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Abstract 

This paper proposes a novel feature selection method utilizing Rényi min-entropy-based algorithm for achieving a 
highly efficient brain–computer interface (BCI). Usually, wavelet packet transformation (WPT) is extensively used for 
feature extraction from electro-encephalogram (EEG) signals. For the case of multiple-class problem, classification 
accuracy solely depends on the effective feature selection from the WPT features. In conventional approaches, Shan-
non entropy and mutual information methods are often used to select the features. In this work, we have shown that 
our proposed Rényi min-entropy-based approach outperforms the conventional methods for multiple EEG signal 
classification. The dataset of BCI competition-IV (contains 4-class motor imagery EEG signal) is used for this experi-
ment. The data are preprocessed and separated as the classes and used for the feature extraction using WPT. Then, 
for feature selection Shannon entropy, mutual information, and Rényi min-entropy methods are applied. With the 
selected features, four-class motor imagery EEG signals are classified using several machine learning algorithms. The 
results suggest that the proposed method is better than the conventional approaches for multiple-class BCI.
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1  Introduction
Brain–computer interface (BCI) is a modern notion 
that enables the way of generating communication 
between computer and brain functionalities. It is not 
only expected, but also satisfactorily achieved technol-
ogy that could be a nice solution to assist the physically 
challenged people to control devices utilizing their brain 
functionalities. The brain functionality can be assessed in 
two different ways: electrical activities (suggested modal-
ities are electro-corticogram (ECoG), electro-encephalo-
gram (EEG), and magneto-encephalogram (MEG)) and 
hemodynamics (functional near-infrared spectroscopy 
(fNIRS), functional magnetic resonance imaging (fMRI), 

etc.) [1, 2]. Based on the electrical activities, EEG is the 
most familiar, non-invasive, cheapest, and fastest modal-
ity for functional brain signal recording [3]. Among many 
brain stimuli, motor imagery (MI) movement is the high-
est choice for the researchers [2]. MI has a special benefit 
because it needs no additional setup like visual stimuli 
[3].

For providing the MI movement-based stimuli a can-
didate imagines the pattern of the real executive move-
ments. During such MI movement, the EEG signals are 
recorded from the scalp of the participant that can be 
used to control the switches through a computer-based 
signal processing and this is broadly called BCI. There 
are different types of MI EEG-based BCI such as lifting 
hands and feet [4], simple–compound upper limb MI 
[5], uninterrupted hand movements [6] and finger move-
ments [7], etc. Different stimuli show different classifi-
cation performances. Especially, the upper limb shows 
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more activeness than the lower limb MI movements. In 
addition, most of the EEG-MI research works [8–13] are 
related to two-class or three-class problem. Multiclass, 
i.e., more than 3-class classification for the EEG-MI sig-
nal is very challenging because of their non-discrimina-
tive features. To meet the challenge of 4-class EEG-MI, 
a very handful research works [14–16] were proposed 
where two hands MI, feet MI, and tongue movements 
were considered but their classification accuracy is not 
promising. This implies that they could not extract the 
required discriminative features in EEG signal through 
multiple stimuli. A very intelligent feature extraction and 
selection method could be an ultimate solution to meet 
the challenge of multiclass EEG signals.

