
Zhou et al. Brain Inf. (2018) 5:3
https://doi.org/10.1186/s40708-018-0081-2

ORIGINAL RESEARCH

DeepNeuron: an open deep learning
toolbox for neuron tracing
Zhi Zhou1,2, Hsien‑Chi Kuo1, Hanchuan Peng1,2* and Fuhui Long1*

Abstract 

Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and
functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully auto‑
matic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them
were developed based on coding certain rules to extract and connect structural components of a neuron, showing
limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine
learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open
Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neu‑
ron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging
problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different
image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantify‑
ing the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using
light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeu-
ron demonstrates robustness and accuracy in neuron tracing.

Keywords:  DeepNeuron, Deep learning, Neuron tracing, Neuron morphology

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

1  Introduction
Over the past few decades, researchers have developed
algorithms and tools to reconstruct (trace) 3D neuron
morphology. A number of manual/semiautomatic neuron
tracing software packages in both the public domain and
commercial world have been developed [1–9]. To fur-
ther promote the development of neuron tracing tools,
the DIADEM challenge [10] and the BigNeuron pro-
ject [11] were launched to compare different automated
algorithms. At small or medium scales, many algorithms
(base tracers) have been shown to produce meaning-
ful reconstructions on high-quality neuron images. For
large-scale image datasets, UltraTracer [12] provides an
extendible framework to scale up the capability of these
base tracers. Despite these efforts on algorithm and tool
development, it remains an open question on how to

faithfully reconstruct neuron morphology from challeng-
ing image datasets that have medium to low qualities and
contain very complex neuron morphology.

Starting from a cell body, a neuron tracing process usu-
ally follows dendrites and axons, eventually connecting
all such neuron signal as a tree that represents the mor-
phology of the neuron. In light microscopy images, den-
drites typically show continuous signal, whereas axons
are often hard to trace due to their punctuated appear-
ance and large, complex arborization patterns ([8]; see for
example the bright-field images of biocytin-labeled neu-
rons in the Allen Cell Type Database [24]). In addition,
the image quality varies a lot depending on sample prepa-
ration, imaging process, cell types, and the healthiness of
neurons. For instance, neuron signal could be continuous
in one image, but dim and broken in another. It is difficult
to automatically extract all such neuron signal under dif-
ferent conditions.

Several important steps in neuron tracing can be for-
mulated as a classification problem. For example, detec-
tion of neuron signal from background is essentially

Open Access

Brain Informatics

*Correspondence: hanchuanp@alleninstitute.org; fuhuil@alleninstitute.
org
1 Allen Institute for Brain Science, Seattle, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40708-018-0081-2&domain=pdf

Page 2 of 9Zhou et al. Brain Inf. (2018) 5:3

foreground–background classification. Reconstruction
of the topology of a neuron via connecting neuron frag-
ments can be treated as connection-separation classi-
fication. In this aspect, a few studies used traditional
machine learning and recent deep learning [13] mod-
els to produce neuron morphology. For example, Gala
et al. introduced an active learning model by combin-
ing different features to automatically trace neurites
[14]. Chen et al. proposed a self-learning-based trac-
ing approach, which did not require substantial human
annotations [15]. Fakhry et al. [16] and Li et al. [17]
used deep learning neural networks to segment elec-
tron and light microscopy neuron images. Despite these
algorithmic efforts, none of these methods provides
publicly available tools to use on external datasets.

Nowadays, deep learning methods outperform tradi-
tional methods in many pattern recognition and com-
puter vision applications. We analyzed commonly used
modules of neuron tracing/editing workflows in real
applications, and concluded that an Open Source deep
learning toolbox would help this growing field. Using
deep learning neural networks as the classification
models, we develop DeepNeuron, which provides sev-
eral essential modules to neuron tracing. For auto-
mated tracing, DeepNeuron can be used as either a new
tracing algorithm to reconstruct neurites from difficult
neuron images, or an extra processing component to
improve other tracing algorithms. DeepNeuron could

also assist annotators in manual tracing. Supporting
extendable functions as plugins, currently DeepNeuron
contains five commonly used modules (Fig. 1):

• • Neurite signal detection automatically identifies 3D
dendritic and axonal signal from background.

