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Abstract 

In recent days, deep learning technologies have achieved tremendous success in computer vision-related tasks 
with the help of large-scale annotated dataset. Obtaining such dataset for medical image analysis is very challeng-
ing. Working with the limited dataset and small amount of annotated samples makes it difficult to develop a robust 
automated disease diagnosis model. We propose a novel approach to generate synthetic medical images using 
generative adversarial networks (GANs). Our proposed model can create brain PET images for three different stages of 
Alzheimer’s disease—normal control (NC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD).

Keywords:  Synthetic medical image generation, Positron emission tomography (PET), Generative adversarial 
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1  Introduction
Developing AI-assisted automated disease diagnosis sys-
tems using medical images often requires a large training 
dataset with annotated samples, especially for supervised 
learning methods. Experts with good knowledge of the 
specific data and task are needed for performing such 
annotations. So, medical image annotation process is 
expensive in terms of time, money and effort. It becomes 
more challenging for precise annotations, such as for 
identifying different stages of Alzheimer’s disease. If 
diagnostic images are intended to be made public, patient 
consent may be necessary depending on the institutional 
protocols [1]. So there are very few public medical data-
sets available online, and they are still limited in size and 
quality. Collecting medical images for developing auto-
mated computer-aided diagnosis system is a complicated 
and expensive procedure and requires adequate funding, 
handling privacy concern, and collaboration of research-
ers, physicians, and hospitals. Medical datasets are often 
imbalanced as pathologic findings are usually rare, and it 
creates another challenge to train the automated diagno-
sis system (Fig. 1).

Data augmentation is one way to overcome the prob-
lem of limited dataset. There are several data augmenta-
tion techniques, such as translation, rotation, scale, flip, 
etc. But these techniques are not as useful for medical 
image analysis as they are for natural image dataset. On 
the contrary, techniques such as translation and rota-
tion might change the pattern useful for the diagnosis. 
Besides, these images resemble a great extent to the orig-
inal ones. So the ML model using these augmented data 
gain little performance improvements due to the lack of 
generalization abilities. Another type of data augmenta-
tion strategy is synthetic data generation. A synthetic 
dataset is generated programmatically. Such dataset is 
highly beneficial for medical image analysis. There is no 
patient data handling or privacy concerns as the data are 
produced synthetically. The dataset can contain samples 
from both positive and negative classes for diagnosis pur-
pose and help build a generalized model.

Generating synthetic images for building a large-scale 
dataset for training deep learning model is an active 
research area. Image-to-image translation methods 
have made it possible to create such synthetic images. 
Image-to-image translation refers to the problem of 
translating a representation of an image into another, 
for example, converting an RGB image to BW image 
or vice versa. Both supervised and unsupervised 
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technologies have been used for image-to-image trans-
lation. Generative Adversarial Networks (GANs) [2] 
can generate synthetic data with good generalization 
ability. GAN has two different networks—Generator 
and Discriminator. The model is trained in an adversar-
ial process where the Generator generates fake images, 
and the Discriminator learns to discriminate between 
the real and fake images. Computer vision community 
have widely used GAN for image-to-image transla-
tion and done some excellent research works to gener-
ate synthetic data [3–10]. Such papers have achieved 
impressive results on background removal, palette 
generation, sketch to portrait, pose transfer, semantic 
segmentation [3], super resolution [4], style transfer 
[5], image inpainting [6], future state prediction [8], 
and image manipulation guided by user constraints [9]. 
The success of the vision community for synthetic data 
generation using GAN and the limitation of medical 
data inspired us to explore methods suitable for medi-
cal image synthesis. In this study, we focus on synthetic 
brain positron emission iomography (PET) image gen-
eration for different stages of Alzheimer’s disease—nor-
mal control (NC), mild cognitive impairment (MCI), 
and Alzheimer’s disease (AD).

