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Retrieving similar substructures on 3D 
neuron reconstructions
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Abstract 

Since manual tracing is time consuming and the performance of automatic tracing is unstable, it is still a challenging 
task to generate accurate neuron reconstruction efficiently and effectively. One strategy is generating a reconstruc-
tion automatically and then amending its inaccurate parts manually. Aiming at finding inaccurate substructures 
efficiently, we propose a pipeline to retrieve similar substructures on one or more neuron reconstructions, which are 
very similar to a marked problematic substructure. The pipeline consists of four steps: getting a marked substructure, 
constructing a query substructure, generating candidate substructures and retrieving most similar substructures. The 
retrieval procedure was tested on 163 gold standard reconstructions provided by the BigNeuron project and a recon-
struction of a mouse’s large neuron. Experimental results showed that the implementation of the proposed methods 
is very efficient and all retrieved substructures are very similar to the marked one in numbers of nodes and branches, 
and degree of curvature.
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1  Introduction
The brain is made up of a complex network of billions 
of neurons, and is one of the most important and com-
plex organs in the body. To investigate the neural mecha-
nism of brain functions and explore the pathogenesis of 
brain disorders, some country-level large projects were 
launched, such as US BRAIN Project, European Human 
Brain Project (HBP), Japan Brain/MIND Project and 
China Brain Project [1]. Neuronal morphology plays a 
prominent role in the investigation of neuronal structure 
and function, which is determined by a number of fac-
tors, including physical and biological constraints and 
requirements of axonal, dendritic, and so on [2]. One 
of the fundamental tasks or preliminary work of above 
brain projects is seamlessly reconstructing and aggre-
gating neuronal morphologies on scales up to the whole 
rodent brain. Many computer-based computational 
methods and tools have been developed for tracing a 

single neuron from 3D digital microscopy image stacks 
[3–7]. Many existing tracing methods can generate over-
all good reconstructions, but perform poorly on some 
local substructures because of noises in digital images 
or the complexity of neuronal morphologies. One way to 
improve the accuracy of reconstructions is marking some 
typical inaccurate substructures, retrieving and check-
ing their similar substructures one by one. In addition, 
some morphological substructures of a neuron are highly 
correlated to its function or category, which should be 
receive high interest. In this work, we propose a pipeline 
to retrieve most similar substructures to a marked sub-
structure on one or more neuronal reconstructions.

Recent advances in microscopic imaging systems have 
made it possible to collect large-scale digital images 
of neurons. Reconstructing neuronal morphology can 
help biologists to visualize and study cellular structures 
[7]. Automatic tracing methods have been investigated 
for more than 20 years, and neuron reconstruction has 
become a hot topic in computational neuroscience [8]. 
Two projects greatly promoted its development: the 
DIADEM (short for digital reconstruction of axonal and 
dendritic morphology) neuron reconstruction challenge 
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held in 2010 [9, 10] and the BigNeuron project launched 
in 2015 [11]. Many automatic tracing methods based 
on different principles and models have been proposed, 
such as automatic contour extraction [12], APP1 [13], 
Open-Curve Snake [14], Ray casting [15], APP2 [16], 
MOST [17], tTuFF [18], Rivulet [19], SparseTracer [20], 
Ensemble neuron tracer [21], and so on. Automatic trac-
ing methods are usually divided into categories: global 
processing and local processing approaches, and Acciai 
et  al. labeled them as three categories with additional 
meta-algorithm approaches [7]. Global approaches 
process whole images, the local ones explore an image 
only around relevant structures, and meta-algorithm 
approaches enhance existing methods in some aspects to 
manage large-scale images [7].

Automatic tracing methods developed for different 
application scenarios, and based on different models and 
strategies typically have varying performance [11]. An 
automatic tracing method may perform well on most 
of a neuron, but fail to capture local substructures in 
some small regions. For example, in Fig. 1, three recon-
structions generated by Ensemble Neuron Tracer [21], 
FMST [22] and a consensus strategy have some inaccu-
rate substructures with too many branches or zigzags. 
To produce a reconstruction with high accuracy, we 
may generate a reconstruction using an automatic trac-
ing method, and then check and revise it manually. If 
an inaccurate substructure is found, all its similar sub-
structures need to be retrieved from the reconstruction 
and mended one by one. In addition, some existing stud-
ies showed that certain morphological substructures of 

a neuron are important for investigating its function or 
categorization. Dendritic morphology helps to define the 
size and interdependence of functional compartments 
in a neuron [23]. The uncoupling of soma from the den-
drites in Purkinje cells, or from the apical dendrites in 
thick-tufted pyramidal cells, significantly impacts various 
features of somatic firing and synaptic integration [24–
26]. Morphologies of neurons in a category may vary in 
overall shape and size, but they probably have some very 
similar (common) substructures which are called neuron 
morphology motifs [27]. Retrieving these motifs from 
all neurons in the category is helpful for characterizing 
their common features and investigating their common 
functions.