• • Neurite connection automatically connects local neu-
rite signal to form neuronal trees.

• • Smart pruning filters false positive and refines auto-
mated reconstruction results.

• • Manual reconstruction evaluation evaluates manual
reconstructions and provides quality scores.

• • Classification of dendrites and axons automatically
classifies neurite types during real-time annotation.

2 � Five modules
2.1 � Neurite signal detection
Due to difficulties in sample preparations and imaging,
neurite signals often appear broken in a 3D image. It is
hard to use any existing automated tracing algorithm
to reconstruct 3D neuronal structures when this hap-
pens. Even for human annotators, locating these isolated
axonal signals from the noisy background is a daunting
work. To reliably detect neurite signals, we introduce the
neurite signal detection module based on deep CNN to
classify signal and background. This allows us to precisely
detect neurite signals without any preprocessing steps
applied on the original image. To speed up the detection

Neurite Signal
Detection

3D Detected
Signals

3D Detected
Signals (Manual/

Automatic)
Neurite Connection

Locally Connected
Segments

3D Automatic
Reconstruction Smart Pruning Refined Automatic

Reconstruction

3D Manual
Reconstruction

Manual Reconstruction
Evaluation

Quantitative
Evaluation Score

3D Image
Stack

Real-time
Annotation

Classification of
Dendrites and Axons

Real-time Neurite
Type Annotation

DeepNeuron Modules

Fig. 1  The workflow of the Open Source DeepNeuron toolbox, which has five deep learning-based modules. Each DeepNeuron module has
one or more processing components. Neurite signal detection module (Sect. 2.1) uses convolutional neural networks (CNNs) to do foreground/
background classification. Neurite connection module (Sect. 2.2) uses a revised Siamese network [21, 22] to connect neurite structure from
detected neuron signals. Smart pruning module (Sect. 2.3) refines a neuron’s morphology by using CNN models to filter out false positives. Manual
reconstruction evaluation module (Sect. 2.4) uses the output of CNNs as quality scores to evaluate reconstructions. Finally, dendrites/axons
classification module (Sect. 2.5) uses CNNs to perform multiclass classification to differentiate axons, dendrites, and background. Note that all the
actual deep learning networks in our five modules can be replaced with other network models or user’s own design

Page 3 of 9Zhou et al. Brain Inf. (2018) 5:3

and lower the GPU memory requirement, we used a two-
dimensional (2D) CNN model followed by 3D mapping
to detect signal in 3D and achieved satisfactory results on
our testing data. However, our framework is not limited
to 2D CNN but can also directly use 3D CNN models
(Fig. 2).

Manually reconstructed neurons were used as train-
ing samples. The 3D reconstruction of a neuron is rep-
resented as a tree, which contains a series of 3D X, Y, Z
locations, radius, and topological “parent” of annota-
tion nodes. To train the network, local 3D blocks (block
size 61 × 61 × 61 was used in our experiments) centered
on manually annotated nodes in neurite segments were

cropped from the original images. 2D maximum inten-
sity projections (MIPs) of theses 3D blocks were used
as the positive training set, and the same number of 2D
background MIPs were randomly selected as the negative
training set.

