 1 also 
used scanner-A and the same scanning process as used 
for DATASET-1. For implementation of the CNN, DW-
images were also acquired in Scan 2 using a 3-T scanner-
B (MAGNETOM Prisma, Siemens Germany) equipped 
with a 64-channel RF coil. DW-images were obtained 
using a simultaneous multi-slice diffusion echo-planar 
imaging sequence (SMS-EPI). Diffusion weightings of 
b = 1000, 2000, and 3000 s/mm2 were applied in 30 gradi-
ent directions. Six b = 0 images and one b = 0 image with 
an opposite phase encoding direction were acquired, 
resulting in a total of 96 DW-images. The b = 0 image 
with the reversed phase encoding direction was used to 
correct the field inhomogeneity-induced distortion. The 
other imaging parameters were as follows: TR = 3000 ms, 
TE = 75  ms, resolution = 2  mm × 2  mm × 2  mm, 
FOV = 220 mm × 220 mm, number of slices = 68.

2.3 � Image processing
2.3.1 � Preprocessing
The preprocessing pipeline for both datasets was mainly 
based on FSL (FMRIB Software Library, University of 
Oxford, UK) [24]. Rician noise was removed using dwid-
enoise included in MRtrix 3 [25], followed by Gibbs-ring 
removal. Bulk head movement was corrected using FSL, 
which linearly aligned each diffusion-weighted image to 

the first b = 0 image. For DATASET-2 and Scan 2, distor-
tion correction was also performed using the topup and 
eddy tools [26]. The susceptibility-induced off-resonance 
field map was first estimated by topup using a pair of 
non-DW (b = 0) images acquired with reversed phase 
encoding directions anterior–posterior and posterior–
anterior (AP and PA). It was then fed into eddy to correct 
for eddy current and motion-induced distortion.

2.3.2 � Model‑fitting method
For DATASET-1 and Scan 2 of DATASET-2, the model-
fitting method was conducted using DESIGNER (dif-
fusion parameter EStImation with Gibbs and NoisE 
Removal, New York University, US), a post-processing 
pipeline capable of identifying and correcting various 
specific artifacts and confounding factors for improved 
accuracy, precision, and robustness compared to conven-
tional linear least square method fitting (Fig. 1) [27].

2.3.3 � CNN‑based method
A CNN-based method was adopted to improve the esti-
mation of DKI scalar measures from limited-quality 
DATASET-1 DW-images. The adopted CNN-based 
method included one input layer, several hidden lay-
ers, and two output layers. A dropout layer was inserted 
before each output layer to prevent overfitting. A 
3 × 3 × 3 convolution kernel was introduced in the first 
hidden layer to extract features from the preprocessed 
DW-images. The network was constructed using a hier-
archical structure. The resulting DKI scalar measures 
were output through two different layers. The shallow 
output layer was connected to the penultimate hidden 
layer and was responsible for scalar measures (FA and 
MD). Kurtosis-related measures (MK and kurtosis FA) 
values were output through a deeper layer connected to 
the final hidden layer [22].

The pipeline of the CNN is shown in Fig.  2. Preproc-
essed DW-images of DATASET-2, Scan 1 were the 
training inputs of the CNN and the corresponding 
model-fitted MK, KFA, FA, and MD metrics for each 
healthy volunteer in DATASET-2, Scan 2 were defined as 
the ground truth. Scan 2 was registered to Scan 1 using 
FNIRT and FSL [28] for every volunteer before train-
ing. Specifically, we first removed non-brain tissue from 
images using BET2 and FSL. Nonlinear registration was 
then performed using FNIRT and FSL between the b = 0 
images of Scans 1 and 2 for every volunteer. This resulted 
in registered images and corresponding nonlinear trans-
formations. We then applied these transformations to 
the model-fitted DKI of Scan 2 to register them in the 
same space as Scan 1 images. We checked the registra-
tion results visually based on the alignment between the 
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boundaries of the brain structures. We used the DKI data 
of five healthy volunteers to train the network. The train-
ing process was performed for 100 epochs.

