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Abstract 

Anaesthesia is a state of temporary controlled loss of awareness induced for medical operations. An accurate assess-
ment of the depth of anaesthesia (DoA) helps anesthesiologists to avoid awareness during surgery and keep the 
recovery period short. However, the existing DoA algorithms have limitations, such as not robust enough for different 
patients and having time delay in assessment. In this study, to develop a reliable DoA measurement method, pre-
denoised electroencephalograph (EEG) signals are divided into ten frequency bands (α, β1, β2, β3, β4, β, βγ, γ, δ and θ), 
and the features are extracted from different frequency bands using spectral entropy (SE) methods. SE from the beta-
gamma frequency band (21.5–38.5 Hz) and SE from the beta frequency band show the highest correlation (R-squared 
value: 0.8458 and 0.7312, respectively) with the most popular DoA index, bispectral index (BIS). In this research, a new 
DoA index is developed based on these two SE features for monitoring the DoA. The highest Pearson correlation coef-
ficient by comparing the BIS index for testing data is 0.918, and the average is 0.80. In addition, the proposed index 
shows an earlier reaction than the BIS index when the patient goes from deep anaesthesia to moderate anaesthesia, 
which means it is more suitable for the real-time DoA assessment. In the case of poor signal quality (SQ), while the 
BIS index exhibits inflexibility with cases of poor SQ, the new proposed index shows reliable assessment results that 
reflect the clinical observations.
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1  Introduction
Monitoring the patient’s depth of anaesthesia (DoA) is 
one of the current challenges in medicine. An accurate 
assessment of the DoA is crucial as a patient under-
dosage may lead to intraoperative awareness with recall, 
while over-dosage may lead to prolonged recovery and 
an increased risk of postoperative complications. Vari-
ous human and animal researchers confirmed that elec-
trical brain activities significantly correlated with the 
DoA during surgery. Most brain electrical activities can 
be represented by the electroencephalograph (EEG) sig-
nals. EEG monitoring methods are typically non-inva-
sive, with small metal discs with thin wires (electrodes) 
placed on the scalp. Then, signals (voltage fluctuations 

resulting from  ionic current  within the brain’s neurons) 
are sent to a computer to record the results. EEG patterns 
change during stages of anaesthesia, and as the level of 
anaesthesia becomes deeper, EEG signals gradually shift 
towards higher-amplitude and lower-frequency activity. 
The DoA monitoring using EEG improves the outcomes 
of the patient treatment by reducing the incidences of 
intraoperative awareness, minimizing anaesthetic drug 
consumption and resulting in faster wake-up and recov-
ery [1, 2]. Consequently, most of the recent research has 
focused on developing and finding non-invasive ways to 
monitor the DoA based on brain electrical activities.

When using EEG signals to measure the DoA, the 
bispectral index (BIS) monitor is commonly the primary 
indicator used by anesthesiologists. The BIS index is a 
statistically based, empirically derived complex param-
eter, which is a weighted sum of several EEG sub-param-
eters, including a time domain, frequency domain, and 
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high order spectral sub-parameters [3]. The BIS takes an 
EEG complex signal and provides the result into a single 
dimensionless number (index), ranging from 0 (almost 
flat EEG activity) to 100 (awake). An appropriate depth 
level for general anaesthesia occurs when the BIS index is 
between 40 and 60 [4].

