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Improved fruit fly algorithm on structural 
optimization
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Abstract 

To improve the efficiency of the structural optimization design in truss calculation, an improved fruit fly optimiza-
tion algorithm was proposed for truss structure optimization. The fruit fly optimization algorithm was a novel swarm 
intelligence algorithm. In the standard fruit fly optimization algorithm, it is difficult to solve the high-dimensional 
nonlinear optimization problem and easy to fall into the local optimum. To overcome the shortcomings of the basic 
fruit fly optimization algorithm, the immune algorithm self–non-self antigen recognition mechanism and the immune 
system learn–memory–forgetting knowledge processing mechanism were employed. The improved algorithm was 
introduced to the structural optimization. Optimization results and comparison with other algorithms show that the 
stability of improved fruit fly optimization algorithm is apparently improved and the efficiency is obviously remark-
able. This study provides a more effective solution to structural optimization problems.
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1  Introduction
With the rapid development of computer technology, the 
efficiency of structural optimization is greatly improved, 
and structural designers can have more time and energy 
to consider how to get better structural design scheme. 
In 1974, Schimit and Farshi proposed to combine finite 
element theory with mathematical induction theory to 
solve the optimal weight problem of engineering struc-
ture. Structural optimization has stepped into a new era 
[1]. After that, the intelligent optimization algorithm is 
also widely applied to the structural optimization, and 
the modern structural optimization method is gradually 
applied to the engineering practice. Now, after years of 
research and development, structural optimization has 
changed from the original optimization of structure size 
to the present optimization of topology and further opti-
mization of material distribution. From a single objective 
optimization problem, multiple objectives are optimized 
simultaneously. Azamirad and Arezoo [2] proposed 

an improved software package for stamping die struc-
ture that can greatly reduce the weight. Ide [3] designed 
the lightweight structure with the structural optimiza-
tion method, and successfully realized the lightweight 
gear box design by using the design method of reduc-
ing contact constraint stress. Kaveh [4] proposed water 
evaporation optimization algorithm (WEO), which is 
a population-based intelligent optimization algorithm 
inspired by physics and used for continuous structural 
optimization. In order to apply different optimization 
solvers to various finite-based structural topology opti-
mization problems Rojas-Laband [5], developed a widely 
representative example library of mechanism design 
problems with minimum compliance, minimum volume 
and different sizes. Sivapuram [6] discussed various cal-
culus methods and numerical methods commonly used 
to solve structural topology optimization problems.

Inspired by the foraging process of fruit flies, scholar 
Pan [7] proposed a more efficient swarm intelligence 
optimization algorithm in 2012: fruit fly optimization 
algorithm (FOA). The algorithm has the advantages of 
clear principle, fewer parameters and simple opera-
tion. However, there are also some shortcomings, such 
as weak ability to solve complex, high-dimensional and 
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nonlinear optimization problems and easy to fall into 
local extremum. In view of the above typical problems, 
many scholars have proposed many improvements. As 
for the generation of candidate solutions [8], added an 
escape parameter that can be negative to the taste con-
centration judgment value, so that the candidate solu-
tion can take a negative value. A novel double strategy 
evolutionary fruit fly optimization algorithm (DSE-
FOA) was proposed by Fang [9]. DSEFOA dynamically 
divided the fruit fly population into spermatogonium 
subgroups and ordinary subgroups, and adopted dif-
ferent strategies to update the evolution of drosophila 
at different levels of evolution, which improved the 
optimization ability of the whole population. In terms 
of search radius, Sang et  al. [10] introduced adaptive 
parameters to adjust the search radius of drosophila 
so as to better balance the global search capability and 
local search capability. Cao [11] proposed to replace 
the traditional search mechanism with sector search 
mechanism, and the new fruit fly algorithm was gen-
erated to effectively improve the stability of the algo-
rithm. In terms of flight strategy [12–14], added the 
operation of group collaboration and random perturba-
tion to solve the problem of premature development of 
the algorithm. Sheng [15] proposed that the length of 
fruit fly search for Uber should be dynamically changed 
according to the change rate of concentration differ-
ence, which can effectively balance the global optimiza-
tion ability and the local optimization ability. In terms 
of population diversity [16], divided the drosophila 
population into multiple subpopulations of the same 
size. Han [17] et al. proposed a dynamic twin group co-
evolutionary FOA to improve the search accuracy. Xin 
[18] used the gaussian sampling method to update the 
fruit fly. This method can increase the chance of jump-
ing out of the local extremum in the early stage of the 
algorithm and conduct more accurate search in the 
later stage.