We tested the trained CNN on two volunteers (not 
from the training dataset) and calculated the root-mean-
squared error (RMSE) between the CNN-estimated or 
model-fitted DKI measures and the reference standard:

where N  is the number of voxels in the brain images, ŝi 
is the CNN-estimated or model-fitted DKI scalar meas-
ure in the ith voxel, and si is the ground truth DKI sca-
lar measure in this voxel. Peak signal-to-noise ratios 
(PSNRs) were calculated as follows:

where sMAX is the maximum signal value in a DKI scalar 
image and MSE is the mean-squared error, defined as:

(1)RMSE =

√

∑

N

i=1

(

ŝi − si

)2

N
,

(2)PSNR = 10× log10

(

s
2
MAX

MSE

)

,

As shown in Fig.  3, the RMSE results of both test-
ing subjects derived from the CNN-based method 
were lower than those of the conventional model-fit-
ting method. The DKI scalar images estimated by the 
trained CNN showed a higher PSNR than the model-
fitting method. With the same amount of diffusion-
weighted signals acquired, the trained CNN was able 
to provide DKI estimations with higher qualities and 
closer to the ground truth.

We performed the same calculations on conventional 
model-fitted DKI results and compared them with the 
results of the CNN-based method. Other tests and 
validations on the robustness of the adopted 3D CNN 
structure have been described in a previous study [22].

Finally, we applied the trained CNN to subjects in 
both the HC and PD groups to estimate DKI measures, 
including FA, MD, KFA, and MK. The preprocessed 

(3)MSE =

∑

N

i=1

(

ŝi − si

)2

N
,

Fig. 1  Maps of diffusion kurtosis imaging scalar measures using different methods. Note. High-quality diffusion kurtosis imaging (DKI) scalar maps 
with the model-fitting method in the first line, moderate-quality DKI scalar maps with the model-fitting method in last line, and moderate quality 
of DKI scalar maps with the convolutional neural network (CNN) method in the middle line indicate that the CNN-based method can optimize the 
scalar maps of moderate diffusion-weighted images
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DW-images from DATASET-1 as described in “Pre-
processing” section were used as inputs.

2.4 � Statistical analysis
The one-sample Shapiro–Wilk test was used to confirm 
the normality of each group’s data. The Student’s t test 
and Pearson  Chi-square  test  were used to analyze age 
and sex variables, respectively.

2.4.1 � Whole‑brain unpaired t test
For the DW-images of PD patients and HCs, two datasets 
of DKI scalar measures were derived using model-fitting 
and CNN-based methods, respectively. FA maps were 
first registered to the Montreal Neurological Institute 152 
(MNI152) standard space with a resolution of 1 mm iso-
tropic using a combination of linear and nonlinear trans-
forms. The resulting transformation was then applied to 
all other DKI maps for co-registration. For DKI scalar 
measures of both methods, whole-brain unpaired t-tests 
were performed to evaluate the ability of DKI to reveal 
differences between PD patients and HCs.

2.4.2 � Tract‑based spatial statistics
Furthermore, we performed Tract-Based Spatial Statis-
tics (TBSS) analysis using the model-fitting and CNN-
based method, respectively. TBSS extracted the mean FA 
maps to generate a white matter skeleton, realized by a 
tool for nonparametric permutation inference imple-
mented in FSL [29].

The threshold-free cluster enhancement [30] based test 
was included in both the whole-brain unpaired t-test and 
TBSS analysis to improve robustness compared with con-
ventional voxel-based tests. The number of permutation 
tests was set to 500 for both TBSS and t-test analyses. All 
significance thresholds were set at p < 0.05 and by family-
wise error (FWE)-corrected.

To determine the specific brain regions to which the 
clusters with significance belonged, we utilized the FSL 
tool ATLASQUERY. This tool automatically matches the 
clusters to structural areas in user-specified atlas spaces 
and outputs the labels of the brain regions. In this study, 
we referred to parcellations from the Harvard–Oxford 
Cortical and Subcortical Structural Atlases [31] and JHU 
DTI-based white matter Atlases [32].

Fig. 2  The training and testing pipeline of the convolutional neural network method. Note. CNN, convolutional neural network; DWI, 
diffusion-weighted imaging; DKI, diffusion kurtosis imaging; FA, fractional anisotropy; MD, mean diffusivity; MK, mean kurtosis; KFA, kurtosis 
fractional anisotropy



Page 6 of 12Sun et al. Brain Inf.            (2021) 8:18 

Notably, we determined whether there were intra-
group differences in HCs by applying the whole-brain 
unpaired t-test and TBSS with model-fitted and CNN-
based methods, respectively, before comparing differ-
ences between the groups.