However, the BIS has limitations, such as being delayed, 
not working efficiently with different anaesthesia medica-
tions, and not being accurate across patients [1]. BIS and 
other existing monitors showed a long-time delay after 
a change in a state of consciousness [5]. There are some 
possible improvements in the algorithms. Various meth-
ods have been developed to decompose and extract fea-
tures of a frequency segment of the raw EEGs over the 
recent years. One is to measure an entropy of a signal, 
which is a powerful means to quantify the randomness in 
a dataset [6]. Various entropy algorithms have been used 
in clinical studies, but until now, the entropy measure-
ment has rarely been applied to different frequency bands 
of anaesthetic EEG signals. Thus, it is not clear which 
entropy is sensitive to which frequency bands in anaes-
thetic EEG signals. The entropy application to the spe-
cific frequency bands can improve the DoA assessment 
as it can reduce the interference from other frequency 
bands. This research applies spectral entropy (SE) from 
the decomposed EEG signals to extract features from 
different frequency bands of EEG signals for an effective 
DoA assessment. A window segmentation technique [7] 
is employed with decomposing frequency bands of an 
EEG signal, and then each EEG segment is divided into 
a number of small blocks. The parameters for SE are cal-
culated from the blocks and averaged over each segment. 
Then, the selected parameters are trained, tested, and 
evaluated by the Pearson correlation coefficient to build a 

new DoA index model. Our findings show that the SE of 
the beta-gamma frequency band (21.5–38.5  Hz) and SE 
of the beta frequency band provide the highest R-squared 
value of 0.8458, in consistent with the BIS values.

The remainder of the paper is arranged as follows. Sec-
tion  2 presents a brief literature review about the pro-
posed techniques for the DoA measurement. Section  3 
explains the datasets used in this paper, experimental 
setup and results. Section 4 discusses the findings of this 
research. Finally, the conclusions of this study are drawn 
in Sect. 5.

2 � Methods
The original EEG signals used in this research were 
denoised using a nonlocal means method [2]. EEG sig-
nals are hard to process due tso their high complexity 
and non-stationarity. Decomposing an EEG signal into 
a set of subsets with different frequency bands is an effi-
cient strategy to analyse it. Firstly, an EEG signal is parti-
tioned into small segments using a window segmentation 
technique [7]. The window size in this paper was 56 s (s) 
with overlapping of 55 s. EEG segment was divided into a 
number of blocks. The SE parameters are calculated from 
the above blocks and averaged over each segment. These 
values can be used in time-domain methods to calculate 
their correlations with their changing anaesthetic states. 
In this paper, the method for a new DoA index design is 
depicted in Fig. 1.

2.1 � EEG data processing
In this study, the anaesthetic EEG signals are decom-
posed into sub-frequency bands through a fast Fou-
rier transform (FFT) which is an efficient band filtering 
method with low computational intensity. The parameter 
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Fig. 1  The diagram of the new DoA index design and evaluation based on EEG signals



Page 3 of 12Ra et al. Brain Inf.            (2021) 8:10 	

dynamics are based on the decomposed frequency bands 
in this research. Research shows that EEG signals col-
lected from the scalp can reflect patients’ anaesthetic 
states. Various methods have been used to extract use-
ful segments for the raw EEG analysis in recent litera-
ture. Bayesian learning from frequency bands [8, 9] is 
proposed to simultaneously optimize spectral filters and 
spatial filters along with a modified factored-sampling 
method. Wavelet transformation (WT) is one of the 
popular segment decomposing methods, which usually 
includes an orthonormal WT and an integral wavelet [10, 
11]. WT enables segment detection in both time and fre-
quency responses of finite duration signal components. 
FFT is also one of the popular analysis methods for pro-
cessing EEG data. FFT decomposes linear differential 
equations with non-sinusoidal source terms and breaks 
them down into component equations (with sinusoidal 
source terms) that transform data into frequency domain 
variables. For example, the human emotion recognition 
study by Murugappan and Murugappan [12] framed EEG 
signals into a short time duration of 5 s, and two statisti-
cal features (spectral centroid and SE) in four frequency 
bands, namely alpha (8 Hz–16 Hz), beta (16 Hz–32 Hz), 
gamma (32 Hz–60 Hz) and alpha to gamma (8 Hz–60 Hz) 
are extracted using FFT [12]. Applying a simple classifier 
such as K-nearest neighbour (KNN) with that frequency 
domain offered a maximum mean classification accu-
racy of 91.33% in the beta band [12]. The benefit of the 
FFT algorithm is that the computational time is reduced 
[13], which makes the FFT applicable in a real-time DoA 
measurement.