Query-based retrieval of relevant neurons from a data-
base has been studied recently, which is important for 
comparative morphological analysis, neuron classifica-
tion and relationship investigation between neuronal 
structure and function [28, 29]. Costa et  al. employed 
pairwise 3D structural alignments to search similar neu-
rons [30]. Polavaram et al. evaluated morphological simi-
larities and dissimilarities between groups of neurons by 
deploying unsupervised clustering technique and using 
expert-labeled meta-data (like species, brain region, 
cell type, and archive) [31]. Wan et  al. designed Blast-
Neuron as a software pipeline for automatic retrieval 
and comparison of neuron morphology in a 3D neuron 
reconstruction database. BlastNeuron retrieves simi-
lar neurons for a query neuron in two steps: calculating 
the similarity between the query and candidate neurons 
using global morphological features, and finding their 
local spatial alignments [27]. Conjeti et  al. presented 
a tool called Neuron-Miner, for fast reference-based 
retrieval within neuron image databases [29]. The kernel 
algorithm in Neuron-Miner is hashing forests, which is 
based on the hashing (searching and retrieving) tech-
nique and employs multiple unsupervised random trees. 
As far as we know, there is no study on retrieving mor-
phological substructures on a neuron reconstruction. 
Though substructure retrieval and neuron retrieval may 
share some ideas or strategies, they have two differences: 
different representation of the query structure and differ-
ent searching space, which lead to the need for explor-
ing substructure retrieval independently. For neuron 
retrieval, the query structure is a neuron tree used as 
the reference and its searching space is all neurons in 
the used dataset. For substructure retrieval, substructure 
may be provided via several points on its boundary and 
is not an explicit tree structure, and its search space is 
all nodes of one (retrieving on only one neuron) or more 
neurons (retrieving on a neuron dataset).

If we are interested in a substructure on a neuron 
reconstruction, a region around it in the space of the 

Fig. 1  Inaccurate substructures on three reconstructions of a neuron. 
Reconstructions generated by Ensemble Neuron Tracer, FMST and a 
consensus strategy have some inaccurate substructures marked by 
a–e, which have too many branches or zigzags
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neuron reconstruction is marked and stored via several 
points on its boundary. The marked region is always 
anisotropic (neither a sphere nor cube), which makes 
it difficult to construct a query substructure and con-
struct candidate substructures. The neuronal structure 
contained in the axis-aligned minimal bounding box 
(AABB) of the marked region is taken as a marked sub-
structure, and the marked structure is extended using its 
topological property. We propose a pipeline to retrieve 
most similar substructures for a query substructure, and 
implement it as a plugin of Vaa3D [32, 33]. Experimen-
tal results on 163 gold standard reconstructions provided 
by the BigNeuron project and the reconstruction of a 
mouse’s large neuron showed that the proposed pipeline 
can efficiently and effectively retrieve substructures most 
similar to the query.

2 � Method
For a single tree reconstruction, we design a method, 
called maximum subtree (MS) to construct a query sub-
structure and implement the retrieval procedure. The MS 
method takes the maximum subtree with same center 
and radius to the marked substructure as a query sub-
structure, and then constructs a candidate substructure 
at each node on the tree, which is the maximum subtree 
centered at the node with the query’s radius.

2.1 � Overview of retrieving similar substructures
The workflow of the proposed pipeline is demonstrated 
in Fig. 2. It consists of four steps: getting a marked sub-
structure (Fig.  2a), constructing a query substructure 
(Fig.  2b), generating candidate substructures (Fig.  2c), 
and retrieving most similar substructures (Fig. 2d). For a 
neuron reconstruction, we manually draw the boundary 

of an interesting region in the neuronal 3D space via a 
virtual reality device (VR), which is implemented as a 
plugin of the Vaa3D platform [34]. The boundary of the 
marked region is described by three-dimensional coordi-
nates of several points on it and saved as a SWC file [35]. 
The neuronal structure contained in the AABB of these 
points is taken as a marked substructure, and a query 
substructure and its candidate substructures at each can-
didate node are constructed by the MS method. Then the 
similarity between the query and candidate substruc-
tures is calculated using 19 quantitative morphological 
features, and substructures most similar to the query are 
taken as retrieved substructures. Retrieved substructures 
can be demonstrated on the neuron tree, and checked 
and revised one by one manually.