There are a number of ways to extract features 
from EEG signals, such as autoregressive (AR) meth-
ods [17, 18], phase-space reconstruction approach 
[10], CSP-based methods [14, 16, 19], empirical mode 
decomposition [20–22], multivariate empirical mode 
decomposition-based methodologies [23, 24], channel 
correlation and feature optimization-based model [25], 
PCA-t-statistics-based feature extraction and selec-
tion method [26], wavelet transforms (WT) method 
[17, 27–30], etc. For a wide range of pattern recognition, 
wavelet packet transformation (WPT) provides excellent 
time–frequency features and therefore this approach is 
widely accepted feature extraction method for the EEG-
MI movement classification. The WPT-based feature 
extraction has two important limitations: (i) structuring 
the features and (ii) selection of the bases. The features 
are structured by WPT coefficients those are considered 
to yield the significant pattern of the different classes 
EEG signal. Besides the feature structuring, proper base 
selection is the other step by which the structured fea-
tures can show the highest discriminative characteristics 
among the classes. To overcome the limitations of WPT, 
Shannon entropy-based joint best basis method was pro-
posed in [31], which is also questionable. This is because 
the proposed joint best basis method is effective in com-
pression instead of classification [32]. To overcome the 
existing limitations in [31], a symmetric relative entropy-
based local discriminant basis algorithm was proposed 
in [33]. It is reported in [34] that both methods rely on 
the signal’s energy level which exhibits hampering effect 
to achieve high classification for multiple classes. Even-
tually, it can be summarized that measuring the distance 
alone may not be wise consideration to judge the ability 
of the features for discriminating different classes [35]. 
Recent feature selection-based research works [23–25] 
reported their proposal on the BCI competition-IV data-
set [36]. Correlation-based channel selection method 
with regularized common spatial pattern proposed in 
[25] did not cover the time–frequency characteristics of 

the EEG signal and on the other hand, the proposal given 
in [23, 24] utilized the time–frequency domain features 
but the feature selection method based on the Riemann-
ian geometry could be further improved to achieve more 
accuracy in the classification of the MI events from the 
BCI competition-IV dataset. In this consequence, a more 
powerful feature selection algorithm is required to iden-
tify the meaningful content among the different features.

As it is explained in [37, 38] that the WPT computes 
more effectively than the WT and EMD in case of large 
size signal, we can choose WPT for feature extraction. In 
conventional approaches, Shannon entropy and mutual 
information method are often used to select the features 
found from the WPT coefficients. This work proposes to 
utilize the concept of Rényi min-entropy-based approach 
with a slight modification for the feature selection from 
the WPT coefficients. This method chooses features from 
a large feature set based on a special form of entropy 
compared to the Shannon entropy and mutual informa-
tion method to attain the higher classification accuracy. 
Therefore, the main contributions of this work are:

•	 To extract WPT features from the EEG signals of 
four-class MI dataset.

•	 Selecting the features utilizing the proposed modified 
Rényi min-entropy-based approach.

•	 Comparing the classification performance of the pro-
posed method with the conventional feature selec-
tion methods.

•	 To evaluate the classification performances of the 
proposed method using different classifiers.

•	 To compare the classification accuracy of the pro-
posed method with the recent published proposals.

The dataset of BCI competition-IV (contains 4-class 
MI EEG signal) is used for this experiment. The data are 
preprocessed and separated in classes and used for the 
feature extraction using WPT. Then, for feature selection 
Shannon entropy, mutual information, and Rényi min-
entropy methods are applied. With the selected features 
of 4-class motor imagery EEG signals are classified using 
several machine learning algorithms such as support vec-
tor machine (SVM), random forest, k-nearest neighbor 
(k-NN), multi-layer perceptron artificial neural network 
(MLP-ANN), logistic regression (LR), etc. Obtained 
results confirmed that the accuracy of the proposed 
method is higher than that of the Shannon entropy and 
mutual information. In addition, the proposed method 
also outperforms the recent state-of-the-art methods 
related to the applied dataset.

The rest of the paper is organized as follows: the mate-
rials and methods of this work are described with neces-
sary steps in Sect. 2. In Sect. 3, the results are presented 
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with required discussions; and research outcomes are 
concluded in Sect. 4.