Alzheimer’s disease (AD) is a severe neurological 
disorder and the most common type of dementia. The 
prevalence of Alzheimer’s disease is approximated to 
be around 5% after 65 years. In developed countries, 
the prevalence of Alzheimer’s disease is staggering 30% 
for more than 85 years old. There is a high probability 
that around 0.64 billion people will be diagnosed with 
Alzheimer’s disease by 2050 [11]. Alzheimer’s disease 
is incurable. The effect of Alzheimer’s disease is losing 
memory, ability to continue day-to-day activities and 
performing mental functions. At the initial stage, Alz-
heimer’s disease affects the brain part controlling mem-
ory and language functionality. So, patients suffer from 
memory loss, confusion, and difficulty in speaking, 
reading or writing. Alzheimer’s disease patients tend to 
forget about their life history and often cannot recog-
nize family members. Alzheimer’s disease patients have 

difficulties in daily activities such as combing the hair 
or brushing the teeth. As a result, patients with Alzhei-
mer’s disease become anxious or aggressive. As they 
forgot things, they often wander away from home. In 
the advanced stage, the brain part controlling breathing 
and heart functionality get destroyed, and that causes 
death.

Since Alzheimer’s disease is incurable, it is crucial 
to detect patients at the MCI stage before the disease 
progresses further. Earlier diagnosis can help in proper 
treatment and prevent brain tissue damage. Alzhei-
mer’s disease causes degeneration of brain cells. Such 
changes can be captured using different imaging modal-
ities, e.g., structural and functional magnetic resonance 
imaging (sMRI, fMRI), positron emission tomography 
(PET), single photon emission computed tomography 
(SPECT), and diffusion tensor imaging (DTI) scans, 
etc. With the progression of Alzheimer’s disease, the 
volume of abnormal proteins (amyloid-β [Aβ ] and 
hyperphosphorylated tau) increases in the brain. The 
accumulation of these proteins causes gradual changes 
in the brain and leads to progressive synaptic, neuronal 
and axonal damage. There is a stereotypical pattern of 
these changes, including early medial temporal lobe 
(entorhinal cortex and hippocampus) involvement, fol-
lowed by progressive neocortical damage [12]. These 
changes often occur years before the symptoms of Alz-
heimer’s disease appear. The toxic hyperphosphoryl-
ated tau and/or amyloid-β [Aβ ] seems to slowly erode 
the brain. Finally, amnestic symptoms start to develop 
when a clinical threshold is surpassed.

Hippocampus is a part of the brain that controls epi-
sodic and spatial memory. It is a small but vital organ 
that works as a relay structure between the brain and the 
body. Alzheimer’s disease shrinks the hippocampus and 
cerebral cortex of the brain and enlarges the ventricles 
[13]. If the hippocampus is shrunk, it causes cell loss and 
damage to synapses and neuron ends. So neurons cannot 
communicate anymore via synapses. As a result, brain 
regions related to remembering (short-term memory), 
thinking, planning, and judgment are affected [13]. The 
degenerated brain cells can be captured using positron 
emission tomography (PET) for measuring these pro-
gressive changes. We propose a novel model to gener-
ate synthetic brain position emission tomography (PET) 
images exploiting Generative Adversarial Networks for 
three stages of Alzheimer’s disease—normal control 
(NC), mild cognitive impairment (MCI), and Alzheimer’s 
disease (AD).

The rest of the paper is organized as follows. Section 2 
discusses briefly about the related work on synthetic 
medical data generation. Section 3 presents the proposed 
model. Section 4 reports the experimental details and the 

Fig. 1  Example of brain PET images. a Sagittal view, b coronal view, 
c axial view
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results. Finally, in Sect. 5, we conclude the paper with our 
future research direction.

2 � Related work
The recent advances of deep learning technologies have 
brought numerous breakthroughs in machine learn-
ing research and reached to a stage in some tasks where 
they provide similar or better performance than human. 
Some examples are image classification [14], intelligent 
driving [15], smart cities [16], voice recognition [17], 
playing Go [18], medical imaging [19–25], visual senti-
ment analysis [26], etc. The reason behind this success is 
significantly dependent on the size and the quality of the 
dataset being used to train the deep learning model. The 
scale and quality of the labeled or annotated data deter-
mine the performance of the deep learning model. Large-
scale annotated dataset is required for training the model 
to achieve superior model performance. If the training-
labeled dataset is small, the model fails to provide a good 
generalized performance. But obtaining such labeled data 
is difficult and expensive as it requires close and seamless 
collaboration from the outstanding experts in the field.