We tested our module using AlexNet [18] with five
convolutional and three fully connected layers. Table 1
shows the fivefold cross-validation test of the module
robustness. The training image dataset was partitioned
into five equal size subsets (1–24, 25–48, 49–72, 73–96,
and 97–122 as shown in Table 1). Four subsets were used
for training, and the remaining single subset was used for

Fig. 2  The workflow of 3D neurite signal detection. (a) An example of the original 3D image stack. It is a cropped 3D bright-field image of a
biocytin-labeled mouse neuron; the pixel resolution is 0.14 um × 0.14 um × 0.28 um. (b) 2D MIP on the XY plane. (c) Initial neurite signal detected
by a deep CNN model (AlexNet in this case). (d) Refined 2D signal detection result using a mean shift. (c) and (d) are overlaid on top of B. (e)
Mapped 3D detection result based on local maximum intensity along Z-direction. (f) Final 3D detection result after deep learning-based refinement.
(e) and (f) are overlaid on top of (a). Red dots indicate 2D/3D detected signals

Table 1  Fivefold cross-validation on bright-field training sets

Training set Foreground accuracy Background accuracy Overall accuracy

Training (%) Validation (%) Training (%) Validation (%) Training (%) Validation (%)

{1–122}\{1–24} 98.77 97.78 98.97 96.87 98.87 97.33

{1–122}\{25–48} 98.54 99.07 98.78 98.34 98.66 98.71

{1–122}\{49–72} 98.67 98.28 98.78 99.13 98.73 98.71

{1–122}\{73–96} 98.71 96.64 98.28 99.23 98.50 97.94

{1–122}\{97–122} 98.64 99.02 98.77 98.41 98.71 98.72

Average 98.67 98.08 98.83 98.44 98.75 98.26

Page 4 of 9Zhou et al. Brain Inf. (2018) 5:3

validation. Our results show our overall accuracy > 98%
for both training and validation.

In testing, we first projected the original 3D image
stack onto the XY plane and generated a MIP image. We
then cropped 2D patches using a sliding window with
n-pixel stride. These patches were classified into patches
centered on foreground or background pixels using our
trained CNN model. To further improve classification
accuracy and exclude false positive patches, we applied
mean shift [19] to the detected foreground patches and
map them back to the actual 3D locations based on the
local maximum intensity along Z. Finally, we classified
these 3D detected signals using our CNN model again
based on the MIPs of the local 3D blocks.

We applied our module to two challenging datasets
of mouse neurons. The first set was a bright-field biocy-
tin-labeled mouse neuron dataset from Allen Cell Type
Database [24]. The second set was a whole mouse brain
data imaged by fMOST imaging technology [20]. For
the first dataset, we used 122 bright-field neuron image
stacks and their associated manual reconstructions as
the training set and produced ~ 813 K training samples
including ~ 404 K foreground patches, and ~ 408 K back-
ground patches. For the whole mouse brain dataset, we
used ~ 493 K training samples including ~ 252 K fore-
ground patches, and ~ 241 K background patches from
22 whole mouse brain images. Figure 3 shows two exam-
ples of axon detection results. Using neurite signal detec-
tion module, most of axonal signals have been precisely
detected in both datasets.

2.2 � Neurite connection
A complete neuron forms a tree structure that is com-
posed of continuous neurite segments. Global, local, and
topological features including total length, bifurcations,
terminal tips, and more others are used to study the neu-
ronal morphology. These features have to be extracted

from neurite segments instead of dots. Therefore, find-
ing the continuity of neurites and connecting neurite
segments are critical steps in neuron tracing. Generally,
automated tracing algorithms can achieve good perfor-
mance on connecting neurite segments with small gaps
based on the continuity of segment orientations. How-
ever, it is difficult to automatically connect dots-like
neurite signals. Using the spatial distance between these
signals as the weight, minimal spanning tree (MST)
provides a possible solution. However, without biologi-
cal context, it could also introduce topological errors.
Human beings are good at finding the continuity of iso-
lated signals as per their observations and domain knowl-
edge. By learning the neurite connectivity from a large
dataset annotated by humans, a deep learning-based
MST (DMST) approach we proposed can successfully
connect neurite segments with relatively big gaps (Fig. 4).

Siamese networks [21, 22] are used among tasks that
involve finding similarity or the relationship between two
subjects being compared. Our revised Siamese model in
this work includes two identical arms. Each consists of
two convolutional layers with max pooling, followed by
three fully connected layers. The two arms are then fed to
a contrastive loss function to produce a binary decision.

