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Abstract
The electroencephalogram (EEG) is a tool for diagnosing epilepsy; by analyzing it, neurologists can identify alterations 
in brain activity associated with epilepsy. However, this task is not always easy to perform because of the duration of 
the EEG or the subjectivity of the specialist in detecting alterations.

Aim:  To propose the use of an epileptic spike detector based on a matched filter and a neural network for supporting 
the diagnosis of epilepsy through a tool capable of automatically detecting spikes in pediatric EEGs.

Results:  Automatic detection of spikes from an EEG waveform involved the creation of an epileptic spike template. 
The template was used in order to detect spikes by using a matched filter, and each spike detected was confirmed by 
a Neural Network to improve sensitivity and specificity. Thus, the detector developed achieved a sensitivity of 99.96% 
which is better than the range of what has been reported in the literature (82.68% and 94.4%), and a specificity of 
99.26%, improving the specificity found in the best-reviewed studies.

Conclusions:  Considering the results obtained in the evaluation, the solution becomes a promising alternative to 
support the automatic identification of epileptic spikes by neurologists.
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1  Introduction
Reading EEGs by specialists is a task that consumes con-
siderable effort and time due to the duration of EEG 
signal recordings. In general, EEG records have dura-
tions ranging from 20 to 30  min and in some cases the 
records are even longer (48 or 72 h), representing one of 
the main causes of the high cost of diagnosing neurologi-
cal diseases such as epilepsy [1]. Similarly, the difficulty 
of diagnosing this kind of disease increases in develop-
ing countries, due to the lack of medical personnel. In 
countries such as Colombia, for example, there is a rate 
of one neurologist per 200,000 inhabitants [2]; therefore, 
it is difficult to guarantee diagnosis and timely attention 
to patients. This situation is more worrisome in the case 
of patients residing in rural areas because specialists are 
located in the clinical centers of the main cities.

Considering the above, automatic detection of differ-
ent abnormal events presented in EEG signals arises as 
an alternative to reduce the time involved in reading an 
EEG signal and to increase the opportunity of EEG read-
ing services, because once the abnormalities on the signal 
are identified, the specialist would only have to confirm 
or reject them.

The automatic analysis of EEGs is a research field 
where different approaches have been developed in order 
to offer tools that facilitate the reading of EEG records, 
especially for those of long duration. In [3], the authors 
proposed to classify epileptiform events using time–fre-
quency analysis and a random forest-based classifier, 
achieving an accuracy of 83%. Likewise, in [4] the authors 
used features extracted from wavelet coefficients to clas-
sify EEG segments1 with a 93% sensitivity and specificity. 
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1  Segment: for this study, we considered a segment as data extracted from a 
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In [5], the research team developed a tool based on neural 
networks for the detection of epileptic seizures, obtain-
ing an accuracy, specificity, and sensitivity of 88.67%, 90% 
and 95%, respectively.

Considering the above, we can note that the main chal-
lenge in future solutions is to improve the percentages of 
effectiveness and reliability of the detection or classifica-
tion of epileptic seizures. In previous works, the authors 
used a general model to classify or detect different pat-
terns of epileptic discharges. However, this could reduce 
the effectiveness of detection or classification because the 
epileptic abnormalities are difficult to represent under 
a unique model. Consequently, in order to increase the 
reliability of the EEG reading, some researches have 
implemented solutions for identifying specific patterns 
instead of classifying all kinds of abnormalities.

The aim of this paper is to present an epileptic spike 
detector based on matched filter and neural networks 
for supporting diagnosis of epilepsy through a tool capa-
ble of automatically detecting spikes in pediatric EEGs. 
Automatic detection of spikes from an EEG waveform 
involves the identification of an epileptic spike template. 
The template is used to detect similar spikes by using a 
matched filter. The detection process is divided into two 
phases: the first one uses a matched filter as a classifier 
to determine if a small segment of EEG is a spike, and 
second one uses a classifier based on Neural Networks 
to confirm if the spike detected in the previous phase is 
actually an abnormality or a false positive. This strategy 
seeks to reduce the number of false positives and improve 
the sensitivity and specificity of the final detector.