Aiming at improving the performance of the standard 
fruit fly optimization algorithm, the hybrid algorithm 
was designed to combine with fusion immune response. 
Immune algorithm was fully utilized to improve the 
deficiency of fruit fly algorithm that is prone to fall into 
local extreme value in the later stage. In other words, 
when the number of evolutionary stasis steps t is 
greater than the threshold value of evolutionary stasis 
steps T, immune operation is performed to overcome 
the defect of basic fruit fly algorithm. The improved 
algorithm was proved to have better robustness and 
intelligence through standard functions and tests for 
solving 0–1 knapsack problems [19–21]. Finally, it was 
applied to the optimization of truss structure [22] and 

compared with other algorithms to verify the feasibility 
of the improvements.

2 � Basic fruit fly algorithm
FOA (fruit fly optimization algorithm) is a new heuris-
tic algorithm that simulates the foraging activities of 
fruit flies in nature to seek the optimal solution of the 
objective function. The foraging iteration diagram of 
fruit flies is shown in Fig. 1.

The basic steps are as follows [23–26]:

Step 1: initialize parameters. Set Sizepop and Maxgen 
of the population size, and initialize the population 
position:

Step 2: fruit fly searches in the olfactory system, 
which can make the search direction and the search 
step randomly. Random value (RV) is to be the 
search distance, and the position of the population is 
updated simultaneously:

Step 3: since the exact location of the food is 
unknown, it is necessary to calculate the distance 
( Disti ) between the fruit flies and the origin of the 
coordinate and then calculate the taste concentra-
tion parameter ( Si):

(1)
(

X_axis,Y_axis
)

.

(2)
{

Xi = X_axis + RV
Yi = Y_axis + RV

.

(3)Disti =

√

X2
i + Y 2

i

(4)Si =
1

Disti
.

Fig. 1  FOA foraging schematic diagram
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Step 4: substitute the fruit fly flavor concentration 
determination value (Si) into the taste concentration 
decision function, the fitness function, then we will 
obtain the individual taste concentration of the fruit 
flies Smelli.

Step 5: identify the individual with the highest flavor 
concentration in the drosophila population.

Step 6: retain the best flavor concentration value and 
coordinate, and other individuals in the population 
fly to this position:

Step 7: termination condition, judge whether the 
concentration of the best position is better than that 
of the previous generation, and reach the maximum 
number of iterations; otherwise, skip step 2 to enter 
the iterative optimization.

3 � Improved fruit fly algorithm with immune 
response

Since fruit fly has a relatively developed olfactory and 
visual system, it first carries out a wide range of search 
through the sense of smell and sends out food odor infor-
mation to the surrounding drosophila in the process of 
foraging. When a fly is found to have a higher concen-
tration by comparison, the individual flies will rely on 
visual function to fly to that location [27, 28]. It is pre-
cisely because of such population characteristics that the 
diversity of the population is reduced, the algorithm that 
simulates its characteristics, like other bionic intelligent 
algorithms, has the defect that it is easy to fall into local 
optimization, which leads to the problem of early matu-
rity [29].

The immune algorithm was inspired by somatic cell 
theory and network theory [30]. And it can realize the 
function of self-regulation by generating different anti-
bodies similar to the immune system [31]. This algorithm 
has strong local search ability. By using this, we can intro-
duce it into the later stage of fruit fly algorithm execution 
to improve the basic fruit fly algorithm. The new algo-
rithm IAFOA can be used to balance the deficiency of 
fruit fly algorithm that is prone to fall into local optimal, 
and improve the search efficiency.

(5)Smelli = Fitness(Si).

(6)[bestSmell, bestIndex] = min(Smell).

(7)SmellBest = bestSmell.

(8)
{

X_axis = X(bestIndex)
Y_axis = Y (bestIndex)

.