To address the insufficiency of the training dataset, 
researchers have proposed several oversampling meth-
ods. Duplicating the samples from minority class in a 
imbalanced dataset and adding artificial noise was pro-
posed by DeRouin et  al. [27]. Synthetic minority over-
sampling technique (SMOTE) was proposed by Chawla 
et al. [28] to create a synthetic dataset with samples from 
the minority class. Han et al. [29] proposed a Borderline-
SMOTE method, considering neighboring instances and 
the minority instances near the borderline. Sample data 
generation using the weighted distribution for minor-
ity class instances based on the level of difficulty to learn 
them was proposed by He et al. [30]. Barua et al. [31] pro-
posed a majority weighted minority oversampling tech-
nique using Euclidian distance-based clustering method 
to generate synthetic minority class samples. Xie et  al. 
[32] introduced an oversampling technique by mapping 
the training samples in a low-dimensional space, assign-
ing weights, and using the local densities. Their method 
addressed the problem of dimensionality that affected 
earlier methods. Douzas and Bacao [33] introduced a 
self-organizing map-based method using artificial data 
points in high-dimensional space. These oversampling 
methods helped to achieve more samples for the minor-
ity class for imbalanced datasets.

Some traditional approaches have been proposed to 
address the small sample size problem. Zhou and Jiang 
[34] trained a neural network and then employed it to 
generate a new training set, known as the neural-ensem-
ble-based C4.5. Li and Lin [35] determined the probabil-
ity density function of the training samples and used it 

to generate new samples. Li and Fang [36] used group 
discovery and parametric equations of the hypersphere 
to propose a non-linear classification technique to gener-
ate samples for enlarging the training dataset. These tra-
ditional methods are limited in their ability to learn the 
inherent features of the samples.

Synthetic image generation methods can be classi-
fied into two major categories. The first category is the 
model-based approach where a model is formulated 
to observe the data and a dedicated engine renders the 
data. This approach has been used for increasing the 
training dataset of urban driving environment [37, 38], 
object detection [39], text segmentation [40], realistic 
digital brain-phantom generation [41], synthetic agar 
plate image generation [42]. Designing such specialized 
data generation engine requires accurate model and deep 
knowledge of the specific domain. The other category 
of synthetic image generation method is known as the 
learning-based approach. These methods can learn the 
intrinsic spatial variability of the training image data-
set. The probability distribution of the real images in 
the training dataset is learned implicitly by the model, 
and new images are generated by mimicking the original 
samples. Generative Adversarial Network is a learning-
based approach. For synthetic image generation, both 
supervised [3, 43, 44] and unsupervised [10, 45–47] 
approaches are being used. In supervised training, a set 
of pairs of corresponding images (si, ti) are used, where si 
is an image of the source domain and ti is a correspond-
ing image in the target domain. For example, Pix2Pix [3] 
utilizes supervised training using a conditional GAN that 
learns to generate the output image based on the corre-
sponding input image. The Generator network follows an 
encoder–decoder structure. The input of the Generator is 
the image from a particular domain A, and it learns to 
generate images in a different domain B. The Discrimi-
nator examines these generated images based on the 
training images from domain A and their corresponding 
images in domain B, and learns to distinguish between 
real and fake images. Based on the feedback from the dis-
criminator, the Generator learns to generate more realis-
tic images.

Generative adversarial network (GAN) [2] brought a 
breakthrough in the synthetic data generation research 
area. It can learn the distribution of the real dataset and 
generate synthetic samples conforming to that distri-
bution. GAN have been successfully applied in image 
generation, image inpainting [48], image captioning 
[49–51], object detection [52], semantic segmentation 
[53, 54], natural language processing [55, 56], speech 
enhancement [57], credit card fraud detection [58] and 
supervised learning with insufficient training data [59]. 
From the experiments and results of these studies, it is 
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evident that GAN conforms to the distribution of the 
original data samples and can generate realistic synthetic 
data. These promising applications in different fields 
also emphasize that GAN is independent of the precise 
domain knowledge for generating synthetic data.