2 � Materials and methods
2.1 � Data collections
A multiclass valid and widely accepted datasets are 
taken in this study which is well known as BCI compe-
tition-IV. This dataset includes 9 healthy participants 
with no history of diseases and medications as well 
as they were verbally informed about the acquisition 
procedure and the possible outcomes of this research. 
Each participant performs different tasks based on 
a visual cue given on a screen. This cue-assisted data 
acquisition paradigm consisted of four motor imagery 
tasks: the imagination of movement of the left hand, 
right hand, both feet, and tongue. For each participant, 
two sessions (one for training and another for test-
ing) on different days were recorded. Each session has 
6 runs while one run contains 12 trials in each class. 
Therefore, one run produces (12 × 4=) 48 trials and 
each session contains total (48 × 6=) 288 trials. As one 
session is considered as training and another session 
is considered as testing, so we have 72 (= 288/4) tri-
als of each class for training and the same number of 
trials for testing. Each data set is strongly influenced 
by EOG. Data were recorded using 25 channels (22 
EEG channels and 3 EOG channels) with a sampling 
rate of 250 Hz. The data acquisition schedule is illus-
trated in Fig.  1. The original EEG data are downsam-
pled to 100 Hz. The detailed explanation of the dataset 
is available in http://www.bbci.de/compe​titio​n/iv/.

2.2 � Data preprocessing
The sampling rate of the EEG signals of the used data-
set is 250  Hz and the signals were previously filtered 
using a bandpass filter of frequency band within 0.5 
and 100  Hz. The sensitivity of the amplifier was con-
sidered 100  mV. In addition, a 50-Hz notch filter was 
utilized to remove the line noise. Among 25 channels, 
10 significant channels (channel no. 2, 3, 4, 5, 6, 8, 9, 
10, 11, and 12) were considered as they represent the 
central and frontal region of the brain (the detailed 
positions of the channels are given in Fig. 2). Also, the 
effect of eye blink and EOG were removed utilizing the 
enhanced automatic wavelet independent component 

analysis (EAWICA) toolbox [39]. Finally, the EEG sig-
nals were separated according to the schedule of the 
tasks.

2.3 � Feature extraction using wavelet packet 
transformation

WPT differs from conventional wavelet transformation as 
it decomposes both approximate coefficients and detailed 
coefficients. We can compare WPT to a subspace tree. 
The original signal space represents the root node of the 
tree and it can be denoted as Π0,0 . The general form of 
this equation is Πj,k , where notation j and k indicate the 
scale and the sub-band space. This original signal equa-
tion becomes Πj,k → Πj+1,2k when it is decomposed into 
approximation space. In case of detailed space, the equa-
tion is Πj,k → Πj+1,2k+1 . The space decomposition idea is 
derived from the concept of dividing the orthogonal basis 
function of the original signal. Here, 

{

ϕj(t − 2jk)
}

k∈Z
 

denoting orthogonal basis function is transformed into 
two new orthogonal bases: (i) 

{

ϕj+1(t − 2j+1k)
}

k∈Z
 of 

approximate space Πj+1,2k and (ii) 
{

ψj+1(t − 2j+1k)
}

k∈Z
 

of detailed space Πj+1,2k+1 . Here Πj,k(t) and Ψj,k represent 
the scaling and wavelet functions, respectively. These func-
tions are equated as [32]:

EOG
Eyes Open

EOG
Eyes Closed

EOG
Eye Movement Run 1 Run NRun 2

Fig. 1  Timing scheme for each session

Fig. 2  The channel number and their locations on the scalp of the 
used EEG modality

http://www.bbci.de/competition/iv/
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The scaling or compression degree of the original sig-
nal is calculated by the scaling parameter 2j . Moreover, 
2jk of these equations is named as a location param-
eter or translation parameter, which indicates the time 
location of the wavelet. The mentioned process can be 
repeated J  times, where J  must be less than log2N  . N  
of log2N  denotes the total number of samples in the 
original signal Πj,k . The final outcome of WPT is J × N  
coefficients. Thus, the tree has N

/

(2j) number of coef-
ficient blocks at any level of calculation j [j = 1, 2, . . . , J ] . 
The iterative process adds more tree nodes to the WPT 
tree, where the nodes represent the subspace of different 
frequency localization characteristics. The correspond-
ing decomposition procedure can be presented as Fig. 3 
[4, 32, 40].