2.2 � Spectral entropy
This research applies spectral entropy (SE) of the decom-
posed EEG signals to extract features from frequency 
bands of EEG signals for the effective DoA assessment. 
Extracting representative features simplifies the amount 
of data needed to describe a huge set of data. Feature 
extraction is also important to minimize the loss of 
essential information embedded in a signal. Various 
methods have been used to extract features from EEG 
signals. Popular methods are entropy [14], detrended 
moving average (DMA) [15], isomap-based estimation 
[16], Bayesian [17], and others [18]. In the past decade, 
entropy algorithms have been widely used for features 
extraction in anaesthetic EEG signals. EEG patterns dur-
ing the course of anaesthesia are time series and nonlin-
ear. An entropy algorithm is a measure of complexity that 
can be applied to any types of time series and nonlinear 
data, including physiological data, such as heart rate vari-
ability and EEG data. One of the entropy methods, SE, 
quantifies the amount of potential information conveyed 
in the power spectrum of a given signal. Zhang et al. [19] 

evaluated the inter-session prediction performance of a 
sensorimotor rhythm-based brain–computer interface 
using a SE predictor. Their results showed that the aver-
age classification accuracy of the inter-session prediction 
is up to 89% [19]. Das and Bhuiyan also investigated the 
efficiency of several SE-based features in a comprehen-
sive analysis of focal and non-focal EEGs [20]. When the 
log-energy entropy values were utilized as features in a 
KNN classifier to classify their EEG signals, it provided 
an 89.4% accuracy and 90.7% sensitivity, which were 
higher than those by some state-of-the-art methods [20]. 
Xu et  al. [21] studied the SE from rats’ EEG to investi-
gate and measure brain activity variations under differ-
ent depths of anaesthesia. They found that the SE of EEG 
would decrease quickly while the DoA was from light 
to deep and vice versa [21]. However, despite numerous 
researches engaged with entropy-based algorithms, few 
articles were reported to use SE for human-related DoA 
assessment. Hence, this research examines the SE of each 
frequency band from an EEG signal and also investi-
gates a PE to compare their performances from features 
extraction.

The SE of a signal is a measure of its power spectrum 
distribution [22]. The SE takes the signal’s normalized 
power spectrum distribution in the frequency domain 
as a probability distribution and calculates its Shannon 
entropy. The equations for SE are derived from the equa-
tions for the power spectrum and probability distribution 
for a signal x(n), where n is a sequence of number. For a 
signal x(n), the power spectrum is S(m) =|X(m)|2, where 
X(m) is the discrete Fourier transform of x(n) and m = 0, 
1, 2, … n−1. According to Ulrych [22], the probability 
distribution P(m) is then:

The SE (H) follows as:

Normalizing

where N is the total frequency points. The denominator, 
log2N, represents the maximal SE of the white noise, uni-
formly distributed in the frequency domain. If a time–
frequency power spectrogram S(t, f) is known, then the 
probability distribution P(m) becomes:

(1)P(m) =
S(m)∑
i S(i)

.

(2)H = −

N∑

m=1

P(m) log2 P(m).

(3)
Hn = −

N∑
m=1

P(m) log2 P(m)

log2N
,
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where t is time, and f is frequency. Then the SE at time t 
is:

2.3 � Features extraction based on SE
The SE is calculated from blocks in a segmented EEG 
and averaged over each segment. The SE values in time 
domain analysis methods should be highly correlated 
with changing anaesthetic states. These correlations 
should also be robust for different patients. The degree of 
their correlation is measured by the coefficient of deter-
mination (R2) in this research. R2 indicates the degree of 
the variance in a dependent variable. The SE values are 
calculated from 10 frequency bands (α, β1, β2, β3, β4, 
β, βγ, γ, δ, and θ) of each EEG episode, and R2 is used to 
evaluate the correlation between parameters and anaes-
thetic states (referring to the BIS in this study). The defi-
nition of R2 [23] is:

where yi is a data set, y is the mean of a data set, and fi 
is a set of predicted values. The greater the R2 value is, 
the higher the correlation between the parameter and the 
BIS value is.