Medical image synthesis and Generative Adversarial 
Networks have got attention in recent years. Costa et al. 
[60] used a fully convolutional neural network to train 
on retinal vessel segmentation images and then applied 
GANs for generating synthetic retinal images. Dai et  al. 
[61] used GANs for creating lung fields and heart seg-
mentation images from chest X-ray images. Gou et  al. 
[62] proposed a method to employ a GAN to gener-
ate and learn from synthetic eye images to improve eye 
detection accuracy. Shin et  al. [63] utilized GANs for 
generating synthetic abnormal MRI images with brain 
tumors. Nie et  al. [64] proposed an auto-context model 
for brain CT and MRI image refinement. Schlegl et  al. 
[65] trained GANs for anomaly detection in retinal 
images. Frid-Adar et al. [66] applied GANs for synthesiz-
ing liver lesion ROIs to apply in liver lesion classification. 
Hu et  al. [67] applied GANs to generate a MRI motion 
model. Mahapatra et  al. [68] synthesized high-resolu-
tion retinal fundus images using Generative Adversarial 
Networks. Nie et  al. [64] generated synthetic pelvic CT 
images using GANs. Liu et al. [69] synthesized HCC sam-
ples using an approach based on a generative adversarial 
network (GAN) combined with a deep neural network. 
Han et  al. proposed [70] a two-step GAN-based DA 
to generate and refine brain magnetic resonance (MR) 
images with/without tumors separately. Andreini et  al. 
[71] proposed a GAN-based approach for synthesizing 
high-quality retinal images, along with the corresponding 
semantic label.

In our previous research works, we had to handle the 
limited dataset problem for Alzheimer’s disease diagno-
sis. There is a gap in research work for synthesizing brain 
images for Alzheimer’s disease diagnosis. Besides, there 
are very few works done for PET image synthesis. To 
mitigate these gaps, we propose a novel model to gener-
ate synthetic brain positron emission tomography (PET) 
images exploiting Generative Adversarial Networks for 
three stages of Alzheimer’s disease—normal control 
(NC), mild cognitive impairment (MCI), and Alzheimer’s 
disease (AD).

3 � Methodology
3.1 � Data selection
For our proposed model, we have used 411 PET scans (98 
AD, 105 NC, 208 MCI) of 479 patients. We collected the 
data from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). Specifically we 
used ADNI1 baseline dataset for our model. The subjects 

were in the age range 55–92. The ADNI was launched 
in 2003 as a public–private partnership, led by principal 
investigator Michael W. Weiner, MD. The primary goal 
of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). Up-to-date information 
related ADNI database can be found at http://www.adni-
info.org [72].

3.2 � Generative Adversarial Networks
Generative Adversarial Networks (GANs) is a deep 
learning architecture that consisted of two models—a 
generative model G and a discriminative model D. The 
generative model captures the data distribution. The 
discriminative model estimates the probability that the 
sample is drawn from the training data rather than the 
generative model. The two models are simultaneously 
trained via an adversarial process. The architecture is 
inspired by game theory and corresponds to a minimax 
two-player game. The training procedure of G is to maxi-
mize the probability of D making a mistake [2].

Let the generator G (z, θx ) is a differentiable function 
represented by a multilayer perceptron with parameters 
θg that depicts a mapping to the data space. To learn the 
generator’s distribution ρg over the data space x, a prior 
ρz is defined on random input noise variables z. The dis-
criminator D ( x, θd ) is also a neural network that gets a 
sample the real dataset or the generated synthetic data-
set produced by G and outputs a single scalar value that 
the input data comes from the real training dataset. The 
training process focuses on the task that the discrimina-
tor D will maximize the probability of assigning correct 
labels to the training examples and generated samples 
from G. At the same time, G is trained to generate data 
samples similar to the real dataset so that D cannot dif-
ferentiate them from actual data. Similar to game theory, 
the discriminator D and the generator G play a two-
player mini–max game with following value function 
V(G, D):

where x is the real data and z is the input random noise. 
ρdata , ρz represent the distribution of the real data and the 
input noise. D(x) represents the probability that x came 
from the real data while G(z) represents the mapping 
to synthesize the real data. The generator G is a deeper 
neural network and has more convolutional layers and 
nonlinearities. The noise vector z is upsampled while G 

(1)
min
G

max
D

V (D,G) =Ex∼ρdata(x) [logD(x)]

+ Ez∼ρdata(z) [log(1− D(z))],

http://www.adni-info.org
http://www.adni-info.org
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learns the weights through backpropagation. At some 
point, the generator starts producing data that are classi-
fied as real by the discriminator.