The rest of this paper is organized as follows: section 2 
describes the dataset used for supporting the develop-
ment and evaluation of the proposal, the theoretical 
description of the Matched Filter, Neural Networks and 
the development of the detector for the automatic identi-
fication of epileptic spikes. Section 3 presents the experi-
mental evaluation of the sensitivity and specificity of the 
epileptic spike detector. Section  4 describes the discus-
sion of the results and main contributions. Finally, sec-
tion 5 describes the conclusions of this work.

2 � Materials and methods
This section presents a description of the main materials, 
methods and concepts considered for the implementa-
tion of the automatic detection of epileptic spikes in an 
EEG signal.

2.1 � Database
In this research, we collected 200 electroencephalograms 
from children with suspected epilepsy. This collection 
was made as part of the Neuromotic project, which had 
as its general objective to develop a TeleEEG system to 

support the diagnosis of epilepsy in rural areas in Colom-
bia [6]. As part of this project, we developed a compo-
nent to support the reading of EEGs by a neurology 
professional.

In the construction of the dataset and in accordance 
with bioethics standards, we obtained an informed con-
sent for each EEG record. Such consent was approved 
by the Ethics Committee of University of Cauca, Colom-
bia. Each EEG record was acquired using the BWII EEG 
device and the BW Analysis software, both developed by 
Neurovirtual. The device has FDA certification.

Each EEG record was acquired under the electrode 
positioning system 10–20 [7], considering a sampling rate 
of 200 samples per second, and an approximate dura-
tion of 30 min. Some EEG records were taken in patients 
in the waking state (46 records) and others in sleep (54 
records). All patients were asked to fall asleep during the 
recording of the EEG to decrease the appearance of arti-
facts in the signal; however, not all of them were able to 
fall asleep.

Once the records were digitized, we conducted an 
annotation process with the help of a neuropediatrician. 
The process included a review of EEGs performed by the 
neuropediatrician to identify the segments where epilep-
tic alterations occurred. We documented the beginnings 
and ends of all epileptic abnormalities identified by the 
doctor. As a result of the annotation process, we built a 
dataset with abnormal and normal segments extracted 
from EEG records. The dataset is available on GitHub.2

2.2 � Matched filter
Matched filters are basic signal analysis tools used to 
extract known waveforms from a signal that has been 
contaminated with noise [8]. The model used for the 
extraction or detection of the wave can be seen in Fig. 1.

The diagram defined in Fig.  1 describes the imple-
mentation of a filter h(t) to extract the signal s(t) con-
taminated with noise n(t). Hypothesis Hx is obtained 
as a result of applying h(t). In this diagram, the null 
(H0) and alternative (H1) hypotheses are considered 
in Eqs.  (1, 2). If the waveform sought is present in the 
signal, hypothesis H1 is confirmed. Otherwise, hypoth-
esis H0 is confirmed. In the context of the detection of 

Fig. 1  Detection scheme Source: adapted from [8]

2  Dataset EEG: https​://githu​b.com/Marit​zag/EEGSi​gnals​.

https://github.com/Maritzag/EEGSignals
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epileptic spikes, x(t) is a function to describe the brain 
activity (EEG); noise n(t) represents the normal brain 
activity of a patient (EEG base rhythm), signal s(t) the 
epileptic spike to be found, H0 normal activity of the 
patient, and H1 the presence of the epileptic spike:

This mechanism works very well in practice when we 
seek a known pattern or waveform, because the filter 
allows to maximize the SNR (signal-to-noise ratio) of 
the filtered signal and to reduce the effect of noise on 
the original signal [9]. However, when waveforms are 
not known, the method does not work efficiently.