2.4 � Regression models and evaluation
Machine learning algorithms have been widely used 
in signal classification. Four different machine learn-
ing algorithms of a  linear regression, a  support vector 
machine (SVM), a rectifier-based deep learning and a 
neural network are applied for performance comparisons 
using the training datasets, and are evaluated using the 
testing datasets. These four machine learning  methods 
are popular and commonly used to analyse EEG data. 
The calculated parameters from features extraction are 
utilized for training a model to find out how   a  single 
feature or different combinations of features can dis-
criminate between distinct stages of anaesthesia. A com-
bination of features from EEG waveforms in time-domain 
or band powers in the frequency domain can describe 
the difference among anaesthetic states. To characterize 
these states, a set of optimum EEG features are extracted 
using frequency discrimination methods, and these fea-
tures establish a relationship between input and out-
put variables, that may be suitable for various linear or 

(4)P(m) =

∑
t S(t,m)

∑
f

∑
t S

(
t, f

) ,

(5)H(t) = −

N∑

m=1

P(t,m) log2 p(t,m).

(6)R2
= 1−

∑
i

(
yi − fi

)2
∑

i

(
yi − y

)2 ,

nonlinear analysis. For example, Yildirim et al. [24] com-
bined four fundamental ensemble learning methods of 
bagging, boosting, stacking, and voting with five differ-
ent machine learning algorithms of a neural network, an 
SVM, a KNN, Naive Bayes, and C4.5 with the most opti-
mal features extracted from EEG signal data sets for the 
DoA assessment [24]. Some research employed a single 
model and still achieved high accuracy. Das and Bhuiyan 
[20] utilized log-energy entropies as features with a KNN 
classifier to classify EEG signals. It provided 89.4% accu-
racy with 90.7% sensitivity [20]. Liang et  al. [25] used a 
genetic algorithm and an SVM to identify the emergence 
of EEG patterns. The accuracy obtained by the GA-SVM 
was between 90.64 and 72.86% [25]. Linear regression has 
also been widely used for the DoA assessment [26, 27].

Regression analysis consists of a set of machine learn-
ing  methods that allow us to predict a continuous out-
come variable (y) based on the value of one or multiple 
predictor variables (x). Once features are extracted, a 
regression technique is employed to evaluate the corre-
lation between the predicted outcome by the model and 
the changing of the anaesthetic states, which is referred 
to the BIS value. The Pearson correlation coefficient (r) 
and the root mean squared error (RMSE) are used to 
evaluate the correlation between the new index and the 
BIS index. The definition of r [28] is given below:

where x is the new index value, x is the mean of the new 
index, y is the corresponding BIS value, and y is the mean 
of the BIS index. The value of r is between [−1 1]. If r 
is closed to 1 or −1, it means that the two indexes are 
highly correlated. If r equals 0, it means that there is no 
correlation at all between the indexes.

The RMSE is a square root of MSE [29]. The definition 
of the MSE is as follows:

where n is the number of the data points, Yi is a set of the 
observed values, and Ŷi is a set of the predicted values.

In this research, a scatter plot is employed to identify 
the correlational relationship between the BIS and the 
values of SE calculated from EEG signals before estab-
lishing the new DoA index. A scatter plot uses dots to 
represent two numeric variables. Its primary uses are to 
observe and show relationships between the values of 
two variables.