3.3 � Deep Convolutional Generative Adversarial Networks 
(DCGANs)

Deep Convolutional Generative Adversarial Networks 
(DCGAN) [73] is a major improvement on the first GAN 
[2]. DCGAN can generate better quality images and have 
more stability during the training stage. In the synthetic 
image generation process using the DCGAN, there are 
two phases: a learning phase and a generation phase. In 
the training phase, the generator draws samples from 
an N-dimension normal distribution and works on this 
random input noise vector by successive upsampling 
operations, eventually generating an image from it. The 
discriminator attempts to distinguish between images 
drawn from the generator and images from the training 
set [73].

Two important features in DCGAN are BatchNorm 
([74] for regulating the extracted feature scale, and 
LeakyRelu [75] for preventing dead gradients. DCGAN 
also replace all max pooling with convolutional stride 
and use transposed convolution for upsampling. It elimi-
nates fully connected layers and uses batch normaliza-
tion. DCGAN uses ReLU in the generator except for 
the output which uses Tanh and uses LeakyReLU in the 
discriminator.

3.4 � Proposed model
We propose a novel approach to produce synthetic PET 
images using a Deep Convolutional Generative Adversar-
ial Networks. Following the guidelines to construct the 
generator and discriminator, described in the paper writ-
ten by Radford et  al. [73], we implemented and trained 
them on PET scan images using the original discrimina-
tor and generator cost functions. Figure 2 shows the pro-
posed synthetic PET image generator model.

3.4.1 � Generator architecture
The input of the generator is a vector of random 100 
numbers drawn from a uniform distribution, and the out-
put is a brain PET image of size 128 * 128 * 3. The gen-
erator architecture is shown in Fig.  3. The network has 
a fully connected layer and five strided convolutional 
transpose (known also as ‘deconv’) layers. The strided 
convolutional transpose layers transform the latent vec-
tor into a volume with shape 128 * 128 * 3. Each convo-
lutional transpose layer is paired with a 2d batch norm 
layer and a ReLU activation. The strided convolutional 
transpose layer inserts zeros in between the pixels of the 
input vector and expands it. The convolution operation is 
performed over the enlarged vector to create bigger out-
put data. Normalizing responses to have zero mean and 
unit variance over the entire mini-batch are applied to 
stabilize the learning process. Figure 4 shows the output 

Fig. 2  Proposed synthetic brain PET image generator
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of different steps from the generator of the proposed 
model.

3.4.2 � Discriminator architecture
The discriminator network consists of a CNN architec-
ture that takes an image of size 128 * 128 * 3 (brain PET 
image) as input. The discriminator analyzes the input 
brain PET image and decides if it is real or fake. The net-
work consists of five convolution layers with a kernel size 
of 5 * 5 and a fully connected layer. Strided convolutions 
are applied to each convolutional layer to reduce spatial 

dimensionality instead of using pooling layers. Batch-
normalization and Leaky ReLU activation are applied to 
each convolutional layer of the network except the out-
put layer. The fully connected output layer has a Sigmoid 
function to generate the likelihood probability (0,1) score 
of the input image to be real or fake. The discriminator 
architecture is shown in Fig. 5.

3.4.3 � Training procedure
We trained the proposed model to synthesize brain 
PET images for three stages of Alzheimer’s disease 

Fig. 3  Generator architecture of the proposed model

Fig. 4  Visualization of the generator output in the training process
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separately. The training process was done iteratively 
for the generator and the discriminator. We used mini-
batches of m = 64 brain PET examples for each stage 
(NC, MCI, and AD) and m = 64 noise samples drawn 
from a uniform distribution between [− 1, 1]. In the 
Leaky ReLU, the slope of the leak was set to leak = 0.2. 
We initialized the weights to a zero-centered normal 
distribution with a standard deviation of 0.02. Stochas-
tic gradient descent was used in the training process 
with the Adam optimizer, an adaptive moment estima-
tion that incorporates the first and second moments of 
the gradients, controlled by parameters β1 = 0. 5 and 
β2 = 0.999, respectively. We applied a learning rate of 
0.0001 for 500 epochs.