3.1 � Immune algorithm
Immune algorithm (IA) is a kind of bionic optimiza-
tion algorithm. In 1990, Bersini [32] first used immune 
algorithm to solve problems. By simulating biological 
immune system identify antigen (objective function), 
simulation of the principle of the memory in the immune 
system, combination of antigen and antibody (optimiza-
tion) solution, and diversity of imitation immune system, 
IA algorithm can realize the antigen recognition, cell dif-
ferentiation, and memory of the immune system and self-
regulating function [2, 33, 34]. The basic steps of IA are 
as follows:

Step 1: antigen recognition. Input objective function 
and constraint conditions as antigen of immune algo-
rithm;
Step 2: generate the initial antibody. Generate initial 
antibodies randomly within the solution space;
Step 3: calculate the compatibility (fitness evalua-
tion). According to the given fitness evaluation func-
tion, the affinities between antibodies and antigens 
and between antibodies and antibodies were deter-
mined. The compatibility between antigen and anti-
body Av is defined as follows:

where OPtv represents the matching degree of antigen 
and antibody, and the value of Av is between 0 and 1. 
When OPtv = 0 , Av = 1 , indicating that the antibody 
matches the antigen very well, that is, the antibody is 
the optimal solution.
Step 4: update memory units. The antibody with the 
highest affinity to antigen calculated in step 3 was 
added into the memory unit and replaced by the 
original antibody.
Step 5: promote and inhibit node production. Cal-
culate the expected value Exi of antibody i, the low 
expected value of antibody will be suppressed.

where Ai is the affinity between antigen and antibody 
i, and Ci is the number of antibody i;
Step 6: generate new antibodies. The father genera-
tion produces the next generation antibody through 
heredity, mutation and crossover.
Step 7: whether termination conditions are met. Yes, 
stop the algorithm; No, skip to step 3.

3.2 � Population diversity improvement of IAFOA
The immune system is the basic defense system to maintain 
the normal metabolism of living organisms by blocking the 

(9)Av = 1/
[

1+ OPtv

]

,

(10)Exi = Ai/Ci,
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invasion of bacteria [27]. The system recognizes gene types 
to produce different antibodies, promotes the emergence 
of new individuals and inhibits the excessive production 
of individuals through regulatory mechanisms, so as to 
achieve biological diversity [4].

Suppose the immune system has N antibodies, and each 
antibody has M genes, as shown in Fig. 2. The information 
entropy Hj(N ) of the j gene is:

If all the alleles of the antibody are the same at position j, 
then Hj(N ) is equal to 0.

Therefore, the average information entropy H(N ) of the 
system is as follows:

3.3 � The implementation of IAFOA
Based on the standard fruit fly algorithm, FOA algo-
rithm was first used to construct the feasible solution 
set. Then, the number of evolutionary stasis steps t was 
used as the trigger condition [35]. When t > T (thresh-
old of evolutionary stasis steps), the IA search pro-
cess was invoked, and the process of immune factors 
in the immune algorithm (corresponding to individual 
drosophila) seeking antigens (corresponding to food 
source in the drosophila algorithm) producing antibod-
ies (optimal solution) was used to expand the search 
space. The elite retention strategy was carried out in 
the feasible solution set obtained after IA search. And 
the obtained optimization solution was used together 
with the original feasible solution set to update the 

(11)Hj(N ) =

N
∑

i=1

(

−PijlogPij
)

.

(12)H(N ) =

M
∑

j=1

Hj(N )/M.

concentration of odor information in the search space, 
so as to guide other fruit fly’s path search mechanism.

The threshold value of evolutionary stagnation step T 
is the index to enter the IA algorithm. The premature 
introduction of IA algorithm is not conducive to the 
search ability of IA, or even the convergence of feasible 
solutions. Through multiple independent experiments, 
T = 6 was adopted as the trigger value for entering IA 
algorithm.

If the trigger condition is satisfied, a fixed immune 
factor redistribution probability P∗ was employed to 
the optimization of space. And the different individuals 
were given different adaptive immune probability P(i) 
according to their fitness values:

where in order to avoid the algorithm falling into the 
local optimal solution, the initial probability of immune 
factor in IA algorithm was given P∗

= 0.25 to randomly 
allocate it and increase the diversity of solutions.

The process of IAFOA is as follows:

Step 1: initialize parameters. Set Sizepop and Max-
gen of population size, initialize population posi-
tions X_axis and Y_axis , and the number of evolution-
ary stagnation steps t = 0;
Step 2: randomly generate fruit fly population 
according to Eq. (3);
Step 3: use Eqs. (4)–(7) to operate the population;
Step 4: record and retain the best flavor concentra-
tion value according to Eq. (14), and update the evo-
lutionary iteration step number t;
Step 5: judge whether t < T is true, if directly go to 
step 7; otherwise, according to Eq. (13), the adaptive 
immunity probability of individual fruit fly was cal-
culated, and the immune operation was carried out 
according to the immune algorithm. For individuals 
who did not perform the immune operation, step 7 
was taken.
Step 6: repeat steps 2–4 for iterative search of the 
new population obtained by immunization;
Step 7: set gen = gen + 1; if gen < Maxgen, go to step 2; 
otherwise terminate the iteration.