In this work, the main goal is to develop a tool that 
supports the diagnosis of epilepsy through the identi-
fication of epileptiform events. For this purpose, we 
identified characteristic patterns that describe the pres-
ence of an epileptic discharge. In this sense, it could be 
observed that epileptic seizures generate electric shocks 
on some areas of the brain generating unexpected 
changes in the waveform of EEGs. In some cases, the 
appearance of waveforms is identified periodically or 

(1)H0 : x(t) = n(t),

(2)H1 : x(t) = s(t)+ n(t).

semiperiodically or simply by the disorganization of the 
brain electrical activity of the patient. Some of the most 
desired patterns by neurologists during the inspection 
of EEGs correspond to spikes (both narrow and broad). 
Thus, we propose to build a tool to detect spikes auto-
matically by using a pattern that works as a reference 
template. This template was constructed by averaging 
25 segments diagnosed as spikes by a neuropediatric 
expert in reading EEGs. Figure 2a shows an example of 
the appearance of epileptic spikes in the base rhythm of 
the EEG wave on channels 17, 18, 22 and 23 of the EEG.

The epileptic pattern of Fig. 2b was constructed using 
epileptic spikes from 10 patients. Considering the visual 
analysis performed by the neurologist, it defined that 
the size of the segments of epileptic spikes extracted 
should contain data of 15 samples, 13.33 ms, in order to 
capture the data from the beginning of the spike to the 
end of it.

2.3 � Epileptic spike detector based on a matched filter
Considering the wave pattern that describes an epi-
leptic spike, we constructed a spike detector algorithm 
using a matched filter and sliding windows over an EEG 
channel. The algorithm is defined below: 

Fig. 2  Visual inspection of spikes. a Epileptic spikes in the base rhythm. b Epileptic spike pattern
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Algorithm 1. Spikes detector.  
Void SpikesDetector (windowSize, slidingSize, pattern, EEGChannel, spikesBegin-

nings, spikesEnds, thresh) 

 startIndex = 0 

 maxIndex = Lenght (EEGChannel) 

 b_matchedFilter = createMatchedFilter(pattern)  

while ((startIndex + windowSize) <= maxIndex) do

  segment = EEGChannel(:, startIndex: startIndex + windowSize) 

  matches = matchedFilter(segment,  template, thresh, b_matchedFilter) 

if (isNotEmpty(matches)) do

   spikesBegginings.Add (startIndex)  

   spikesEnds.Add (startIndex+windowSize)  

   startIndex = startIndex + windowSize  

else  

   startIndex = startIndex + slidingSize 

end if 

End SpikesDetector 

be searched. spikesBeginnings and spikesEnds correspond 
to the arrangements which store the beginnings and ends 
of the segments that have presence of the pattern of epi-
leptic spikes, and the function createMatchedFilter cre-
ates a matched filter based on the template. The Spikes 
Detector algorithm analyzes the entire EEG channel, 
extracting segments through the sliding window. With 
the implementation of the Matched Filter (Algorithm 2), 
each window extracted is checked to determine if in that 
window there is an epileptic spike pattern.

The algorithm that describes the Matched Filter is 
described below: 

Fig. 3  Analysis scheme by window

The algorithm receives 7 arguments, size of window, size 
of sliding, pattern, EEG channel, beginnings and ends of 
segments detected, and threshold. The size of the window 
allows the identification of the beginning and end of the seg-
ment to be analyzed, while the size of the sliding allows us to 
know how many samples move to the right of the beginning 
of the segment that has been analyzed. The threshold estab-
lishes the minimum level of similarity, between the analyzed 
window and the spikes template, to be considered as a spike. 
Figure 3 illustrates the aforementioned process.