In training (Fig. 4a), we used pairs of patches generated
from two consecutive annotation nodes as positive train-
ing samples, and pairs of patches generated from two
spatially separated annotation nodes as negative training
samples. We used ~ 919 K training pairs, ~ 460 K of them
being positive pairs and ~ 459 K being negative pairs.

In connection (Fig. 4c), a 1 × M feature vector is
extracted from individual input patch. (M can be defined
by the user, and we used M = 200 in our experiment.) The
Euclidean distance between two feature vectors is calcu-
lated as the dissimilarity score of a patch pair, which is
multiplied by the distance to form the weight in our pro-
posed DMST graph.

B Example Image 2

False Posi�ve

False Nega�ve

False Posi�ve

False Nega�ve

Contrast Adjust

True Posi�ve 1

True Posi�ve 2

True Posi�ve

Contrast Adjust

A Example Image 1

Fig. 3  Axon detection results on two challenging datasets. (a) An example of a 3D image stack of mouse neuron imaged with bright-field
microscopy (also see Fig. 2a). (b) An example of a 3D stack (shown as cropped) from a whole mouse brain imaged with fMOST; the pixel resolution
is 0.3 um × 0.3 um × 1 um. Red dots indicate detected axonal signals. The two false positive example patches shown in (a) and (b) could be
eliminated with more training samples. Those false negative patches (also as shown in (a) and (b)) with very weak signals at the center could be
further identified by increasing the amount of weak signal foreground samples in the training set

Page 5 of 9Zhou et al. Brain Inf. (2018) 5:3

Training
Data

Posi�ve
Signal-pair
Nega�ve

Signal-pair

Trained
Model

Each
Detected

Signal-pair

Dissimilarity
Score

Distance

Deep
Learning

based MST

A Training

C Connec�on
3D Detected Signals DMST Connec�on MST Connec�on

VS.

Di
ss

im
ila

rit
y

sc
or

e

Posi�ve pairs

Nega�ve pairs

B Valida�on Result

Revised Siamese
Networks

Signal
-pair

Signal
patch 1
Signal

patch 2

C1 P1 F3
Contras�ve

Loss

C2 P2 F4 F5

Convolu�onal Layer Max Pooling Layer Fully Connected Layer

C1 P1 F3C2 P2 F4 F5

0/1

Number of Pairs

Tes�ng

Fig. 4  The workflow of neurite connection module. (a) In the training step, the connectivity of a signal pair is learned using a revised Siamese
network. In each pair, two 1 × 200 feature vectors are extracted. (b) The validated result with sorted dissimilarity scores for all signal pairs shows
that the dissimilarity scores of positive pairs are much lower than that of negative pairs. (c) The trained model is applied in the connection step to
calculate the dissimilarity for each detected signal pair. Results of our DMST connection and the original MST connection (using distance as the
weight only) are shown

Fig. 5  DeepNeuron axon reconstruction. (a) The same example image as shown in Fig. 2a. (b) 3D axon signals (red dots) were extracted with neurite
signal detection module; local 3D connections (green lines) between signals were generated by neurite connection module. As shown in B, the
proposed DMST in the connection module can formulate the correct neurite structure even when the detected signals from different neurites are
spatially close to one another. In a more difficult case, however, the loss of true signal in the local area can make the information captured by the
network outweighed by the distance, resulting in false connection. This could be avoided by adequately enlarging the examined local area. Note
that unconnected fragments like those on the bottom left would be further processed by our non-deep-learning functions of the tool, which is out
of the scope of this article

Page 6 of 9Zhou et al. Brain Inf. (2018) 5:3

Combing neurite signal detection and neurite connec-
tion modules, we were able to reconstruct axons that
present big challenges to traditional methods due to large
gaps between signal segments (Fig. 5).

