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Abstract 

Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and 
functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully auto‑
matic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them 
were developed based on coding certain rules to extract and connect structural components of a neuron, showing 
limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine 
learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open 
Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neu‑
ron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging 
problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different 
image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantify‑
ing the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using 
light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeu-
ron demonstrates robustness and accuracy in neuron tracing.
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1  Introduction
Over the past few decades, researchers have developed 
algorithms and tools to reconstruct (trace) 3D neuron 
morphology. A number of manual/semiautomatic neuron 
tracing software packages in both the public domain and 
commercial world have been developed [1–9]. To fur-
ther promote the development of neuron tracing tools, 
the DIADEM challenge [10] and the BigNeuron pro-
ject [11] were launched to compare different automated 
algorithms. At small or medium scales, many algorithms 
(base tracers) have been shown to produce meaning-
ful reconstructions on high-quality neuron images. For 
large-scale image datasets, UltraTracer [12] provides an 
extendible framework to scale up the capability of these 
base tracers. Despite these efforts on algorithm and tool 
development, it remains an open question on how to 

faithfully reconstruct neuron morphology from challeng-
ing image datasets that have medium to low qualities and 
contain very complex neuron morphology.

Starting from a cell body, a neuron tracing process usu-
ally follows dendrites and axons, eventually connecting 
all such neuron signal as a tree that represents the mor-
phology of the neuron. In light microscopy images, den-
drites typically show continuous signal, whereas axons 
are often hard to trace due to their punctuated appear-
ance and large, complex arborization patterns ([8]; see for 
example the bright-field images of biocytin-labeled neu-
rons in the Allen Cell Type Database [24]). In addition, 
the image quality varies a lot depending on sample prepa-
ration, imaging process, cell types, and the healthiness of 
neurons. For instance, neuron signal could be continuous 
in one image, but dim and broken in another. It is difficult 
to automatically extract all such neuron signal under dif-
ferent conditions.

Several important steps in neuron tracing can be for-
mulated as a classification problem. For example, detec-
tion of neuron signal from background is essentially 
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foreground–background classification. Reconstruction 
of the topology of a neuron via connecting neuron frag-
ments can be treated as connection-separation classi-
fication. In this aspect, a few studies used traditional 
machine learning and recent deep learning [13] mod-
els to produce neuron morphology. For example, Gala 
et  al. introduced an active learning model by combin-
ing different features to automatically trace neurites 
[14]. Chen et  al. proposed a self-learning-based trac-
ing approach, which did not require substantial human 
annotations [15]. Fakhry et  al. [16] and Li et  al. [17] 
used deep learning neural networks to segment elec-
tron and light microscopy neuron images. Despite these 
algorithmic efforts, none of these methods provides 
publicly available tools to use on external datasets.

Nowadays, deep learning methods outperform tradi-
tional methods in many pattern recognition and com-
puter vision applications. We analyzed commonly used 
modules of neuron tracing/editing workflows in real 
applications, and concluded that an Open Source deep 
learning toolbox would help this growing field. Using 
deep learning neural networks as the classification 
models, we develop DeepNeuron, which provides sev-
eral essential modules to neuron tracing. For auto-
mated tracing, DeepNeuron can be used as either a new 
tracing algorithm to reconstruct neurites from difficult 
neuron images, or an extra processing component to 
improve other tracing algorithms. DeepNeuron could 

also assist annotators in manual tracing. Supporting 
extendable functions as plugins, currently DeepNeuron 
contains five commonly used modules (Fig. 1): 

• • Neurite signal detection automatically identifies 3D 
dendritic and axonal signal from background.

• • Neurite connection automatically connects local neu-
rite signal to form neuronal trees.

• • Smart pruning filters false positive and refines auto-
mated reconstruction results.

• • Manual reconstruction evaluation evaluates manual 
reconstructions and provides quality scores.

• • Classification of dendrites and axons automatically 
classifies neurite types during real-time annotation.