2.2 � Maximum subtree (MS) method
The marked substructure is extracted from the AABB 
of the marked region and may consist of more than one 
unconnected subtrees. MS only considers the subtree 
with most nodes (denoted by S ) and uses S to construct 
a query substructure. Two main steps of MS are calcu-
lating the center and radius of S , and generating a maxi-
mum subtree with the radius as the query or a candidate 
substructure.

The definitions of radius and center of a graph and a 
related theorem are introduced as the theoretical base for 
the calculating step. Let G = (V ,E) be a connected graph 
with node set V  and edge set E , then the eccentricity ε(v) 
of a node v is the maximum shortest distance between v 
and any other node in V . The radius rad(G) and diameter 
diam(G) of G are defined as the minimum and maximum 
node eccentricity of G , respectively. The center C(G) of 
G is the set of nodes with eccentricity equal to rad(G) . If 

Fig. 2  The workflow of the proposed pipeline. a A reconstruction of a neuron and an interesting region (in red) on it which was drawn via VR 
plugged in Vaa3D. b The marked substructure in the interesting region (top), and its query substructures constructed by MS (bottom). c Some 
candidate substructures boxed on the reconstruction. d Some retrieved substructures (in red) demonstrated on the reconstruction, which are most 
similar to the query
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G is a tree, C(G) contains at most two nodes and has the 
following property [36].

Property 1  [36]. Let L be the set of leaves of a tree 
G = (V ,E) . If |V | ≤ 2, L is the center of G , otherwise 
the center of G remains the same after removing of L : 
C(G) = C(G\L).

This property brings us to an algorithm for finding 
the center of a tree: removing leaves of a tree level by 
level until no more than 2 nodes remain. After running 
the algorithm by the breadth first search (BFS) strategy, 
remaining nodes are components of the center and we 
have

where maxlevel is the maximum number of levels exe-
cuted in the algorithm and |C| is the number of nodes 
in C(G) . So we can get the center C(S) and radius rad(S) 
of S by implement the above algorithm and formula (1), 
respectively.

In the generating step, we also use the BFS strategy to 
construct the maximum subtree centered at a node x with 
radius rad(S) , where x is a node in C(S) (for the query 
substructure) or any candidate node on the whole neuron 
tree (for a candidate substructure). We set two sets I and 
B , and initialize I as empty and B as {x} . For each node y 
in B , if its distance to x is smaller than rad(S) , it is trans-
ferred from B to I and all its child nodes and parent node 
are put into B ; if its distance to x is equal to rad(S) , it is 
transferred from B to I . This process is repeated until B 
is empty, and then I contains all nodes of the maximum 
subtree centered at x with radius rad(S) . MS takes the 
maximum subtree as the query substructure or a candi-
date substructure at a candidate node, respectively.

2.3 � Retrieving most similar substructures
After a query substructure and some candidate sub-
structures on one or multiple reconstructions are 
obtained, we compare their morphological features 
and pick out candidate substructures most similar to 
the query. In BlastNeuron [27], Wan et  al. designed 
a “global search” method to search morphologically 
similar neurons in a large database of neuron recon-
structions, which compares 3D neuron reconstruc-
tions using global morphological features and moment 
invariants. The “global search” method performed well 
on the entire database of NeuroMorpho.org, so we 
utilize it to retrieve most similar substructures in our 
pipeline. Substructures always have simple small tree 
structure and possibly more than one subtrees, which is 

(1)
diam(G) = 2 ∗maxlevel + |C| − 1andrad(G)

= (diam(G)+ 1)/2,

different from a whole neuron reconstruction. We use 
19 global morphological features (except average local 
amplitude angle and average remote amplitude angle in 
BlastNeuron, which may not make sense for substruc-
tures without bifurcation) to calculate the similarity 
between a query and a candidate substructure. These 
19 morphological features (Table  1) are selected from 
the function list of the L-measure software (https​://cng.
gmu.edu:8080/Lm/help/index​.htm) and are invariant to 
translation and rotation of the neuron [27, 37].