IAFOA flowchart is shown in Fig. 3.

(13)P(i) =
(Smellbest− Smell(i))

((Smellbest− Smellworst)P∗)

(14)



















if(bestSmell < Smellbest)
Smellbest = bestSmell1

else(t = t + 1)
Smellbest = bestSmell2

end

,

Fig. 2  Information entropy of genes
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4 � Simulation results
In order to verify the effectiveness of the improved 
algorithm, four standard test functions [5, 36] were 
selected for numerical simulation test to test the per-
formance of IAFOA algorithm. In addition, 0–1 knap-
sack problem was selected for simulation experiment 
[37], and the results are compared with other algo-
rithms. Initialization parameters: population size Siz-
epop = 200, max iteration number Maxgen = 1000, 
dimension D = 30, P* = 0.25, T = 6.

4.1 � Standard function test
The first standard function: Rosenbrock function:

The second standard function: Ackley function:

The third standard function: Cross-in-tray function:

(15)f1(x) =

d−1
∑

i=1

[

100
(

xi+1 − x2i

)2
+ (xi − 1)2

]

.

(16)

f2(x) = −a exp



−b

�

�

�

�

1

d

d
�

i=1

x2i





− exp

�

1

d

d
�

i=1

cos(cxi)

�

+ a+ exp (1).

(17)

f3(x) = −0.0001





�

�

�

�

�

�

sin (x1) sin (x2) exp





�

�

�

�

�

�

100−

�

x21x
2
2

π

�

�

�

�

�

�





�

�

�

�

�

�

+ 1





0.1

.

The fourth standard function: Levy function:

Figures 4, 5, 6, and 7 show the graphs of the four func-
tions, where Rosenbrock function is a single peak func-
tion, which is mainly used to test the convergence 
performance of the improved algorithm in the process of 
operation. Both Ackley function and Cross-in-tray func-
tion are complex multi-peak functions, which tend to 
make the algorithm fall into local optimization, so that 
the real optimal value cannot be obtained, which is used 
to test the ability of the improved algorithm to deal with 
falling into “premature”. The Levy function has a complex 
spatial property and is used to test the computational 
accuracy, convergence stability and time complexity of 

(18)

f4(x) = sin2(πω1)+

d−1
∑

i=1

(ωi − 1)2
[

1+ 10sin2(πωi + 1)
]

+ (ωd + 1)2
[

1+ sin2(2πωd)

]

,

where ωi = 1+
xi − 1

4
,

for all i = 1, 2, . . . , d.

Fig. 3  IAFOA algorithm iteration diagram

Fig. 4  Rosenbrock function graph

Fig. 5  Ackley function graph
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the improved algorithm. The selected functions and their 
expressions are shown in Table 1.

Four different standard functions were used to test 
the convergence performance, operation efficiency, han-
dling of “local optimal” and “premature” problems, and 
the optimal value and average value in the optimization 
test. The standard deviation reflects the robustness of 
the algorithm. The running time reflects the convergence 
speed and accuracy of the algorithm. It can be seen from 
the calculation results in Table 2 that the fusion immune 
response hybrid fruit fly algorithm performs better 
than the standard fruit fly algorithm in different stand-
ard functions. The improved algorithm is feasible and 
effective.

In order to more intuitively see the effectiveness of 
improved algorithm performance, Fig. 8 shows immune 
algorithm (IA), particle swarm optimization (PSO), 
standard fly optimization algorithm. FOA) and fruit fly 
optimization algorithm based on immune algorithm 
(IAFOA) under the above four standard functions. The 
average value of multiple runs was used as the final result 
to avoid accidental errors.