2.3 � Smart pruning
Many of the existing automatic tracing algorithms rely on
the correct estimation of the threshold that separates the
potential foreground signal from the background. Typi-
cal methods include those that use the weighted aver-
age intensity of the entire image to threshold the image
or add a preprocessing step to enhance signals. These
methods have limited success for neuron images with low
signal-to-noise ratio and uneven background. To solve
the problem, we developed a smart pruning module in
DeepNeuron. It relieves the burden of precisely separat-
ing foreground and background up the front. Using exist-
ing algorithms, our module first generated over-traced
results with a lower foreground/background segregation
threshold or through signal enhancement step. We then
trained CNN networks to classify true signals and false
positive signals. Using the trained models, we filtered out
falsely detected signals and pruned the reconstructed

neuronal tree. Furthermore, different tracing results gen-
erated from multiple base tracing algorithms could be
combined [23] to produce a consensus using this module
(Fig. 6).

2.4 � Manual reconstruction evaluation
Since manual reconstruction is largely used as the gold
standard to evaluate automated reconstruction algo-
rithms and to generate training set for machine learn-
ing-based approaches, it is important to assess the
consistency of manual reconstructions among different
annotators or of the same annotator at different times.
For this purpose, DeepNeuron provides an evaluation
module based on deep learning classification model.
Take the mouse neuron dataset from the Allen Cell Type
Database [24] we described in Sect. 2.1 as an example,
we divided the 122 manual reconstructions from multi-
ple annotators into five subsets and took a fivefold cross-
validation strategy. Each time we took four subsets as the
training data. Once the network was trained, we used it
to evaluate how consistent the remaining subset is with
respect to the training subsets (Fig. 7, Table 2). More
specifically:

Fig. 6  The workflow of consensus generation using the smart pruning module. Multiple automatic reconstructions are filtered by CNN-based
classification models first. Then, all filtered reconstructions are fused together to produce a consensus. Reconstructions are shown in red lines on
top of the original image stack

Node
Classifica�on

Manual
Reconstruc�on

3D Image Stack

Evalua�on

Ini�al
Predic�on

Refined
Predic�on

Consistency
Score

Fig. 7  The workflow of manual reconstruction evaluation module. All annotation nodes are classified into foreground (red lines) and background
(white dots). Gaps in the initial prediction were automatically filled based on the orientation, tip location, and distance in the refined prediction

Page 7 of 9Zhou et al. Brain Inf. (2018) 5:3

• • First, all annotation nodes in test subset were classi-
fied into two categories: foreground and background.

• • All classified foreground nodes formed an initial pre-
diction.

• • Based on the orientation, tip location, and distance,
fragments in the initial prediction were automati-
cally connected to produce a refined prediction. In
our experiment, we only connected terminal tips
between two segments whose orientation differs less
than 30 degrees and distance is smaller than 30 vox-
els.

• • The test subset is evaluated by the consistency score
c:

Table 2 shows the fivefold cross-validation results on
122 manual reconstructions for the bright-field biocy-
tin-labeled mouse neuron dataset from Allen Cell Type
Database [24]. The high consistency scores indicate that
manual reconstructions are very consistent across dif-
ferent annotators and different subsets of data. In addi-
tion, thicker and more continuous dendrites (> 99%) have
higher consistency scores than dim and discontinuous
axons (> 96%), which are harder to reconstruct.

More broadly, we applied our evaluation module to 31
manual reconstructions including 10 human neurons and
21 mouse neurons in the Allen Cell Type Database [24].

c =
Number of nodes in the refined prediction

Number of nodes in the manual reconstruction
× 100%

Table 3 shows our comparison results. Consistent with
Table 2, dendrites have higher scores than axons. In addi-
tion, scores on human neurite (axon and dendrite) recon-
structions are higher than those of mouse, indicating that
annotators have better tracing performance on physically
larger human neurons.