2.4 � Evolution of Rényi entropies
According to the usual definition, the Rényi entropies 
[41] are a type of functions that represent the uncer-
tainty related to a random variable. The Rényi entropy 
is regarded as a non-negative real number (suppose, 
the order of the number is δ ; δ  = 1)), with δ  = 1 , and is 
defined mathematically as:

(1)ϕj,k(t) =
1

√

∣

∣2j
∣

∣

ϕ

(

t − 2jk

2j

)

,

(2)ψj,k(t) =
1

√

∣

∣2j
∣

∣

ψ

(

t − 2jk

2j

)

.

It is clear to understand that in case of uniform value of 
p(·) the Rényi entropies are equal to log |X | . Otherwise, 
the process will be as decreasing form in δ . Particularly, 
we can define the Shannon and min-entropy as:

According to the Shannon approach, the conditional 
entropy of X with respect to the given Y  provides the mean 
residual entropy of X if the Y  value id given and mathemat-
ically we can represent it as:

In (4), H1(X ,Y ) = entropy of (X ∩ Y ). On the other 
hand, mutual information of Shannon approach regarding 
the previously proposed X and Y  represents the correlation 
of information between X and Y  , and we can define it as:

We can easily show that I1(X;Y ) ≥ 0 along with 
I1(X;Y ) = 0 if we found that both X and Y  are independ-
ent of each other, and hence I1(X;Y ) = I1(Y ;X).

The fundamental proposal of Rényi was not supposed 
to define the conditional entropy as well as mutual infor-
mation for the basic δ . A nice proposal with conditional 

(3)Hδ(X)
def
=

1

1− δ
log

(

∑

i

p(xi)δ

)

.

δ → 1H1(X) = −
∑

x

p(x) log p(x)
(

Shannon entropy
)

,

δ → ∞H∞(X) = −p(x) log p(x) min-entropy.

(4)

H1(X |Y )
def
= −

∑

xy

p(x, y) log p(x|y) =H1(X ,Y )−H1(Y ).

(5)
I1(X;Y )

def
= H1(X)−H1(X |Y ) = H1(X)+H1(Y )−H1(X ,Y ).

Fig. 3  Wavelet packet decomposition mechanism with their 3-level coefficients
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min-entropy associating the Rényi’s algorithm is given in 
[42] and the approach can be presented mathematically as:

It can be shown that this proposal is related to the 
Bayes risk. According to the method of Bayes risk, it is 
the error of guessing X with the given value of Y  which 
can be defined mathematically as:

Also, we define the mutual information as,

We can easily show that I∞(X;Y ) ≥ 0 along with 
I∞(X;Y ) = 0 if we found that both X and Y  are inde-
pendent of each other (the reverse may not be true, that 
means I∞ is not symmetric). Therefore, the conditional 
mutual information in the case of this approach can be 
defined as, I∞(X;Y |Z)

def
= H∞(X |Z)−H∞(X |Y ,Z) , 

which is also analogous to conditional mutual informa-
tion of Shannon approach.

2.5 � Proposed feature selection algorithm
Suppose that the feature and class set are F  and C , 
respectively. Since the proposed algorithm is designed 
considering (i) forward feature selection and (ii) depend-
ency maximization, it builds a continuously incremen-
tal sequence {Qt}t>0 of subsets of F  . According to the 
necessity, at every phase, the subset Qt+1 is calculated by 
adding the next feature. It should be noted that the con-
sideration of the “order of importance” is based upon 
the conditional min-entropy. An interactive test based 
on the stopping criteria is supposed to be performed for 
sequence construction on the achieved accuracy through 
the current subset for the multiclass problem. While we 
achieve the required accuracy level, the algorithm stops 
itself and provides the resulting subset Qt . In this case, 
the accuracy level 1− ε will possibly be found if the Bayes 
risk function gives as β(C|F) < ε.

We define the series {Qt}t>0 and {f t}t>0 inductively as 
given below:

(6)H∞(X |Y )
def
= − log

∑

y

max
x

p
(

(y|x)p(x)
)

.