The pattern corresponds to the template constructed 
from the epileptic spikes, EEGChannel corresponds to a 
channel extracted from the EEG in which the pattern will 

Algorithm 2. Matched Filter. 
Var matches MatchedFilter (segment, template, thresh, b_matchedFilter) 

 y = FilterSignal(b_matchedFilter, segment)  

   u = template.’*template    

 matches = ReviewThreshold (y,thresh,u)      

return matches 

End MatchedFilter  
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In the above algorithm, segment describes the segment 
to be evaluated, template represents the epileptic spike 
pattern, thresh sets a detection threshold, which was 
established empirically in 0.7 by testing values between 
0.6 and 1; b_matchedFilter contains the matched filter 
based on the template, y contains the segment filtered 
with the matched filter, u stores the autocorrelation 

matrix of the template, and function ReviewThreshold 
establishes if y exceeds the threshold. The autocorrela-
tion matrix allows us to detect the presence of patterns in 
a signal; in this case, the autocorrelation matrix was used 
for detecting the pattern of spikes in the brain activity.

2.4 � Backpropagation neural networks
The basic unit of a neural network is a neuron and has 
the function of receiving inputs, processing them, and 
producing one output. Thus, a Neural Network is defined 
as a combination of a set of connected neurons. Accord-
ing to the basic architecture described in Fig. 4, the links 
that connect the neurons are called synapses and have a 
weight wkj , which are used in a hidden layer by the activa-
tion function to calculate one output [16].

Backpropagation neural networks are described by a 
hierarchical architecture where one input layer, several 
hidden layers and one input layer are connected [17]. 
The training of neural network is conducted following 
a backpropagation scheme. Thus, the training process 
is divided into three steps: (i) the network makes a con-
jecture, (ii) this is measured by a loss function, and (iii) 
the error is backpropagated to adjust the network.

Fig. 4  Neural Network architecture Source: adapted from [16]

Fig. 5  Description of each segment
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3 � Results
The final evaluation used recordings of brain activity of 
108 patients. Such records were divided into 2 groups: 
(i) EEGs of 8 patients with spikes in their brain activities 
and (ii) EEGs of 100 patients without spikes in their brain 
activities. We extracted 8 test segments from EEGs of the 
first group (the only patients in the collection with this 
kind of abnormality that were not considered in the con-
struction of the Matched Filter). Considering the anno-
tations made on the dataset and segments selected, we 
know the beginnings and ends of 56 epileptic discharges 
that occur in the form of spikes. In this sense, the spike 
detector was used for each test segment and the correctly 
identified, badly identified, and unidentified spikes were 
counted in Table 2 to determine the sensitivity and speci-
ficity of the detection. Figure  5 describes examples of 
spikes (epilepsy episodes) contained in the extracted seg-
ment with abnormalities.

Each segment described in Fig. 5 was reviewed by the 
spike detector. The results can be seen in Table 1.

In the results obtained, the number of spikes detected 
in each test segment is greater than the actual number 
of spikes. With this in mind, each spike identified by the 
detector was reviewed to analyze the reason of the error. 

It was possible to identify that, in some cases, the detec-
tor was identifying a real spike twice or three times, due 
to the reduced size of the sliding window and, in other 
cases, the detector also considered the abrupt fall of the 
slow waves that occur just after the spike occurrence. It is 
also important to mention that the neurologists annotat-
ing the EEG also considered slow waves an abnormality. 
Thus, the spikes detected with close beginnings (differ-
ence between beginnings less than 20 samples) were con-
sidered as a single one because these spikes are multiple 
windows generated by sliding windows from a single 
spike or a spike with a slow wave.

Considering the above, Table 2 presents the results of 
the evaluation eliminating repeated spikes, the detection 
of slow waves and the number of spikes not detected.