2.5 � Classification of dendrites and axons
Dendrites and axons have their own functions and play
different roles in the nervous system. Distinguishing
these two types of neurites can help us gain insight into
the brain circuitry. Although dendrites and axons show
different shapes and intensity properties in light micros-
copy images, such a general rule of thumb, however,
is not always guaranteed. Due to variant image qual-
ity, axons can also appear continuous and look more
like dendrites. This makes them difficult to be correctly
labeled in most of tracing algorithms. Here we present
a deep learning module serving as a vehicle for the net-
works that are trained for this purpose. This tool allows
to automatically classify dendrites and axons on real-
time manual annotation, and potentially save time for
annotators.

We used the same approach as described in Sect. 2.1,
except that the problem is now a multinomial classi-
fication (dendrite, axon, and background) instead of
a binary classification (foreground and background)
problem. Figure 8 shows the performance on two test-
ing cases from the Allen Cell Type Database [24]. In
this example, we used ~ 813 K training samples includ-
ing ~ 143 K axons, ~ 261 K dendrites, and ~ 409 K back-
ground. In this article, AlexNet and a revised model
were used as demonstration. In Fig. 8, both AlexNet
and our revised model can accurately classify con-
tinuous dendritic and discrete axonal signals. How-
ever, when the signal of axons is similar to dendrites
(Fig. 8b), AlexNet mistakenly classified axons into den-
drites, while the revised model with one more convo-
lutional layer successfully distinguished axons from

Table 2  Fivefold cross-validation on 122 manual reconstructions of biocytin-labeled mouse neuron dataset

Training set Consistency score

Training Validation

Axon (%) Dendrite (%) Overall (%) Axon (%) Dendrite (%) Overall (%)

{1–122}\{1–24} 97.02 99.35 98.45 95.90 99.74 98.30

{1–122}\{25–48} 96.69 99.68 98.45 97.51 98.07 97.94

{1–122}\{49–72} 97.14 99.31 98.52 95.66 99.79 97.95

{1–122}\{73–96} 96.67 99.34 98.41 96.48 99.58 98.02

{1–122}\{97–122} 96.82 99.39 98.36 98.07 99.61 99.15

Average 96.87 99.41 98.45 96.47 99.34 98.25

Table 3  Comparison results of consistency scores
on human and mouse neuron reconstructions

Number Axon (%) Dendrite (%) Overall (%)

Human 10 98.23 99.60 98.93

Mouse 21 94.28 99.40 95.38

Page 8 of 9Zhou et al. Brain Inf. (2018) 5:3

dendrites. Table 4 shows the comparison of classifica-
tion accuracy between the two models on the training
samples. We found that the revised model yields much
better classification performance. In exchange, the effi-
ciency of the revised model is sacrificed due to much
more number of outputs in each convolutional layer
(3.27-s forward–backward time for AlexNet; 335.91-s
forward–backward time for the revised model).

3 � Discussion
In this paper, we presented a new deep learning-
based Open Source toolbox for neuron tracing: Deep-
Neuron. With extensible framework, DeepNeuron
currently provides five modules to comprehend the
major tasks:

• • For a neuron image stack, it can be used to automati-
cally detect neurite signals.

• • For a neuron image stack with detected 3D signals,
it can automatically connect signals to generate local
segments.

• • For a neuron image stack with its associated auto-
mated reconstruction, it can be used as a filter to
clean up all false positive tracing and generate a
refined result.

• • For a neuron image stack with its associated manual
reconstructions, it can evaluate how consistent and
reliable the reconstructions are.

• • For a neuron image stack with interactive human
annotation via the user interface, it can label neurite
types in real time.