2 � Five modules
2.1 � Neurite signal detection
Due to difficulties in sample preparations and imaging, 
neurite signals often appear broken in a 3D image. It is 
hard to use any existing automated tracing algorithm 
to reconstruct 3D neuronal structures when this hap-
pens. Even for human annotators, locating these isolated 
axonal signals from the noisy background is a daunting 
work. To reliably detect neurite signals, we introduce the 
neurite signal detection module based on deep CNN to 
classify signal and background. This allows us to precisely 
detect neurite signals without any preprocessing steps 
applied on the original image. To speed up the detection 
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Fig. 1  The workflow of the Open Source DeepNeuron toolbox, which has five deep learning-based modules. Each DeepNeuron module has 
one or more processing components. Neurite signal detection module (Sect. 2.1) uses convolutional neural networks (CNNs) to do foreground/
background classification. Neurite connection module (Sect. 2.2) uses a revised Siamese network [21, 22] to connect neurite structure from 
detected neuron signals. Smart pruning module (Sect. 2.3) refines a neuron’s morphology by using CNN models to filter out false positives. Manual 
reconstruction evaluation module (Sect. 2.4) uses the output of CNNs as quality scores to evaluate reconstructions. Finally, dendrites/axons 
classification module (Sect. 2.5) uses CNNs to perform multiclass classification to differentiate axons, dendrites, and background. Note that all the 
actual deep learning networks in our five modules can be replaced with other network models or user’s own design
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and lower the GPU memory requirement, we used a two-
dimensional (2D) CNN model followed by 3D mapping 
to detect signal in 3D and achieved satisfactory results on 
our testing data. However, our framework is not limited 
to 2D CNN but can also directly use 3D CNN models 
(Fig. 2). 

Manually reconstructed neurons were used as train-
ing samples. The 3D reconstruction of a neuron is rep-
resented as a tree, which contains a series of 3D X, Y, Z 
locations, radius, and topological “parent” of annota-
tion nodes. To train the network, local 3D blocks (block 
size 61 × 61 × 61 was used in our experiments) centered 
on manually annotated nodes in neurite segments were 

cropped from the original images.  2D maximum inten-
sity projections (MIPs) of theses 3D blocks were used 
as the positive training set, and the same number of 2D 
background MIPs were randomly selected as the negative 
training set.

We tested our module using AlexNet [18] with five 
convolutional and three fully connected layers. Table  1 
shows the fivefold cross-validation test of the module 
robustness. The training image dataset was partitioned 
into five equal size subsets (1–24, 25–48, 49–72, 73–96, 
and 97–122 as shown in Table 1). Four subsets were used 
for training, and the remaining single subset was used for 

Fig. 2  The workflow of 3D neurite signal detection. (a) An example of the original 3D image stack. It is a cropped 3D bright-field image of a 
biocytin-labeled mouse neuron; the pixel resolution is 0.14 um × 0.14 um × 0.28 um. (b) 2D MIP on the XY plane. (c) Initial neurite signal detected 
by a deep CNN model (AlexNet in this case). (d) Refined 2D signal detection result using a mean shift. (c) and (d) are overlaid on top of B. (e) 
Mapped 3D detection result based on local maximum intensity along Z-direction. (f) Final 3D detection result after deep learning-based refinement. 
(e) and (f) are overlaid on top of (a). Red dots indicate 2D/3D detected signals

Table 1  Fivefold cross-validation on bright-field training sets

Training set Foreground accuracy Background accuracy Overall accuracy

Training (%) Validation (%) Training (%) Validation (%) Training (%) Validation (%)

{1–122}\{1–24} 98.77 97.78 98.97 96.87 98.87 97.33

{1–122}\{25–48} 98.54 99.07 98.78 98.34 98.66 98.71

{1–122}\{49–72} 98.67 98.28 98.78 99.13 98.73 98.71

{1–122}\{73–96} 98.71 96.64 98.28 99.23 98.50 97.94

{1–122}\{97–122} 98.64 99.02 98.77 98.41 98.71 98.72

Average 98.67 98.08 98.83 98.44 98.75 98.26
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validation. Our results show our overall accuracy > 98% 
for both training and validation.

In testing, we first projected the original 3D image 
stack onto the XY plane and generated a MIP image. We 
then cropped 2D patches using a sliding window with 
n-pixel stride. These patches were classified into patches 
centered on foreground or background pixels using our 
trained CNN model. To further improve classification 
accuracy and exclude false positive patches, we applied 
mean shift [19] to the detected foreground patches and 
map them back to the actual 3D locations based on the 
local maximum intensity along Z. Finally, we classified 
these 3D detected signals using our CNN model again 
based on the MIPs of the local 3D blocks.

We applied our module to two challenging datasets 
of mouse neurons. The first set was a bright-field biocy-
tin-labeled mouse neuron dataset from Allen Cell Type 
Database [24]. The second set was a whole mouse brain 
data imaged by fMOST imaging technology [20]. For 
the first dataset, we used 122 bright-field neuron image 
stacks and their associated manual reconstructions as 
the training set and produced ~ 813  K training samples 
including ~ 404 K foreground patches, and ~ 408 K back-
ground patches. For the whole mouse brain dataset, we 
used ~ 493  K training samples including ~ 252  K fore-
ground patches, and ~ 241  K background patches from 
22 whole mouse brain images. Figure 3 shows two exam-
ples of axon detection results. Using neurite signal detec-
tion module, most of axonal signals have been precisely 
detected in both datasets.