It can be seen from the iterative curve of Fig. 5 that the 
algorithm can search the local optimal solution, in addi-
tion it reflects high convergence speed and convergence 
accuracy, especially at the initial stage of iterative algo-
rithm. Take (a) in Fig.  5 as an example, when the algo-
rithm runs about 78 times, it can jump out of the local 
optimal solution. When the number of iterations is about 

Fig. 6  Cross-in-tray function graph

Fig. 7  Levy function graph

Table 1  Comparison of optimization performance for benchmark functions

Function Dimension Algorithm Optimal value Average value Standard deviation Running time/s

f1 30 IA 37.1543 61.3698 33.1659 5.5329

PSO 16.5998 34.6729 29.5267 3.9532

FOA 15.2864 20.9341 19.5582 1.0299

IAFOA 14.0958 17.9574 6.46931 1.3621

f2 30 IA 2.2763 3.5297 3.061e−03 3.5146

PSO 2.0051 2.1193 2.796e−03 4.2287

FOA 1.6849 1.9678 3.909e−04 1.9652

IAFOA 0 1.0052 6.9768e−03 0.9537

f3 30 IA 2.18e−02 4.485e−02 3.0702e−01 4.7798

PSO 1.96e−02 2.073e−01 2.785e−01 3.5669

FOA 1.854e−01 1.6941e−01 1.1185e−01 1.2463

IAFOA 0 0 0 0.6805

f4 30 IA 1.952e−04 2.327e−04 6.001e−01 3.534

PSO 1.439e−02 2.557e−02 5.026e−01 4.371

FOA 2.005e−02 1.363e−01 3.778e−02 0.988

IAFOA 3.958e−03 1.564e−05 2.563e−02 1.015
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Table 2  Result comparison table of TSP problem

Algorithm Oliver30 Att48 Eil51

Best Avg Best Avg Best Avg

IA 459.9 485.1 394,025 38,732 564.8 579.4

PSO 527.3 572.3 499,758 52,277 570.9 610.2

FOA 415.2 485.6 35,947 44,620 453.6 557.9

IAFOA 415.0 475.9 35,098 43,082 450.9 544.1

Fig. 8  The iterative curve of the algorithm under four functions. a Rosenbrock function. b Ackley function. c Cross-in-tray function. d Levy function
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255 times, the optimization result is generally stable. It is 
obviously that the improved algorithm proposed here is 
superior to the IA, PSO, and standard FOA.

4.2 � Solve the TSP problem
Traveling salesman problem (TSP) is a classical combina-
torial optimization problem, which is a typical NP hard 
problem. It has important research value in the field of 
logistics distribution and vehicle route planning.

The TSP problem can be described as: we know the 
coordinate position of N cities or the distance between 
two cities. A salesman needs to go to N cities to sell 
goods. To start from one city, salesman must pass 
through other cities only once, and then return to the 
starting city. Finding out the shortest path for saleman. 
The mathematical model is as follows.

If S = (P1,P2, . . . ,PN ) can satisfy the minimum value 
of f (S) , then access order S is the optimal solution of TSP 
problem under the condition of N cities, that is, the opti-
mal path [38].

where Pi is the city code, i ∈ (1, 2, . . . ,N ) ; d
(

Pi,Pj
)

 is the 
distance between city Pi and city Pj . If only the city coor-
dinates are known, then:

where 
(

Xi − Xj

)

 is the coordinate position of Pi
;d
(

Pi,Pj
)

= d
(

Pj ,Pi
)

.
In order to verify the performance of the IFOA in solv-

ing the TSP problem, this paper selected Oliver30, Att48 
and Eil51 standard examples from the international TSP 
database (The Library of TSP, TSPLIB) for parameter 
testing. The result is shown in Table 2.

The above analysis results show that IAFOA can not 
only effectively solve the TSP problem, but also has a 
higher robustness than other algorithms.

5 � Optimization of truss structure by IAFOA
5.1 � Optimization model of truss structure

1.	 The optimization model

	 The optimization model problem of truss with sec-
tional area as the design variable is described as fol-
lows [6]: 

(19)f (S) =

N−1
∑

n=1

(d(Pi,Pi+1))+ d(PN ,P1),

(20)d
(

Pi,Pj
)

=

√

(

Xi − Xj

)2
+

(

Yi − Yj
)2
,

(21)minF = W (x)

where gi(x) is the constraint function; m is the num-
ber of constraints.

2.	 The objective function

where W (A) is the weight of the structure; Ai and Li 
are, respectively, the cross-sectional area and length 
of the ith root. ρ is the density of the material; n is the 
number of design variables.