(7)r =

∑
(xi − x)

(
yi − y

)
√∑

(xi − x)2
(
yi − y

)2 ,

(8)MSE =
1

n

n∑

i=1

(
Yi − Ŷi

)2
,
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3 � Results
3.1 � Experimental data and EEG data preprocessing
The EEG data were collected at Toowoomba St Vincent’s 
Hospital from 24 adult patients. The demographic infor-
mation of all the participants involved in this study is 
explained in Table  1. Their typical drug administration 
included earlier pharmaceuticals, intravenous midazolam 
0.05 mg/kg, fentanyl 1.5–3 μg/kg or alfentanil 15–30 μg/
kg.

The EEG signals are typically classified into five basic 
frequency bands that are α (8 to 16 Hz), β (16 to 32 Hz), 
γ (32 to 60  Hz), δ (1 to 4  Hz) and θ (4 to 8  Hz) [5]. In 
this research, the EEG characteristics analysis is based 
on the different frequency bands, and the DoA algo-
rithm is designed upon the frequency bands dynam-
ics. For the BIS index, the phase coupling between high 
frequency (40 to 47  Hz) and a broader frequency range 
(0.5 to 47 Hz) of EEG waves is quantified, and the ratio 
of higher frequency waves (30 to 47 Hz) to other waves 
of lower frequency (11 to 20 Hz) is measured to compute 
the bispectrum [30]. To further explore the relationship 
between the SE values and frequency bands, the EEG sig-
nals are divided into five basic frequency bands (α, β, γ, 
δ and θ) and four small β bands and βγ (21.5 to 38.5 Hz) 
by the FFT. Small β bands are β1 (13 to 17 Hz), β2 (17 to 
21.5 Hz), β3 (21.5 to 26 Hz), and β4 (26 to 30 Hz) (Fig. 4).

The permutation entropy (PE) feature extraction 
method is widely applied for the assessment of the depth 
of anaesthesia. Many researchers have proved that PE 
value is one reliable parameter for accurate DoA assess-
ment [31–34]. Therefore, to evaluate the performance 

of SE parameters, PE values are also calculated with the 
same process as the SE values in the following experi-
ments, and the comparison results are presented in 
Figs. 2, 3, 4,  5.   

3.2 � Features selection
There are two frontal channels (Ch1 and Ch2) from 
which EEG signals are recorded and collected in the 
datasets. To reduce the features’ dimension, channel 
selection is an essential step of data analysis. SE and PE 
values are calculated from EEG signals of channel 2 (Ch2) 
and the sum of EEG signals of channel 1 and channel 2 
(Ch1 + Ch2) to select one of them so that the experi-
mental design can be simplified and more efficient. As 
shown in Fig. 2, the R2 values of SE and PE from Ch2 and 
Ch1 + Ch2 (the reference is the BIS index) are very close. 
Therefore, it is not necessary to use the EEG signals from 
both Ch2 and Ch1 + Ch2. Thus the EEG signals from Ch2 
are analysed in this research.

The EEG signals from Ch2 are firstly decomposed into 
basic frequency bands (α, β, γ, δ and θ) and small fre-
quency bands. As a result, ten sets of frequency bands 
from each episode of EEG signals are obtained. The SE 
and PE values are calculated based on both the amplitude 
and power of each basic frequency band. The scatter plot 
graphs for the SE and PE values and the BIS value show 
that SE and PE are roughly linearly correlated with the 
BIS index, as shown in Fig. 3.

The average R2 values of the SE and PE in each fre-
quency band of the EEG signals from 13 patients (ran-
domly chosen) are shown in Fig. 4.