2.2 � Neurite connection
A complete neuron forms a tree structure that is com-
posed of continuous neurite segments. Global, local, and 
topological features including total length, bifurcations, 
terminal tips, and more others are used to study the neu-
ronal morphology. These features have to be extracted 

from neurite segments instead of dots. Therefore, find-
ing the continuity of neurites and connecting neurite 
segments are critical steps in neuron tracing. Generally, 
automated tracing algorithms can achieve good perfor-
mance on connecting neurite segments with small gaps 
based on the continuity of segment orientations. How-
ever, it is difficult to automatically connect dots-like 
neurite signals. Using the spatial distance between these 
signals as the weight, minimal spanning tree (MST) 
provides a possible solution. However, without biologi-
cal context, it could also introduce topological errors. 
Human beings are good at finding the continuity of iso-
lated signals as per their observations and domain knowl-
edge. By learning the neurite connectivity from a large 
dataset annotated by humans, a deep learning-based 
MST (DMST) approach we proposed can successfully 
connect neurite segments with relatively big gaps (Fig. 4).

Siamese networks [21, 22] are used among tasks that 
involve finding similarity or the relationship between two 
subjects being compared. Our revised Siamese model in 
this work includes two identical arms. Each consists of 
two convolutional layers with max pooling, followed by 
three fully connected layers. The two arms are then fed to 
a contrastive loss function to produce a binary decision.

In training (Fig. 4a), we used pairs of patches generated 
from two consecutive annotation nodes as positive train-
ing samples, and pairs of patches generated from two 
spatially separated annotation nodes as negative training 
samples. We used ~ 919 K training pairs, ~ 460 K of them 
being positive pairs and ~ 459 K being negative pairs.

In connection (Fig.  4c), a 1 × M feature vector is 
extracted from individual input patch. (M can be defined 
by the user, and we used M = 200 in our experiment.) The 
Euclidean distance between two feature vectors is calcu-
lated as the dissimilarity score of a patch pair, which is 
multiplied by the distance to form the weight in our pro-
posed DMST graph.
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Fig. 3  Axon detection results on two challenging datasets. (a) An example of a 3D image stack of mouse neuron imaged with bright-field 
microscopy (also see Fig. 2a). (b) An example of a 3D stack (shown as cropped) from a whole mouse brain imaged with fMOST; the pixel resolution 
is 0.3 um × 0.3 um × 1 um. Red dots indicate detected axonal signals. The two false positive example patches shown in (a) and (b) could be 
eliminated with more training samples. Those false negative patches (also as shown in (a) and (b)) with very weak signals at the center could be 
further identified by increasing the amount of weak signal foreground samples in the training set
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Fig. 4  The workflow of neurite connection module. (a) In the training step, the connectivity of a signal pair is learned using a revised Siamese 
network. In each pair, two 1 × 200 feature vectors are extracted. (b) The validated result with sorted dissimilarity scores for all signal pairs shows 
that the dissimilarity scores of positive pairs are much lower than that of negative pairs. (c) The trained model is applied in the connection step to 
calculate the dissimilarity for each detected signal pair. Results of our DMST connection and the original MST connection (using distance as the 
weight only) are shown

Fig. 5  DeepNeuron axon reconstruction. (a) The same example image as shown in Fig. 2a. (b) 3D axon signals (red dots) were extracted with neurite 
signal detection module; local 3D connections (green lines) between signals were generated by neurite connection module. As shown in B, the 
proposed DMST in the connection module can formulate the correct neurite structure even when the detected signals from different neurites are 
spatially close to one another. In a more difficult case, however, the loss of true signal in the local area can make the information captured by the 
network outweighed by the distance, resulting in false connection. This could be avoided by adequately enlarging the examined local area. Note 
that unconnected fragments like those on the bottom left would be further processed by our non-deep-learning functions of the tool, which is out 
of the scope of this article
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Combing neurite signal detection and neurite connec-
tion modules, we were able to reconstruct axons that 
present big challenges to traditional methods due to large 
gaps between signal segments (Fig. 5).