According to the results obtained in Table 2, the built-
in matched filter achieved a sensitivity of 98.28% using a 
threshold of 0.7. To calculate the sensitivity, we used data 
of 8 patients that presented spikes in their brain activ-
ity. For the evaluation, we extracted 8 segments (the size 
of extracted segments is 2.000 samples) where spikes 
appear, and the inspection of these segments was con-
ducted by decomposing each segment by sliding window. 
In this manner, we generated for each segment of 2000 
samples a total of 369 windows, which were evaluated by 
using the matched filter. Whereas there were 8 segments, 
we reviewed 2.952 windows and obtained a specificity of 
98.94%. In addition, we extracted the test segments from 
the brain activity of 8 new patients. That means, the tem-
plate of matched filter was built with data of a group of 
patients and evaluation with data of a different group.

Considering that, in a Matched Filter, the threshold 
establishes how similar the template and the segments 
are. We tested different thresholds in order to determine 
an appropriate threshold. Comparing the results, if the 
threshold is close to 1 the result is that the specificity 
increases, and the sensitivity decreases slightly. Table  3 

Table 1  Results of the evaluation

Segment Real spikes Spikes 
detected

S1 7 25

S2 8 23

S3 6 20

S4 8 31

S5 6 6

S6 7 25

S7 6 15

S8 8 22

Table 2  Results of the evaluation using threshold 0.7

Segment Real spikes Detected spikes Slow waves Spikes not detected Wrongly 
detected 
spikes

S1 7 7 8 0 6

S2 8 8 5 0 4

S3 6 6 6 0 2

S4 8 8 7 0 5

S5 6 5 4 1 2

S6 7 7 8 0 3

S7 6 6 6 0 4

S8 8 8 7 0 5

Total 56 55 51 1 31
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describes the results using a threshold of 0.9. Sensitivity 
was of 91.07% and specificity of 99.96%.

In order to increase the reliability and robustness of 
our evaluation, we used data from 100 new test segments 
(2.000 samples). Because in our dataset of 200 EEGs there 
are no more patients with spikes, we included test seg-
ments from EEGs of 100 patients with non-spike activity. 
The goal is to evaluate the performance of the matched 
filter with data from different patients and other types of 
wave patterns. Given the sliding window used to decom-
pose the test segments into windows, we generated 36.900 
windows, which were reviewed one by one by the matched 
filter. The results of this evaluation showed that matched 
filter detected 53 false positives and 36,847 true negatives. 
Because the test data does not contain spikes, the sensitiv-
ity could not be calculated, and the specificity was 99.85%.

Considering the results of the evaluation of Matched 
Filter, we implemented a neural network and evaluated 
according to a similar scheme described in Fig. 6. For the 
evaluation, we built a dataset with data of 400 spikes and 
400 segments with normal brain activity. The segments 
were transformed according to the feature extractors 
used in [18]. The neural network was trained with 70% 
of the data and evaluated with the remaining 30% of the 
data. The separation of the training and test data was a 
random process.

The hyperparameters of neural network were fixed 
empirically by testing different values. Thus, we defined 
the neural network setting with 500 training cycles, a 
learning rate of 0.3, a momentum of 0.2 and an epsilon 
error of 1.0E − 5.

Table  4 describes the confusion matrix with the 
results of the evaluation of the neural network. Accord-
ing to the results, the sensibility, specificity, and pre-
cision were perfect. It is important to mention that 
although the perfect performance could be considered 
as suspected, this is the result of reducing the problem 
of comparing spikes with a multitude of abnormalities 
to comparing spikes with normal activity.

Once the neural network was trained and validated, 
we used it to confirm (classify) the spikes detected by 
the Matched Filter. Figure 7 describes the process used 
to integrate three steps: (i) the analysis by sliding win-
dow, (ii) the detection based on analyzing single seg-
ments using a Matched Filter, and (iii) the confirmation 
of the detections made by the Matched Filter by using 
the neural network. This approximation allowed us to 
join the power of Matched Filters to detect segments 
with high probability of being spikes in signals with 
spikes, artifacts, noise, and different types of abnor-
malities, with the capability of classification of Neural 
Networks to confirm the detections made by Matched 
Filter.