Table 1  Patient demographics and intraoperative drug usage

Age (year) Weight (kg) Height (cm) Gender (F/M) Midazolam (mg) Alfentanil (μg) Propofol (mg) Parecoxib (mg) Fentanyl 
(μg)

2–83 55–130 154–194 15/22 2–5 500, 750, 1000 90–200 40 100, 150

Fig. 2  The R2 value of SE and PE from Ch1 + Ch2 EEG and Ch2 EEG (the reference is the BIS index)
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Fig. 3  The relationships of SE and PE with the BIS value: a SE, b PE. The best-fit line is red. The fitted linear relation indicates that the two methods 
are correlated (for Patient ID 10)

Fig. 4  Comparison between SE and PE from different frequency bands (the reference is the BIS index)

Fig. 5  r values: a SE calculated from β and βγ frequency bands vs. BIS Index; b PE calculated from γ and β1 frequency bands vs. BIS index
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The highest R2 calculated from the SE of βγ is 0.8459, 
whereas the highest R2 for the PE is 0.7927 (Fig.  4). 
Therefore, the most suitable feature parameters from 
different frequency bands for the DoA assessment using 
time-domain methods in this study is:

•	 The SE values, which are calculated from the ampli-
tude of the βγ frequency band

To increase the robustness of the new DoA index, the 
SE values with the second highest R2, calculated from the 
amplitude of the β frequency band, are also applied for 
the index design.

The proposed new DoA index based on the time char-
acteristics is designed using these two parameters. The 
simple linear regression analysis exhibits that SE values 
calculated from β and βγ frequency bands are signifi-
cantly linearly related to the BIS index. The highest value 
of r from the linear regression is 0.9213 (Patient ID 13) 
(Fig.  5(a)). The PE values calculated from γ and β1 fre-
quency bands are also strongly linearly related to the BIS 
index in some cases, but not consistently highly related to 
the BIS index across the patients (Patient ID 5 and ID 7 in 
Fig. 5b). Correlation analysis provides information on the 
strength and direction of the linear relationship between 
two variables, while a simple linear regression analysis 
estimates parameters in a linear equation that can be 
used to predict the values of one variable based on the 
other. The trends of the index from the linear regression 

equation of the SE calculated from β and βγ frequency 
bands show a great similarity with the BIS index (Fig. 6).

3.3 � Models based on regression analysis
Four methods of a linear regression, an SVM, a deep 
learning algorithm and a neural network were employed 
to select the most suitable model for the DoA measure-
ment, and the linear regression analysis was proved to be 
the best analytical model for the DoA assessment based 
on the Pearson correlation coefficient (r), the root mean 
squared error (RMSE) and execution time in this study. 
To determine the method of analysis, ten sets of subjects 
of the selected parameters (the SE calculated from β and 
βγ) are trained by four candidates of regression models, 
and randomly chosen seven sets of those were tested 
(Patient IDs: 10, 11, 13, 14, 16, 17 and 25). The predicted 
values by the models are evaluated by comparing them 
with the BIS index. r and RMSE are used to examine the 
correlation of the predicted value and the BIS index. The 
results are shown in Fig. 7.

From Fig. 7, r values from linear regression analysis are 
higher (more correlated with the BIS) than those from 
other methods, SVM (kernel type: polynomial, Kernel 
degree: 2.0, kernel cache: 200, max iterations: 100,000), 
deep learning (activation: rectifier, hidden layer sizes: 
50, epochs: 10), and neural network (training cycles: 200, 
learning rate: 0.01, momentum: 0.9). The highest r from 
linear regression analysis is 0.914 (Fig.  7a). In addition, 
the RMSE from the linear regression analysis is lower 

Fig. 6  The index from the linear regression equation of the SE calculated from β and βγ frequency bands vs. the BIS Index. a Patient ID 9; b Patient 
ID 25
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than any other analytical methods in this study. The low-
est RMSE from the linear regression of these samples is 
10.16 (Fig.  7b). The execution time is also an essential 
factor in selecting analytical methods because the execu-
tion time for analysis is crucial for  real-time measure-
ments of the DoA. The average execution time for each 
regression analysis is measured and shown in Table  2. 
The linear regression analysis records the shortest execu-
tion duration (0.5 s), and the SVM takes the longest time 
for the analysis (186 s).