(7)β(X |Y )
def
= 1−

∑

y

p(y)max
x

p(x|y).

(8)I∞(X;Y )
def
= H∞(X)−H∞(X |Y ).

(9)Q0 def
= ϕ,

(10)f t+1 def
= arg min

f ∈F\Qt
H∞(C|f ,Qt),

The proposed algorithms in [43] and [44] are also 
similar although they used Shannon entropy. Accord-
ing to the mentioned algorithms in [43, 44], f t+1 is 
defined based on the maximization of the mutual 
information rather than the conditional entropy mini-
mization. According to the proposal of [45] this is irrel-
evant because I∞(C; f |Qt) = H∞(C|Qt)−H∞(C|f ,Qt) . 
Therefore, maximizing I∞(C; f |Qt) with respect to f  is 
similar to minimizing H∞(C|f ,Qt) with respect to f  . 
This condition holds similar action in Shannon entropy. 
It can be proved that this proposal is locally optimal and 
the proof is given in Appendix.

3 � Results and discussion
As the approach of the proposal, 4-class motor imagery 
EEG signals are collected from the BCI competition-
IV. Although these signals were preprocessed, the 
signal was filtered with a 50-Hz notch filter and after 
that, the signals were again filtered to remove EOG 
effect by EWICA toolbox as described in preproc-
essing subsection of this article. The stepwise filter-
ing effect from the original EEG signals is presented 
in Fig.  4. After that, the EEG signals are considered 
for dual-tree WPT. A randomly selected EEG signal 
is illustrated up to a 3-level WPT in Fig. 5. This figure 
illustrates the different frequency content-based sig-
nals of the used EEG signal. Since the EEG signals are 
separated according to the schedule of the previously 
mentioned 4-class MI tasks, the separated EEG signals 
were considered for feature extraction by WPT. With 
the help of WPT all EEG signals are decomposed up to 
5 levels and extracted four different features (Energy, 
Variance, Standard Deviation, and Waveform Length) 
as proposed in [46]. Therefore, for level 5 decomposi-
tion, we can find 25 = 32-type of features for each class. 
Eventually, every EEG signal will provide 32 × 4 = 128 
features.

According to the claim of this work, all these features 
are not necessary for the classifier. Therefore, we need 
to choose the correct features from them. In conven-
tional procedures like Shannon theory and mutual infor-
mation theory, we can reduce the feature dimensions. 
Having some limitations of the conventional procedure 
(explained in the previous subsections), the proposed 
work utilizes the method of Rényi’s min-entropy-based 
algorithm for feature selection. In the feature space, it is 
found that the proposed method extracts significant dis-
tinguished patterns from each other among the features. 

(11)Qt+1 def
= St ∪ {f t+1}.
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Figure 6 shows the features of the four classes in the fea-
ture space. From the figure, we get that the differentiabil-
ity among the features in Rényi’s min-entropy is larger 
than the conventional methods (Shannon entropy and 
mutual information).

This representation of the features of different classes is 
the justification of the higher efficiency of the proposed 
method compared to the other conventional methods. 
Therefore, the training efficiency of the classifier would 
be better in the case of the proposed method and it can 
be predicted that the classification accuracy could also be 
higher than the other feature selection methods.

Since the training and testing data were previously sep-
arated in the used dataset, the features from training data 
were used to train the SVM classifier and the selected 
features of the testing EEG signals were utilized to test 
the classification accuracies. The average classification 
accuracies of SVM corresponding to the above-men-
tioned feature selection algorithms are given in Table 1. 
The results claim that the proposed Rényi’s min-entropy-
based feature selection algorithm shows significantly 
higher classification accuracy than that of the conven-
tional feature selection algorithms.