2.4.3 � Correlation analysis
To determine the clinical significance of DKI scalar 
measures using the CNN-based method more clearly, 
DKI scalar measures (MK, KFA, FA, and MD) deter-
mined using the model-fitting or CNN-based method 
showing significant between-group differences in 
the basal ganglia (SN, putamen, and caudate) were 
extracted and correlated with clinical assessments. 
Pearson’s correlation analysis was used for normally 
distributed data, and Spearman’s correlation analysis 
was used for non-normally distributed data. Correla-
tions with significance were defined as p < 0.016 (Bon-
ferroni-corrected). Statistical analyses were computed 
using IBM SPSS Statistics (version 25; IBM Corp., 
Armonk, NY, USA) and GraphPad Prism 8.0.1.

3 � Results
3.1 � CNN evaluations
As shown in Fig.  1, DKI scalar maps estimated by the 
CNN for DATASETS-1 had higher signal-to-noise 
ratios than those obtained by the model-fitting method. 
Higher-order DKI scalar measures such as KFA showed 
a clearer contrast between gray and white matter in the 
CNN-based results. For DATASET-2, the CNN-based 
results displayed almost the same quality as the reference 
standard (ground truth). The RMSE and PSNR results are 
listed in Fig. 3. The RMSE results of both testing subjects 
derived from the CNN-based method were lower than 
those from the conventional model-fitting method. The 
DKI scalar images estimated by the trained CNN showed 
a higher PSNR than the model-fitting method. With the 
same amount of diffusion-weighted signals acquired, the 
trained CNN was able to provide DKI estimations with 
higher qualities and closer to the ground truth.

3.2 � Demographic features
Age (p = 0.659, Student’s t-test), sex distribution 
(p = 0.092, Pearson Chi-square test), and education 

Fig. 3  The testing about the accuracy of CNN-estimated measures. Note. PSNR = peak signal-to-noise ratios; RMSE = root-mean-squared error
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(p = 0.074, Student’s t-test) did not differ between the PD 
and HC groups. The demographic details are summa-
rized in Table 1.

3.3 � Validation of intra‑group differences between the PD 
and HC groups

Before comparing the PD patients and healthy con-
trols, we separated all HCs and PD patients into two 
age-matched groups, respectively, and then conducted 
within-group comparisons, and found no significant 
difference with either the CNN-based or model-fitting 
method. It is preliminarily ruled out the possibility of 
false positives in the CNN-based method.

3.4 � Whole‑brain unpaired t‑test analysis
3.4.1 � Model‑fitting method
FA values in the bilateral putamen (Put) and globus pal-
lidus (GP), left caudate (Cau) and accumbens (Acc), bilat-
eral superior corona radiata (SCR) and anterior thalamic 

radiation (ATR), et al. were higher in PD patients than in 
HCs.

MD values in bilateral Put, GP, Cau, thalamus (Thal), 
bilateral cerebral cortex and white matter, bilateral pos-
terior thalamic radiation (PTR) and inferior longitudi-
nal fasciculus (ILF) and genu of corpus callosum (GCC), 
et  al. were significantly increased in PD patients com-
pared to HCs.

There was no significant difference in the MK and KFA 
values between the groups (p < 0.05, FWE-corrected).

Please check Fig.  4 and Additional file  1: Table  S1 for 
more details.

3.4.2 � CNN‑based method
FA values were increased in left Put, bilateral cerebral 
cortex and white matter, bilateral SCR and left ACR, 
et  al., while KFA values were increased only in the left 
ACR and cerebral cortex and white matter in PD patients 
compared to HCs.

Fig. 4  Whole-brain unpaired t-test analysis of diffusion kurtosis imaging measures using the CNN-based and model-fitting methods. Note. 
Increased mean diffusivity (MD) values in the bilateral caudate (Cau) (blue circle) and right substantia nigra (SN) (yellow circle) with the CNN-based 
method between the healthy control (HC) and Parkinson’s disease (PD) groups (p < 0.05, family-wise error-corrected). KFA, kurtosis fractional 
anisotropy; FA, fractional anisotropy; MNI, Montreal Neurological Institute
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MD values in the left substantia nigra (SN) and left hip-
pocampus and bilateral Cau and Thal, bilateral cerebral 
cortex and white matter, GCC and bilateral ATR, et  al., 
were clearly increased in PD patients compared to HCs.

There was no significant difference in the MK values 
between the groups (p < 0.05, FWE-corrected).

Please check Fig.  4 and Additional file  1: Table  S1 for 
more details.