3.	 The constraint

Each member of the structure shall meet the require-
ments of strength, stiffness, stability and section size:

where σi is the normal stress of the ith root element. [σ ] 
is the allowable stress of the material. µj represents the 
displacement of node j; allowable displacement of µmax 
node j; Amin and Amax are the upper and lower limits of 
the member section, respectively.

Example 1  The 25-bar truss structure model [39] 
is established as shown in Fig.  9 and Table  3. Basic 
parameters of truss structure: rod length L = 0.635  m, 
elastic modulus E = 6.895× 104 MPa , material den-
sity ρ = 2.678× 103 kg/m3 , allowable stress range: 
[− 275.8275.8], maximum vertical displacement 
y = 8.889 mm of nodes 1 and 2.

The results are shown in Table 4 and Fig. 10. Under the 
same constraint conditions, IAFOA was used to opti-
mize the 25-bar truss structure, and the total mass of 
the optimized structure was 206.591  kg. Compared to 
IA, mass decreased (246.436–206.591)/206.591 = 1.93%. 
Compared with PSO, the quality decreased (216.339–
206.591)/206.591 = 4.72%; compared with FOA, 
the optimization results were optimized (214.702–
206.591)/206.591 = 3.93%. After about 68 iterations, 
IAFOA can find the global optimal solution. IA searched 
for the global optimal solution for about 130 times, PSO 
for about 150 times and FOA for about 165 times. For 
the quality problem of global optimal solution, IAFOA 

(22)s.t.gi(x) ≤ 0, i = 1, 2, . . . ,m,

(23)W (A) =

n
∑

i=1

ρAiLi,

(24)
σi

[σ ]
− 1 ≤ 0,

(25)
µj

µmax
− 1 ≤ 0,

(26)Amin ≤ Ai ≤ Amax,
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is superior to the other three optimization algorithms. 
It is proved that IAFOA is stable in the face of complex 
optimization problems in the optimization process, and 

Fig. 9  The 25-bar spatial structure

Table 3  Load conditions of 25-bar truss structure

Node number Fx Fy Fz

1 4.448 44.482 − 22.241

2 0 44.482 − 22.241

3 22.241 0 0

6 22.241 0 0

Table 4  Comparison of optimization results of 25-bar truss 
structure

Bar number Bar section area (unit: mm2)

IA PSO FOA IAFOA

A1 65.7 64.516 64.9 64.1

A2–A5 242.6 228.5 234.5 226.3

06–A9 2287.5 2237.6 2230.1 2240.4

A10–A11 65.12 64.516 63.149 63.56

A12–A13 1245.8 1227.9 1226.1 1223.5

A14–A17 505.1 506.9 501.7 500.9

A18–A21 92.1 83.9 89.5 85.7

A22–A25 2523.4 2575.7 2568.3 2495.6

Total weight (unit kg) 246.436 216.339 214.702 206.591

Fig. 10  The optimization iteration curve of Example 1

Fig. 11  The 72-bar spatial structure
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it is not easy to fall into the local optimal solution. Thus, 
IAFOA is effective.

Example 2  The 72-bar truss structure model [39] 
is established as shown in Fig.  11. 72 bars are divided 
into 16 groups, and the grouping condition is shown in 
Table 5. Material density is ρ = 2.678× 103 kg/m3 , elas-
tic modulus is E = 6.895× 104 MPa , and the maximum 
displacement of each bar in all directions cannot exceed 
6.35  mm, and maximum allowable stress is [− 172.375, 
172.375], and the optimized results are shown in Table 6.

The results are shown in Table  7 and Fig.  12. 
Under the same constraint conditions, IAFOA 

was used to optimize the 72-bar truss structure, 
and the total mass of the optimized structure was 
171.98  kg. Compared to IA, mass decreased (175.03–
171.98)/171.98 = 1.77%. Compared with PSO, the qual-
ity decreased (173.87–171.98)/171.98 = 1.10%; Com-
pared with FOA, the optimization results were optimized 
(176.31–171.98)/171.98 = 2.52%.

Example 3  The 200-bar truss structure model [39] 
is established as shown in Fig.  13. 200 bars are divided 
into 29 groups, and it is relatively high-dimensional opti-
mization problem. The grouping condition is shown in 
Table 7. Material density is ρ = 7.86× 103 kg/m3 , elastic 
modulus is E = 2.1× 1011 N/m2 . The minimum permit-
ted cross-sectional area for the truss members is taken as 
0.1 cm2, a non-structural mass of 100 kg is attached for 
all free nodes.