Table 3  Results of evaluation using threshold of 0.9

Segment Real spikes Detected spikes Slow waves Spikes not detected Wrongly detected spikes

S1 7 7 1 0 0

S2 8 8 12 0 1

S3 6 5 6 1 0

S4 8 7 6 1 0

S5 6 5 1 2 0

S6 7 7 9 0 0

S7 6 4 2 2 0

S8 8 8 5 0 0

Total 56 51 42 6 1

Fig. 6  Pipeline of spike detection using a Neural Network

Table 4  Results of the evaluation of the Neural Network

Spikes No spikes Class precision

Pred. spikes 120 0 100.00%

Pred. no spikes 0 120 100.00%

Class recall 100.00% 100.00%
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Table  5 shows the evaluation of the Neural Network 
to confirm the detected spikes by the matched filter. The 
precision and sensitivity were of 100% and the specificity 
was of 99.89%.

Table 6 shows the results of the detection of the built 
detector. Thus, the precision, sensitivity and specificity 
reached with the scheme based on a Matched Filter and 
a Neural Network were of 99.96%, 99.26% and 99.89%, 
respectively.

Finally, it is important to mention that data of 8 patients 
used to evaluate the detector (Matched Filter + NN) were 
not used to build the template of Matched Filter or train 
the Neural Network.

4 � Discussion
This paper presents the development of a new mecha-
nism for the automatic detection of epileptic spikes based 
on the implementation of a neural network built to verify 
detections made by a matched filter. The matched filter 
used a template that represents a waveform of an epilep-
tic spike pattern. The tool developed reached a sensitivity 
of 99.96% and specificity of 99.26% in the identification 
of epileptic spikes on a dataset with EEG records of 
children.

The construction of the dataset arose as a need to have 
a set of training data that describes in detail the begin-
ning and end of an epileptic abnormality, because in the 
literature there are different datasets that only describe 
periods of time in which the appearance of an abnor-
mality can be observed and then disorganization or new 
appearances of the abnormality. One example is the Phy-
sionet EEG database [10], which is one of the most widely 
used pediatric EEG databases. That database does not 
describe the exact segments of the beginning and end of 
specific abnormalities.

The main contribution of this work for the field of neu-
rology is the implementation of a method that automati-
cally detects epileptic spikes with high reliability with 
respect to the values found in the literature. This could 
decrease the reading time of EEGs and facilitate the diag-
nosis of Epilepsy by neurologists. Additionally, the pro-
posed method was tested using real data from a Dataset 
built by the authors and annotated with the help of a neu-
ropediatrician to document the exact segments where the 
epileptic abnormalities occur in electroencephalograms.

Fig. 7  Process of final detection

Table 5  Results of reviewing detected spikes by the neural network

Segment Real spikes detected 
by MF

Detected spikes by MF Confirmation by NN Spikes not detected Wrongly 
detected 
spikes