3.5 � TBSS analysis
3.5.1 � Model‑fitting method
MK values were higher in the left ATR, left IFOF, left ILF, 
and left uncinate fasciculus (UNC), et al. in PD patients 
than in HCs.

FA values were increased in the left ATR, left IFOF, left 
corticospinal tract and left SLF, et al. in PD patients com-
pared to HCs.

Compared to HCs, PD patients showed increased MD 
values in the bilateral IFOF, left ILF and bilateral UNC, 
et al.

There was no significant difference in the KFA values 
between the groups (p < 0.05, FWE-corrected).

Please check Fig.  5 and Additional file  2: Table  S2 for 
more details.

3.5.2 � CNN‑based method
MK values in the forceps minor, left IFOF, left UNC and 
left ATR, et al. were significantly increased in PD patients 
compared to HCs.

Further, PD patients showed higher KFA and FA val-
ues in multiple brain regions, such as the bilateral ATR, 
bilateral IFOF, bilateral SLF, and forceps minor et al. than 
HCs.

We did not find a significant difference in MD values 
between the two groups (p < 0.05, FWE-corrected).

Please check Fig.  5 and Additional file  2: Table  S2 for 
more details.

Fig. 5  Tract-based spatial statistics analysis of diffusion kurtosis imaging measures using the CNN-based and model-fitting methods. Note. 
MK = mean kurtosis
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3.6 � Correlation analysis
3.6.1 � Model‑fitting method
We did not find any significant correlation between the 
DKI scalar measures and clinical assessments in patients 
with PD.

3.6.2 � CNN‑based method
We found a positive correlation between the FA values of 
the left putamen and H&Y scales (r = 0.389, p = 0.001). 
A negative correlation was observed between the H&Y 
scales and FA and MK values in the right SN (r = − 0.390, 
p = 0.001; and r = −  0.349, p = 0.004, respectively) 
(Fig. 6).

4 � Discussion
The major finding of this study was that the CNN-esti-
mated MD values in the left SN and bilateral Cau were 
increased in PD patients compared to HCs. Addition-
ally, the CNN-estimated FA and MK values in the right 
SN were negatively correlated with the H&Y scales, and 
CNN-estimated FA values in the left Put were positively 

correlated with the H&Y scales. In contrast, with the 
model-fitting method, there was no significant difference 
in MD values in the SN between PD patients and HCs, 
and there was no significant correlation between DKI 
scalar measures and clinical assessments in PD patients. 
Our findings suggest that the CNN-based method has 
the potential to optimize the estimation of DKI sca-
lar measures and improve the sensitivity to detect PD-
related imaging features.

In this study, we trained the CNN with data from five 
healthy volunteers and tested the trained network on 
another two healthy subjects. The RMSE and PSNR 
results suggested that the CNN-based method provided 
more accurate DKI scalar measures than the conven-
tional model-fitting method. However, we failed to obtain 
ground truth data on PD patients due to limitations in 
clinical settings and the inconvenience for PD patients 
to travel. The rationale for applying a trained network to 
patient data is that the relationships between the original 
DW-images and the corresponding DKI scalar measures 
were learned based on voxel-wise diffusion data. That is, 

Fig. 6  Spearman’s correlation between the diffusion kurtosis imaging scalar measures and Hoehn and Yahr scales. A. Negative correlation between 
the fractional anisotropy (FA) values in the substantia nigra and Hoehn and Yahr (H&Y) scales. B. Positive correlation between the FA values in the 
putamen and H&Y scales. C. Negative correlation between the mean kurtosis values in the substantia nigra and H&Y scales
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the CNN provided estimations of DKI in every voxel and 
was sensitive to different diffusion signals. Therefore, it is 
natural to assume that the trained CNN was capable of 
estimating DKI scalar measures from another diffusion 
dataset that shared common acquisition parameters with 
the training dataset.