3.4 � The new DoA design and evaluation by linear 
regression

The selected parameters (SE calculated from β and βγ) of 
the EEG data from ten subjects (Patient IDs: 1, 2, 4, 5, 6, 
8, 15, 20, 22 and 23. Each record contains 18,448 s of EEG 
data, having 2,361,344 data points) are used to obtain the 
coefficients for a new DoA index, which employs the lin-
ear regression model. The new index is evaluated by com-
paring it with the BIS index. r values are used to examine 
the correlation between the new index and the BIS index. 
The new DoA index is proposed as follows:

(9)
New DoA Index = 0.209 ∗ SE_β + 0.510 ∗ SE_βγ ,

where SE_ β is the SE values calculated from β frequency 
band (13–30 Hz) and SE_ βγ is the SE values calculated 
from βγ frequency band (21.5–38.5 Hz).

The new DoA index (Patient ID 16, r = 0.893) and the 
BIS index are shown in Fig. 8. The trend of the new DoA 
index line shows a close similarity with the BIS index, 
having fewer fluctuations.

The performances of the new DoA index for randomly 
selected 14 patients (23,288  s which contain 2,980,864 
data) are evaluated. r values for the 14 cases are shown 
in Fig. 9.

The average r values for the 14 patients is 0.8079, and 
the highest score is 0.914. The lowest RMSE is 8.62. The 
high r values show a very close correlation between the 
proposed index and the BIS index. However, the perfor-
mance of the two cases (Patient IDs 17 and 21) was not 
good enough (r values are 0.65 and 0.68). The poor per-
formance can be explained by the poor signal quality of 
the EEG from the two subjects (Patient ID 17 and 21).

Fig. 7  a r of predicted value by the model vs the BIS by regression analysis. b RMSE of predicted value by the model vs the BIS by regression analysis

Table 2  The average execution time of regression analysis 
(simulated by RapidMiner version 9.4)

SVM Linear 
regression

Deep 
learning

Neural 
net

Average execu-
tion time

186 s 0.5 s 4 s 6 s

Fig. 8  The new DoA index (Patient ID 16, r = 0.894) and the BIS index
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3.5 � Patient’s state in the case of poor signal quality
The signal quality indicator (SQI) is an index for signal 
quality which is calculated based on impedance data, 

artefacts, and other variables. The BIS index is not capa-
ble of calculating the valid values on the screen when SQI 
is lower than 15. In these cases, the value − 3276.8 was 
labelled as a notice “excessive artefact detected in signal” 
[35]. The index of the proposed method in poor signal 
quality cases (according to SQI) is also evaluated. The 
new index produces the DoA values when SQI is lower 
than 15, where the BIS index could not calculate it. In 
Fig. 10, for Patient ID 19, the BIS index is −3276.8 from 
611 to 629 s and from 1294 to 1301 s. For Patient ID 25, 
the BIS index is −3276.8 from 956 to 971  s, from 1040 
to 1045 s, from 1153 to 1185 s, from 1299 to 1310 s and 
from 2396 to 2433 s. However, the new index shows the 
measured DoA value clearly during those periods. Along 
with the anaesthetists’ records, there was no alteration in 
the patient’s anaesthetic states during this period. Con-
sequently, the new index is more consistent to show the 
changes from one anaesthetic state to another state.