For thorough experimentation, we have taken the 
SVM classifier due to its wide acceptance. Further-
more, there are some commonly used classifiers such 
as random forest, k-NN, MLP-ANN, and LR and these 
classifiers could be used to justify their applicability 
and performances using our proposed feature selec-
tion algorithm. So, we did the experimentations. Every 
classifier is trained with the training dataset and tested 
5 times with the testing dataset and taken the average 
classification accuracy. This result is given in Table  2. 
From this result, we get that random forest and MLP-
ANN provides slightly higher classification accuracy 
than the SVM but k-NN and LR provides inferior 
results than the SVM. The results of the proposed work 
are also compared with the previous recent work that 
dealt with the four-class problem of BCI IV dataset and 
the result is given in Table 3. From the results, we have 
found that the proposed method shows higher accu-
racy than the previous work. There are some works [23, 
24] those also dealt with BCI IV dataset, but their pres-
entation of the classification accuracy is in the binary 
approach and six-tuple presentation (Left vs. Right, 
Left vs. Foot (LvF), Left vs. Tongue (LvT), Right vs. Foot 

Fig. 4  Original EEG signal and its stepwise filtering effect (according to the proposal) on the signal



Page 7 of 11Rahman et al. Brain Inf.             (2020) 7:7 	

(RvF), Right vs. Tongue (RvT), Foot vs. Tongue (FvT)) 
of the four-class classification problem. Therefore, is 
not possible to compare this result with the proposed 
work directly. 

4 � Conclusions
The dual-tree wavelet decomposition of the EEG sig-
nals is a nice way to extract features for the EEG-based 
motor imagery-related task classification. However, 
more levels of decomposition create a number of fea-
tures for multiple classes that become a burden for a 
classifier and hence the resulting classification accu-
racy reduces. Therefore, an intelligent feature selection 
algorithm is necessary to reduce the feature number, 

and consequently, it would be necessary to increase 
the discriminating power of the features. This research 
work has proposed and utilized the Rényi’s min-
entropy algorithm along with a slight modification to 
select the WPT features for getting the higher classi-
fication accuracies. A four-class MI EEG signal of BCI 
competition-IV dataset is used to justify the proposed 
work, and from the results we found that the proposed 
method outperforms 18% and 6% increment in classifi-
cation accuracy (in average) than the Shannon entropy 
and mutual information methods, respectively, in case 
of SVM classifier. On the other hand, applying the ran-
dom forest and MLP-ANN the classification accuracy 
could be increased up to 8% with respect to mutual 

Fig. 5  An example of the wavelet packet decomposition (up to level 3) on a randomly selected EEG signal of the utilized dataset
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a

c

b

d
Fig. 6  Representation of the differentiability of the different methods among the features in feature space. a All WPT features, b selected features 
by Shannon theory, c selected features by mutual information theory, and d selected features by Rényi’s min-entropy algorithm

Table 1  The classification accuracy of the proposed algorithm compared to the others

Subject ID Classification accuracy 
(%) of only WPT features

Classification accuracy (%) 
of selected WPT features 
by Shannon theory

Classification accuracy (%) 
of selected WPT features 
by mutual information theory

Classification accuracy (%) 
of selected WPT features 
by Rényi’s min-entropy 
algorithm

1 57 60 68 82

2 52 65 76 86

3 70 50 71 78

4 70 65 72 73

5 43 62 74 79

6 64 67 71 81

7 48 53 76 75

8 62 62 72 79

9 69 64 72 75

Average ± std 59.44 ± 10.02 60.88 ± 5.75 72.44 ± 2.55 78.66 ± 4.03
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information methods. Since the performance is too 
convincing, this intelligent feature selection algorithm 
will hopefully open a new pathway to implement mul-
tiple-class BCI in practice.
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Appendix: Proof of the proposed method 
as an optimal feature selection algorithm
The previously stated set Qt+1 reduces to the Bayes risk 
related to the classification among the probabilities those 
are of the form Qt ∪ {f } , known mathematically as:

Proof:  Suppose that, θ̄ , θ , θ ′ represent common value 
tuples and values of Qt , f  , and f t+1 , respectively,

Using the Bayes theorem (12), we get

Then, from the definition of Bayes risk, we get the follow-
ing relation (15):
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