3 � Experimental results
In our experiment, we tested the proposed pipeline 
on a small neuron, a large neuron and a morphology 
database. An interesting region on a neuron can be 
marked by a VR device plugged in the Vaa3D platform. 
Since our experiments need many interesting regions 
on many neurons, we randomly selected them by giv-
ing some points on their boundaries. The morphology 
database is gold166 bench-testing neuron reconstruc-
tions (https​://githu​b.com/BigNe​uron,163 neurons 
expecting 3 neurons without gold standard reconstruc-
tion), which contains reconstructions of 8 chick neu-
rons, 2 frog neurons, 91 fruit fly neurons, 11 human 
neurons, 31 mouse neurons, 7 silkmoth neurons and 13 
zebrafish neurons. For each neuron, there are one gold 
standard reconstructions traced by human experts and 
40 + reconstructions generated by 20 + automatic trac-
ing algorithms. The small neuron was selected from the 
gold166 dataset and the large neuron is a mouse neuron 
with 80,000 + nodes.

3.1 � Retrieving inaccurate substructures in an automatic 
tracing reconstruction

We first selected some automatic tracing reconstructions 
from the gold166 dataset, and marked some inaccurate 
substructures on them by visual check, which have too 

Table 1  List of global morphological features

Number of nodes Soma surface area

Number of stems (branches on cell body) Number of bifurcations

Number of branches Number of tips

Neuronal height Neuronal width

Neuronal depth Total length

Total surface area Total volume

Maximum branch order Maximum Euclidean 
distance to root

Maximum path distance to root Average contraction

Average diameter (thickness) Average fragmentation

Average parent–daughter ratio

https://cng.gmu.edu:8080/Lm/help/index.htm
https://cng.gmu.edu:8080/Lm/help/index.htm
https://github.com/BigNeuron,163
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many branches, zigzags, or two long parallel branches. 
Then a query was constructed based on each selected 
inaccurate substructure, and its most similar substruc-
tures in the reconstruction were retrieved. The query and 
five retrieved substructures on each of four reconstruc-
tions are illustrated in Fig.  3. Subfigures (a)–(d) are the 
query and its five retrieved substructures on reconstruc-
tions (e)–(h), respectively. Reconstructions (e)–(h) are: a 
fruit fly neuron traced by APP1, a human neuron traced 
by NeuronChaser, a mouse neuron traced by Neuron-
Stalker, and a zebrafish neuron traced by MOST. It can 
be seen that those retrieved substructures are quite simi-
lar to the corresponding query, and they are also inaccu-
rate substructures and need to be checked and amended 
manually.

3.2 � Retrieving similar substructures in a single neuron
To avoid falling into the discussion of what is inaccurate 
or the important substructure in a neuron, we randomly 
selected a number of substructures to demonstrate the 

validity of the proposed pipeline in retrieving similar 
substructures. The pipeline was implemented on all 163 
neurons in gold166 dataset and one large mouse neuron.

Five regions in each of these 163 gold standard recon-
structions were randomly marked to construct queries 
and their most similar substructures in the neuron were 
retrieved by the proposed pipeline. Five queries on a 
fruit fly neuron are given in the left column of Fig.  4a, 
and their retrieved five most similar substructures were 
given in five columns on the right. Substructures in the 
first two rows of Fig. 4a are demonstrated on the neuron 
in Fig. 4b. It can be seen that retrieved substructures are 
similar to the query in numbers of nodes and branches, 
and degree of curvature. So MS is capable of extracting 
the structure information of the query and using it to 
construct candidate substructures on a small neuron tree.

Each query substructure together with its 5 retrieval 
results were visually inspected and compared on Vaa3D 
platform. For most of 163*5 = 815 query substructures, 
our pipeline successfully retrieved 3–4 morphologically 

Fig. 3  Retrieved inaccurate substructures on a reconstruction. a–d are the query and its five retrieved substructures on reconstructions e–h, 
respectively
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similar substructures (Fig.  4). Visual comparison done 
by three independent people show that 84% (685/815) 
of top 1 retrieved substructures are really similar to the 
corresponding query substructure. Furthermore, the 
accuracies corresponding to top 1 to 5 retrieved sub-
structures are plotted in Fig. 5. The accuracy decreases 
as more candidates were included, yet it is always above 
60% if five retrieved results are considered. This indi-
cates that our method is capable of finding similar sub-
structures on a neuron effectively.

The reconstruction demonstrated in Fig.  6a is a 
reconstruction of a large mouse neuron provided by 
the Southeast University-Allen Institute Joint Center, 
which was manually drawn in Vaa3D by a human 
expert. The reconstruction has more than 80,000 
nodes and consists of more than 1000 unconnected 

segments, which means there are more than 1000 root 
nodes. To implement MS, a preprocessing was imple-
mented on the reconstruction to connect and sort it 
to one tree. Six query substructures (in red) and their 
top five similar substructures (in blue) retrieved by MS 
are demonstrated in Fig. 6b. We can see that retrieved 
substructures are very similar to their correspond-
ing queries. The pipeline can effectively retrieve simi-
lar structures on the preprocessed reconstruction. The 
implementation of MS was quite efficient, and its run-
ning time on our laptop was 1 min for one query on this 
large neuron.