Fig. 9  The performances of the new DoA index for randomly 
selected 14 patients (r values)

Fig. 10  Comparisons of the new index and the BIS index with SQI. a. Patient ID: 19 range: 0–3000 s; b Patient ID: 19, range: 500–1500 s; c Patient ID: 
25, range: 800–2300 s
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3.6 � Time delay from deep anaesthetic state to moderate 
anaesthetic state

The new proposed index shows a high correlation with 
the BIS throughout the states of consciousness, light 
anaesthesia and deep anaesthesia. It shows an earlier 
reaction than the BIS index when the patient from deep 
anaesthesia to moderate anaesthesia. This type of earlier 
reaction exists in all the cases of the 14 subjects. The new 
index for Patient IDs 9 and 12 are selected as examples 
to show the time response differences with the BIS index 
graphically in Fig. 10. The index value 35 is assumed to be 
the point at which the anaesthetic states transfers from 
deep anaesthesia to moderate anaesthesia. Comparing 
with the new index, BIS values show an average 158  s 
time delay of anaesthetic states changes for 14 patients, 
as shown in Fig. 11 and Table 3. The time differences for 
14 patients are provided in Table 3.

4 � Discussion
The extracted features reduced the number of data points 
needed to describe a huge set of data effectively, as well as 
to minimize the loss of essential information embedded 
in the signals. The features extraction based on the SE 
in this study successfully leads to develop a reliable DoA 
algorithm for accurate DoA assessment. The denoised 
EEG signals were, firstly, divided into ten sub-frequency 

bands (α, β1, β2, β3, β4, β, βγ, γ, δ, and θ), and then the 
basic complexity measure was done by using SE and PE. 
The SE from βγ frequency band and the SE from the β 
frequency band yield the highest R2 value (0.8458 and 
0.7312, respectively) with the BIS in this study. The FFT 
enabled frequency bands decomposition from the EEG 
signals, and the SE values were obtained from the ten 
sub-frequency bands. This study proves that the results 
of the experiment by Xu et  al. [21], which showed that 
the SE was sensitive to the states of rats’ light and deep 
sleeps. Some studies [31–34] proposed that PE is a prom-
ising feature for discriminating different levels of con-
sciousness during anaesthesia. The PE showed a high 
correlation (the highest R2 = 0.793) with the BIS index, 
but the SE presented an improved correlation (the high-
est R2 = 0.846) than the PE in this study. Along with other 
studies related to the analyses of the human brain activ-
ity [19, 36], the SE was proved to be a promising algo-
rithm to monitor the stages of human anaesthesia during 
surgery.

5 � Conclusions
The new DoA index was developed based on two SE val-
ues (from β and βγ) for monitoring the DoA. It was eval-
uated by comparing it with the BIS index and the clinical 
observations by an attending anaesthetist. The highest r 

Fig. 11  The comparison of the new index and the BIS index. a Patient ID 9; b Patient ID 12. The blue markers show the earlier reaction by the new 
index

Table 3  The time response comparison between the new index and the BIS (in seconds)

Patient ID 4 7 9 10 11 12 13 14 16 17 19 21 24 25

Time difference 200 75 258 231 41 116 331 100 6 157 288 266 132 14
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value is 0.918, and its average value is 0.80. The lowest 
RMSE is 8.62. The high r values indicate the proposed 
DoA index highly correlates with the BIS index. Fur-
thermore, the proposed index responds to the changes 
in EEG signals better than the BIS index when a patient 
from deep anaesthesia to moderate anaesthesia. The new 
index shows the earlier time response (average 158 s for 
14 patients) of states change than the BIS index.

The proposed DoA index demonstrates its consistency 
in the case of poor signal quality (SQI < 15) as well, while 
the BIS Index exhibits inflexibility with cases of poor sig-
nal quality (SQ). Some cases of our simulations exhibit 
poor correlations with the BIS, which may be due to the 
BIS index is inflexible with cases of poor signal quality. 
Four machine learning methods of an SVM, a neural 
network, a deep learning and a  linear regression were 
employed to evaluate the accuracy of their DoA assess-
ment. The linear regression outperformed the other three 
methods not only in accuracy (average r = 0.80), but 
also with a shorter execution time. The linear regression 
took only 0.5  s to simulate more than 35,000 data (run 
by RapidMiner version 9.4). The new DoA index by linear 
regression provides potential benefits as good guidance 
in real-time DoA assessments.
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