In the training process, the discriminator is trained 
to maximize the probability of assigning correct labels 
to the training examples and the generated samples. At 
first, the discriminator gets a batch of real samples from 
the training set. The batch is forward passed through 
D, and the loss (log(D(x))) is calculated. The gradients 
are calculated in a backward pass. Then, a batch of fake 
samples from the generator is forward passed through 
D. Similarly, the loss (log(1− D(G(z)))) is calculated, 
and the gradients are accumulated with a backward 
pass. Finally, the gradients from both the all-real and 
all-fake batches are summed up, and a step of the Dis-
criminator’s optimizer is done.

The Generator is trained to generate better fake 
samples by minimizing log(1− D(G(z))) . The training 
process maximizes log(D(G(z))) to minimize the gen-
erator’s loss log(1− D(G(z))) . The output of the genera-
tor is passed to the discriminator, and the classification 
result is collected. The training process repeats unless 
the generator learns to generate samples labeled as real 
by the Discriminator.

4 � Experiments and results
It is an open issue to develop objective metrics that cor-
relate with perceived quality measurement. For quality 
evaluation of synthetic images, it should be specific for 
each application. Following previous state-of-the-art, we 
performed a quantitative and qualitative assessment of 
our proposed model. To our best knowledge, no previous 
works attempted to generate synthetic brain PET images 
using real PET images. We quantitatively compare the 
predicted results in terms of peak signal to noise ratio 
(PSNR) and structural similarity Iniex (SSIM). PSNR is 
used to measure the ratio between the maximum possi-
ble intensity value and the mean squared error of the syn-
thetic and the real image:

where n is the number of pixels in an image. For our 
proposed model, the mean PSNR of real and generated 
images is 32.83.

Structural similarity index (SSIM) finds the similari-
ties within pixels of two image; i.e., if the pixels in the two 
images line up and or have similar pixel density values:

where x is the estimated PET and y is the ground truth 
PET, µx is the average of x, µy is the average of y, µ2

x is 
the variance of x, µ2

y is the variance of y, σxy is the covari-
ance of x and y. C1 = (k1L)

2 and C2 = (k2L)
2 are used to 

stabilize the division with weak denominator, where L 
is the dynamic range of the pixel-values, k1 = 0.01 and 
k2 = 0.03 . For our proposed model, the mean SSIM of 
real and generated images is 77.48.

(2)PSNR = 10 log10
(max(y))2

1
n

∑n
i (yi−ŷi)2

,

(3)(x, y) =
(2µxµy + C1)+ (2σxy + C2)

(µ2
x + µ2

y + C1)(σ
2
x + σ 2

y + C2)
,

Fig. 5  Discriminator architecture of the proposed model
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Fig. 6  Real and synthetic brain PET images of normal patient: a real b synthetic

Fig. 7  Real and synthetic brain PET images of MCI patient: a real b synthetic
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We present sample visual results of representative 
slices from the generated PET data for qualitative com-
parison. Figures 6,  7, and  8 show the synthesized PET 
images from NC, MCI, and AD patients, respectively. 
From the results, we could see that the synthesized 
brain PET images are quite similar to the real brain PET 
images. To analyze the similarity between synthetic and 
real images, we also obtained the 2D-histogram of real 
and synthetic images. Figure 9 presents the 2D-histogram 
of a sample real and synthetic image [76]. We also devel-
oped a 2D-CNN model using axial, coronal, and sagittal 
slices from the generated PET data. The model achieved 
71.45% classification accuracy for CN/AD classification, 
that is 10% more than the classification model trained 
without the generated synthetic data.

5 � Conclusions
We conclude that synthetic medical image generation is 
a promising research area and cost-saving approach for 
developing automated diagnostic technology. Our pro-
posed model can be generalized in other disease diagno-
sis systems using PET images and can help to supplement 
the training dataset. The qualitative and quantitative 
evaluation of the proposed model demonstrates that the 
synthesized images are close to real brain PET images of 
different stages of Alzheimer’s disease. We believe that 
our proposed model can help to generate labeled images 
and aid data augmentation for developing robust disease 
diagnosis systems, and eventually save lives. There are 
several limitations to the proposed work. One possible 
extension could be an increase from 2-D to 3-D input 

Fig. 8  Real and synthetic brain PET images of AD patient: a real b synthetic
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volumes, using 3-D GAN, at the cost of a longer process-
ing time and an increased memory usage. We trained 
separate GANs for each stage of Alzheimer’s disease, 
which increased the training complexity. Future research 
can focus on the investigation of GAN architectures that 
generate multi-class samples together.
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