Using the CNN-based method, we found greater MD 
values in several brain regions in PD patients than in 
HCs, particularly in the left SN, which is consistent with 
previous reports using region of interest (ROI) analysis 
[10, 11, 14, 33–35]. PD is characterized by the progressive 
death of dopaminergic neurons in the SN, followed by 
the loss of dopaminergic projections from the SN to the 
striatum, resulting in a series of motor and non-motor 
symptoms [36]. According to the mathematical concept 
of a tensor, the three-dimensional shape of the diffusion 
elliptical structure depends on three eigenvalues (λ1, λ2, 
λ3) of orthogonal principal axes without directions. The 
MD value was the average of the three eigenvalues. The 
impaired axons and neurons and loss of myelin integrity 
in PD patients result in a decrease in the restriction of 
water molecule displacement, which induces increased 
MD values [35, 37]. Regionally increased MD values 
in the left SN and bilateral Cau estimated by the CNN 
method were consistent with the pathological lesions in 
PD patients. In contrast, we did not find increased MD 
values in the SN in patients with PD compared to HCs by 
applying the model-fitting method. This finding indicates 
that the CNN-based method can better reveal the patho-
logical features of PD than the model-fitting method.

We did not observe modulation of FA and MK values 
in the SN in PD patients, which is in line with a previous 
report [14]. In contrast, some previous studies based on 
ROI analysis showed decreased or increased FA and/or 
increased MK in the SN in PD patients [6, 34]. We specu-
late that different analysis methods may be responsible 
for these controversial results. The whole-brain unpaired 
t-test, moving beyond the hypothesis-driven ROI analy-
sis, focused the statistical information on each voxel 
accompanied with increased partial volume effects and 
false-positive risk, particularly within the pathological 
brain tissues. Moreover, we suggest that these controver-
sial findings may be due to the heterogeneity of recruited 
patients and variations in imaging quality [4, 8]. In addi-
tion, it has been reported that iron deposition could 
increase FA values and decrease MD values in white and 
gray matter [38]. Numerous reports have demonstrated 
iron accumulation in the SN [39–41]. Thus, different lev-
els of iron deposition in the SN may also have contrib-
uted to these inconsistent findings.

We found a negative correlation between the H&Y 
scales and CNN-estimated FA values and MK values in 
the SN, as well as a positive correlation between the H&Y 

scales and CNN-estimated FA values in the Put. These 
results indicated that FA and MK in the SN decreased, 
while FA in the Put increased with disease progression. 
As most of our patients were in the early stages (55 of 
our patients were at H&Y stages 1 and 2), it is possible to 
detect decreased FA in the SN if more advanced patients 
were enrolled. We did not find any significant correlation 
between DKI scalar measures and clinical assessments in 
PD patients using the model-fitting method, which fur-
ther proves that using the CNN-based method to esti-
mate DKI measures can improve the ability to explore 
PD-related neural modulations compared to using the 
model-fitting method.

For the TBSS analysis, increased FA values were 
observed in the brain white matter, such as ATR, IFOF 
with both methods, which was in line with previous stud-
ies [13, 42–44]. It has been shown that increased FA in 
these white matter regions correlates with better olfac-
tory function and lower motor severity [45]. Thus, the 
increased diffusional properties of white matter might 
reflect microstructural compensation [45].

We observed greater MK values in the white mat-
ter in PD patients, which is inconsistent with previous 
reports. Previous studies found no significant difference 
in MK values [46, 47], or decreased MK values in the 
anterior cingulum, IFOF, and UNC in PD patients. We 
suggest that the heterogeneity of recruited patients and 
differences in the protocol of DW-image acquisition and 
image processing may have contributed to these incon-
sistent findings. In addition, we found increased KFA 
in the white matter, which has not been reported previ-
ously. KFA values, resembling the FA definition, quan-
tify the degree of anisotropy of non-Gaussian diffusion. 
In the current study, the increased KFA and FA values 
were observed in the same white matter fibers. To date, 
only a small number of studies have focused on kurtosis 
changes in the white matter in PD patients [7, 48], and 
it is necessary to perform large cohort studies to eluci-
date the microstructural changes in white matter in PD 
patients.

There are some limitations to this study, such as the use 
of healthy volunteer subjects, which only provided DKI 
estimations closer to the ground truth. While we have 
validated the assumption that the CNN trained network 
is applicable to the PD datasets, further efforts will be 
made to include more ground truth data and more sub-
jects to obtain more accurate results.

In conclusion, the CNN-based method has the poten-
tial to sensitively detect nigral pathology and improve 
the robustness and performance of DKI with few DW-
images, and then to differentiate PD patents from HCs. 
In addition, compared with the model-fitting method, 
the CNN-based method can better determine the 



Page 11 of 12Sun et al. Brain Inf.            (2021) 8:18 	

relationship between DKI parameter measures and 
clinical assessment susceptibility. These findings con-
firm that the CNN can contribute to the determination 
of PD-associated imaging features.
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