Fig. 8  Comparison of dendrite and axon classification using AlexNet and a revised model. (a) Axons are discrete, and dendrites are continuous. (b)
Both axons and dendrites are continuous. The left segment is extracted from a long axon. The right segment is extracted from a local dendrite. Red
color indicates the axon, and blue color indicates the dendrite in (a) and (b). Note that all these 3D segments are manually annotated using Virtual
Finger technology [7, 9]; neurite types are automatically annotated by the proposed module

Table 4  Comparison of AlexNet with a revised model

Deep learning
network

Averaged
forward–
backward
time (s)

Deemed
axon
(%)

Deemed
dendrite
(%)

Deemed
background
(%)

AlexNet 3.27 84.79 93.86 99.04

A revised
model

335.91 97.89 98.55 99.82

Page 9 of 9Zhou et al. Brain Inf. (2018) 5:3

DeepNeuron has been implemented as an Open Source
plugin in Vaa3D (http://vaa3d​.org) [7, 8]. DeepNeuron
toolbox is a highly flexible vehicle allowing investigators
to take advantage of deep learning to facilitate neuron
tracing in their research. As mentioned in this article,
researchers can freely replace different network mod-
els that suit their needs. Combined with other related
features in Vaa3D including 30+ automatic neuron
tracing plugins, semiautomatic neuron annotation, anno-
tation utilities, neuron image/reconstruction visualiza-
tion, DeepNeuron works as a smart artificial intelligence
engine which offers great help to biologists in exploring
neuronal morphology.

4 � Toolbox and software availability
 The DeepNeuron toolbox was written in C++ as a plugin
to Vaa3D. DeepNeuron source code is available at https​://
githu​b.com/Vaa3D​/vaa3d​_tools​/tree/maste​r/hacka​thon/
MK/DeepN​euron​. In addition, the DeepNeuron plugin
is also included as a plugin in binary releases of Vaa3D,
which can be downloaded at https​://githu​b.com/Vaa3D​/
Vaa3D​_Data/relea​ses/tag/1.0.

Authors’ contributions
HP conceived and managed the project. FL proposed the overall technical
framework. ZZ developed the toolbox and conducted the experiments. HK
implemented a plugin for the dendrite and axon classification and assisted in
several other experiments. All authors edited the manuscript. All authors read
and approved the final manuscript

Author details
1 Allen Institute for Brain Science, Seattle, USA. 2 Southeast University – Allen
Institute Joint Center for Neuron Morphology, Southeast University, Nanjing,
China.

Acknowledgements
We thank Allen Institute for Brain Science for providing neuron datasets and
manual annotations. The authors wish to thank the Allen Institute founders, P.
G. Allen and J. Allen, for their vision, encouragement, and support.

Competing interests
On behalf of all authors, the corresponding author states that there is no
competing interests.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 26 February 2018 Accepted: 18 April 2018

References
	1.	 Choromanska A, Chang S-F, Yuste R (2012) Automatic reconstruction of

neural morphologies with multi-scale tracking. Front Neural Circuits 6:25

	2.	 Donohue DE, Ascoli GA (2011) Automated reconstruction of neuronal
morphology: an overview. Brain Res Rev 67:94–102

	3.	 Feng L, Zhao T, Kim J (2015) neuTube 1.0: a new design for efficient
neuron reconstruction software based on the SWC format. eNeuro
2:ENEURO-0049

	4.	 Longair MH, Baker DA, Armstrong JD (2011) Simple neurite tracer: open
source software for reconstruction, visualization and analysis of neuronal
processes. Bioinformatics 27:2453–2454

	5.	 Luisi J, Narayanaswamy A, Galbreath Z, Roysam B (2011) The FARSIGHT
trace editor: an open source tool for 3-D inspection and efficient pattern
analysis aided editing of automated neuronal reconstructions. Neuroin‑
formatics 9:305–315

	6.	 Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M (2004) Design
and validation of a tool for neurite tracing and analysis in fluorescence
microscopy images. Cytom Part A 58:167–176

	7.	 Peng H, Bria A, Zhou Z, Iannello G, Long F (2014) Extensible visualiza‑
tion and analysis for multidimensional images using Vaa3D. Nat Protoc
9:193–208

	8.	 Peng H, Ruan Z, Long F, Simpson JH, Myers EW (2010) V3D enables real-
time 3D visualization and quantitative analysis of large-scale biological
image data sets. Nat Biotechnol 28:348–353