3.3 � Retrieving substructures in a morphology database
To investigate a key substructure in a set of neurons, we 
need to know in which neuron or where it locates. That 
is to say, with a given query, its most similar substruc-
tures are needed to be retrieved from all neurons in the 
set. The proposed procedure was used to retrieve a que-
ry’s most similar substructures in all 163 gold standard 
reconstructions. Three queries (in red) from two neurons 
(neuron numbered 12 and 26) and their top 10 retrieved 
results by MS (in blue) are given in Fig. 7. It can be seen 
that most similar substructures were successfully found 
from different neurons. Multiple retrieved substructures 
may come from one neuron, and many neurons might 
have no retrieved substructures. The number of retrieved 
substructures a neuron has depends on the degree of the 
similarity between its local morphology structure and the 
query.

Fig. 4  Retrieved substructures on a fruit fly neuron. a Each row gives a query substructure and its five most similar substructures on the neuron 
retrieved by MS. b Substructures in the first two rows of a are demonstrated on the neuron (substructures of the first row are in red and the second 
are in green)

Fig. 5  Accuracy of the first one to five retrieved substructures 
compared to the query
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Fig. 6  Query substructures (left column) on a large neuron (80,000 + nodes) and their top 5 similar substructures retrieved by MS

Fig. 7  Retrieved substructures on gold standard reconstructions in gold166 dataset. Three queries from two neurons (numbered 12 and 26) are in 
red, and their top 10 similar substructures retrieved by MS are in blue. The number above each substructure is the number of the neuron in which 
the retrieved substructure locates
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4 � Conclusions and discussion
We designed a pipeline to rapidly retrieve similar sub-
structures on neuron reconstructions, actualized it as 
a plugin of the Vaa3D platform, and tested them on 
163 small neurons and a large neuron. Experimental 
results show that the proposed method can success-
fully and quickly retrieve most similar substructures 
on one or more neuron reconstructions. Retrieved 
substructures have similar numbers of nodes and 
branches, and similar degree of curvature to the 
query. And the top 1 retrieved substructures is usual 
the query itself.

Our proposed pipeline supplements the study of neu-
ronal morphology retrieval. Neuroscientists may use 
Neuron-miner [32] and Blastneuron [27] to retrieve 
similar neurons in a neuronal morphology database for 
a query neuron, and utilize our method to search for 
similar substructures on a neuron or multiple neurons. 
The neuronal morphology and substructure retrieval 
make the use of neuron data more conveniently and can 
promote the study of morphology based neuronal clas-
sification and function.

Our MS method utilizes attributes of tree structure 
to eliminate the irregularity of a marked region, and 
is easy and fast to implement. It uses the concept and 
property of a tree’s center and radius in graph theory 
to construct substructures, and employs the BFS algo-
rithm to implement the construction. It spent less than 
ten seconds to retrieve a substructure on a neuron 
reconstruction with 1000 nodes. For a large reconstruc-
tion with 80,000 + nodes, it took one minute on our 
laptop. However, MS is incapable of handling uncon-
nected neuron reconstruction and searching substruc-
tures with multiple subtrees or segments.

While constructing candidate substructures on a 
neuron, we need to traverse all nodes on the neuron. If 
we have enough computational time and want to obtain 
all similar substructures, all nodes can be selected as 
candidate nodes one by one. Otherwise, we go through 
the SWC file of the neuron by a given step. Retrieved 
substructures change a little with different length of 
steps. If the step is bigger, less candidate substructures 
are constructed and some most similar candidate sub-
structures might be missed. If the step is smaller, more 
candidate substructures are constructed and the calcu-
lating time is longer. For large neurons, an appropri-
ate step is needed to balance the running time and the 
retrieval performance.

The 19 morphological features used to calculate the 
similarity between a query and candidate substruc-
tures reflect global morphological character. Since sub-
trees in a substructure are relatively much smaller than 
a whole neuron tree and a substructure may contain 

multiple subtrees, global features might not be optimal 
for characterizing the local morphology. The proposed 
pipeline will be further improved by extracting some 
new features and designing a more sophisticated simi-
larity for substructures on a neuron.
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