The results are shown in Table 8 and Fig. 14. Under the 
same constraint conditions, IAFOA was used to opti-
mize the 200-bar truss structure, and the total mass of 
the optimized structure was 2156.05  kg. Compared to 
IA, mass decreased (2298.73–2156.05)/2156.05 = 6.62%. 
Compared with PSO, the quality decreased 
(2276.59–2156.05)/2156.05 = 5.59%; compared 
with FOA, the optimization results were optimized 
(2259.86–2156.05)/2156.05 = 4.81%.

6 � Conclusion
With the development of civil engineering, the struc-
tural optimization is more and more important. To 
find a new method for the truss structure optimiza-
tion, an improved FOA was proposed. To overcome 
the shortage of the basic FOA, the IA was introduced 
into FOA, and a new IAFOA algorithm was proposed. 
Combining the global search capability of the original 
standard FOA algorithm and the strong local search 
capability of IA algorithm itself, the IAFOA achieves 

Table 5  The classification of 72-bar truss structure

Group number Bar number Group number Bar number

A1 1, 2, 3, 4 A9 37, 38, 39, 40

A2 5, 6, 7, 8, 9, 10, 12 A10 41, 42, 43, 44, 45, 46, 47, 48

A3 13, 14, 15, 16 A11 49, 50, 51, 52

A4 17, 18 A12 53, 54

A5 19, 20, 21, 22 A13 55, 56, 57, 58

A6 23, 24, 25, 26, 27, 28, 29, 30 A14 59, 60, 61, 62, 63, 64, 65, 66

A7 31, 32, 33, 34 A15 67, 68, 69, 70

A8 35, 36 A16 71, 72

Table 6  Comparison of  optimal designs for  the  72-bar 
spatial truss structure

Bar group number Bar section area (unit: mm2)

IA PSO FOA IAFOA

A1 103.75 100.69 102.26 101.31

A2 358.36 359.28 372.97 349.15

A3 271.02 270.31 220.27 238.97

A4 367.88 368.96 392.01 398.29

A5 343.59 342.99 170.51 173.49

A6 337.23 337.12 353.46 336.89

A7 64.518 64.518 64.528 64.518

A8 64.518 64.518 64.518 64.518

A9 871.37 871.01 713.98 825.37

A10 318.96 318.55 373.81 332.31

A11 64.518 64.518 64.518 64.518

A12 64.518 64.518 64.518 64.518

A13 1188.59 1187.96 1330.02 1152.32

A14 324.97 325.72 324.89 332.61

A15 64.518 64.518 64.518 64.518

A16 64.518 64.518 64.518 64.518

Weight (kg) 175.03 173.87 176.31 171.98
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good results in numerical simulation with high abil-
ity of solving optimization problems. Although these 
improvements can overcome some shortcomings of the 
algorithm, it lacks the adjustment of parameter stag-
nation step number wide value T and fixed probabil-
ity P∗ . In the future, more detailed improvements are 
needed to make IAFOA algorithm converge faster and 
more accurately. In addition, the example in this paper 
is relatively simple, and the application of the algorithm 
in the optimization of complex structures needs to be 
further studied.

Table 7  The classification of 200-bar truss structure

Group name Bar number Group name Bar number

A1 1, 2, 3, 4 A16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113

A2 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 A17 115, 116, 117, 118

A3 19, 20, 21, 22, 23, 24 A18 119, 122, 125, 128, 131

A4 18, 25, 56, 63, 94, 101, 132, 170, 177 A19 133, 134, 135, 136, 137, 138

A5 26, 29, 32, 35, 38 A20 140, 143, 146, 149, 152

A6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34 A21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 
148, 150, 151

A7 39, 40, 41, 42 A22 153, 154, 155, 156

A8 43, 46, 49, 52, 55 A23 157, 160, 163, 166, 169

A9 57, 58, 59, 60, 61, 62 A24 171, 172, 173, 174, 175, 176

A10 64, 67, 70, 73, 76 A25 178, 181, 184, 187, 190

A11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75 A26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 185, 
186, 188, 189

A12 77, 78, 79, 80 A27 191, 192, 193, 194

A13 81, 84, 87, 90, 93 A28 195, 197, 198, 200

A14 95, 96, 97, 98, 99, 100 A29 196, 199

A15 102, 105, 108, 111, 114

Fig. 12  The optimization iteration curve of Example 2

Fig. 13  The 200-bar spatial structure
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