S1 7 13 7 0 0

S2 8 11 8 0 2

S3 6 8 6 0 0

S4 7 13 7 0 0

S5 6 7 6 0 1

S6 7 10 7 0 0

S7 6 10 6 0 0

S8 8 13 8 0 0

Total 55 85 55 0 3

Table 6  Results of final evaluation

Segment Real spikes Detected 
spikes

Spikes 
not detected

Wrongly 
detected 
spikes

S1 7 7 0 0

S2 7 7 0 2

S3 6 6 0 0

S4 8 7 1 0

S5 6 6 0 1

S6 7 7 0 0

S7 6 6 0 0

S8 8 8 0 0

Total 56 55 1 3
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In previous research, many tools have been designed 
to detect points in EEG signals. The main objective of 
most of such works is to reduce the reading time of 
the specialists, since normally they face large volumes 
of data [11]. In [12] the authors describe the develop-
ment of a tool for the detection of epileptic spikes using 
neural networks, in which a PPV (positive predic-
tion value) of 72.67% and a sensitivity of 82.68% were 
obtained. In [13], an approach is proposed to analyze 
the EEG record following a Markov paradigm in order 
to increase the sensitivity of the detection, however, 
the result becomes a solution with high computational 
complexity. The work in [14] describes a spike detec-
tor developed using analysis of energy and frequency 
changes; for that, a SNEO (smoothed nonlinear energy 
operator) is used for testing different window func-
tions; however, the results were reached using a dataset 
with animal records and the objective of the tool is to 
support real-time evaluation of EEGs. In [15] a detector 
of single spikes and spikes with slow waves is proposed. 
The results of the evaluation show that the model built 
improves the accuracy of the classification when the 
single spikes and spikes with slow waves are considered 
as different classes. The detection is performed in two 
stages: the first one to detect a possible spike and the 
second one to extract features of the window and clas-
sify it as a spike, a spike with a slow wave or not spike. 
In that study, the authors performed several configura-
tions, obtaining a sensitivity between 87.9% and 94.4%, 
as well as a specificity between 86.7% and 92.3%.

Considering the works reviewed, the solution devel-
oped in this study obtained a better sensitivity (99.96%) 
considering the range that has been reported in the lit-
erature reviewed (82.68% and 94.4%). Likewise, the speci-
ficity reached (99.26%) is better than the specificity of 
93% of the best-reviewed work. This was a consequence 
of the good template built for spikes in brain activity of 
the children and the threshold used for comparing the 
autocorrelation matrix of the window with the template, 
which were obtained empirically.

This proposal showed that the integration of the power 
of Matched Filter to detect segments similar to a template 
that describes a spike pattern and to confirm the detected 
spikes with an additional technique results in a bet-
ter performance than detectors based on single models. 
The evaluation carried out demonstrated that when the 
threshold of Matched Filter was increased, the method 
not only detected more spikes, but it also slightly mis-
classified normal segments. In other words, the specific-
ity decreased, and the sensitivity increased. To solve the 
problem of wrongly detected normal segments, a neural 
network was trained in order to confirm the detections 
done by Matched Filter. Thus, two phases considered in 

the detector allowed us to reach an excellent sensitivity 
without compromising specificity.

We propose, as future work, the characterization of 
the greatest number of abnormalities associated with 
epilepsy in order to develop an epileptic event detector 
that includes abnormalities other than epileptic spikes. 
Considering that not all the abnormalities associated 
with epilepsy can be easily represented in a wave pat-
tern, we also recommend including a classification pro-
cess based on a process of a general feature extraction 
through signal processing to support the classification 
of the segments that cannot be represented through a 
wave pattern. Finally, the spike detector implemented 
in this project was tested using EEG records of chil-
dren; however, this mechanism could be used to detect 
epileptic spikes in adult patients, since the waveform 
does not change.

5 � Conclusion
This paper described the implementation of an epilep-
tic spike detector through the development of a sliding 
window mechanism that allows the screening of an EEG 
signal window by window and determining whether or 
not they correspond to epileptic spikes by comparing a 
template with each window using a matched filter. The 
template was constructed from the calculation of the 
average of 25 segments corresponding to 25 epileptic 
spikes, and the Matched Filter method implemented 
achieved a sensitivity of 91.07% and a specificity of 
99.96% in the best configuration. However, in order 
to improve sensitivity, the matched filter was fitted to 
detect more spikes although this decreased specificity. 
To solve the problem with specificity, a backpropaga-
tion neural network was built to validate the detections 
made by the matched filter. Thus, the final detec-
tor reached a sensitivity of 99.96% and a specificity of 
99.26%. Although the results found in this research are 
preliminary, we consider that the proposal has potential 
to be applied in a real environment in order to validate 
and get conclusive results.

The main contribution of this work to the field of 
neurology is the implementation of a method that auto-
matically detects epileptic spikes with high reliability 
with respect to the values found in the literature. This 
could potentially decrease the reading time of EEGs 
and facilitate the diagnosis of epilepsy by neurologists.
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