	9.	 Peng H, Tang J, Xiao H, Bria A, Zhou J, Butler V, Zhou Z, Gonzalez-Bellido
PT, Oh SW, Chen J, Mitra A, Tsien RW, Zeng H, Ascoli GA, Iannello G, Haw‑
rylycz M, Myers E, Long F (2014) Virtual finger boosts three-dimensional
imaging and microsurgery as well as terabyte volume image visualization
and analysis. Nat Commun 5:4342

	10.	 Liu Y (2011) The DIADEM and beyond. Neuroinformatics 9:99–102
	11.	 Peng H, Hawrylycz M, Roskams J, Hill S, Spruston N, Meijering E, Ascoli

GA (2015) BigNeuron: large-scale 3D neuron reconstruction from optical
microscopy images. Neuron 87:252–256

	12.	 Peng H, Zhou Z, Meijering E, Zhao T, Ascoli GA, Hawrylycz M (2017) Auto‑
matic tracing of ultra-volumes of neuronal images. Nat Methods 14:332

	13.	 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436
	14.	 Gala R, Chapeton J, Jitesh J, Bhavsar C, Stepanyants A (2014) Active learn‑

ing of neuron morphology for accurate automated tracing of neurites.
Front Neuroanat 8:37

	15.	 Chen H, Xiao H, Liu T, Peng H (2015) SmartTracing: self-learning-based
neuron reconstruction. Brain Inform 2:135–144

	16.	 Fakhry A, Peng H, Ji S (2016) Deep models for brain EM image seg‑
mentation: novel insights and improved performance. Bioinformatics
32:2352–2358

	17.	 Li R, Zeng T, Ji S (2017) Deep learning segmentation of optical micros‑
copy images improves 3D neuron reconstruction. IEEE Trans Med Imag‑
ing 36:1533–1541

	18.	 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with
deep convolutional neural networks. In: Advances in neural information
processing systems, pp 1097–1105

	19.	 Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pat‑
tern Anal Mach Intell 17:790–799

	20.	 Gong H, Xu D, Yuan J, Li X, Guo C, Peng J, Li Y, Schwarz LA, Li A, Hu B
(2016) High-throughput dual-colour precision imaging for brain-wide
connectome with cytoarchitectonic landmarks at the cellular level. Nat
Commun 7:12142

	21.	 Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verifica‑
tion using a” siamese” time delay neural network. In: Advances in neural
information processing systems, pp 737–744

	22.	 Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discrimi‑
natively, with application to face verification. In: IEEE computer society
conference on computer vision and pattern recognition. CVPR 2005. IEEE,
pp 539–546

	23.	 Wan Y, Long F, Qu L, Xiao H, Hawrylycz M, Myers EW, Peng H (2015) Blast‑
Neuron for automated comparison, retrieval and clustering of 3D neuron
morphologies. Neuroinformatics. https​://doi.org/10.1007/s1202​1-12015​
-19272​-12027​

	24.	 Allen Institute for Brain Science (2015) Allen cell types database. http://
cellt​ypes.brain​-map.org/. Accessed Jan 2018

http://vaa3d.org
https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/MK/DeepNeuron
https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/MK/DeepNeuron
https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/MK/DeepNeuron
https://github.com/Vaa3D/Vaa3D_Data/releases/tag/1.0
https://github.com/Vaa3D/Vaa3D_Data/releases/tag/1.0
https://doi.org/10.1007/s12021-12015-19272-12027
https://doi.org/10.1007/s12021-12015-19272-12027
http://celltypes.brain-map.org/
http://celltypes.brain-map.org/

	DeepNeuron: an open deep learning toolbox for neuron tracing
	Abstract
	1 Introduction
	2 Five modules
	2.1 Neurite signal detection
	2.2 Neurite connection
	2.3 Smart pruning
	2.4 Manual reconstruction evaluation
	2.5 Classification of dendrites and axons

	3 Discussion
	4 Toolbox and software availability
	Authors’ contributions
	References