2.3 � Smart pruning
Many of the existing automatic tracing algorithms rely on 
the correct estimation of the threshold that separates the 
potential foreground signal from the background. Typi-
cal methods include those that use the weighted aver-
age intensity of the entire image to threshold the image 
or add a preprocessing step to enhance signals. These 
methods have limited success for neuron images with low 
signal-to-noise ratio and uneven background. To solve 
the problem, we developed a smart pruning module in 
DeepNeuron. It relieves the burden of precisely separat-
ing foreground and background up the front. Using exist-
ing algorithms, our module first generated over-traced 
results with a lower foreground/background segregation 
threshold or through signal enhancement step. We then 
trained CNN networks to classify true signals and false 
positive signals. Using the trained models, we filtered out 
falsely detected signals and pruned the reconstructed 

neuronal tree. Furthermore, different tracing results gen-
erated from multiple base tracing algorithms could be 
combined [23] to produce a consensus using this module 
(Fig. 6).

2.4 � Manual reconstruction evaluation
Since manual reconstruction is largely used as the gold 
standard to evaluate automated reconstruction algo-
rithms and to generate training set for machine learn-
ing-based approaches, it is important to assess the 
consistency of manual reconstructions among different 
annotators or of the same annotator at different times. 
For this purpose, DeepNeuron provides an evaluation 
module based on deep learning classification model. 
Take the mouse neuron dataset from the Allen Cell Type 
Database [24] we described in Sect.  2.1 as an example, 
we divided the 122 manual reconstructions from multi-
ple annotators into five subsets and took a fivefold cross-
validation strategy. Each time we took four subsets as the 
training data. Once the network was trained, we used it 
to evaluate how consistent the remaining subset is with 
respect to the training subsets (Fig.  7, Table  2). More 
specifically:

Fig. 6  The workflow of consensus generation using the smart pruning module. Multiple automatic reconstructions are filtered by CNN-based 
classification models first. Then, all filtered reconstructions are fused together to produce a consensus. Reconstructions are shown in red lines on 
top of the original image stack
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Fig. 7  The workflow of manual reconstruction evaluation module. All annotation nodes are classified into foreground (red lines) and background 
(white dots). Gaps in the initial prediction were automatically filled based on the orientation, tip location, and distance in the refined prediction
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• • First, all annotation nodes in test subset were classi-
fied into two categories: foreground and background.

• • All classified foreground nodes formed an initial pre-
diction.

• • Based on the orientation, tip location, and distance, 
fragments in the initial prediction were automati-
cally connected to produce a refined prediction. In 
our experiment, we only connected terminal tips 
between two segments whose orientation differs less 
than 30 degrees and distance is smaller than 30 vox-
els.

• • The test subset is evaluated by the consistency score 
c:

Table  2 shows the fivefold cross-validation results on 
122 manual reconstructions for the bright-field biocy-
tin-labeled mouse neuron dataset from Allen Cell Type 
Database [24]. The high consistency scores indicate that 
manual reconstructions are very consistent across dif-
ferent annotators and different subsets of data. In addi-
tion, thicker and more continuous dendrites (> 99%) have 
higher consistency scores than dim and discontinuous 
axons (> 96%), which are harder to reconstruct.

More broadly, we applied our evaluation module to 31 
manual reconstructions including 10 human neurons and 
21 mouse neurons in the Allen Cell Type Database [24]. 

c =
Number of nodes in the refined prediction

Number of nodes in the manual reconstruction
× 100%

Table  3 shows our comparison results. Consistent with 
Table 2, dendrites have higher scores than axons. In addi-
tion, scores on human neurite (axon and dendrite) recon-
structions are higher than those of mouse, indicating that 
annotators have better tracing performance on physically 
larger human neurons.

2.5 � Classification of dendrites and axons
Dendrites and axons have their own functions and play 
different roles in the nervous system. Distinguishing 
these two types of neurites can help us gain insight into 
the brain circuitry. Although dendrites and axons show 
different shapes and intensity properties in light micros-
copy images, such a general rule of thumb, however, 
is not always guaranteed. Due to variant image qual-
ity, axons can also appear continuous and look more 
like dendrites. This makes them difficult to be correctly 
labeled in most of tracing algorithms. Here we present 
a deep learning module serving as a vehicle for the net-
works that are trained for this purpose. This tool allows 
to automatically classify dendrites and axons on real-
time manual annotation, and potentially save time for 
annotators.

We used the same approach as described in Sect. 2.1, 
except that the problem is now a multinomial classi-
fication (dendrite, axon, and background) instead of 
a binary classification (foreground and background) 
problem. Figure 8 shows the performance on two test-
ing cases from the Allen Cell Type Database [24]. In 
this example, we used ~ 813 K training samples includ-
ing ~ 143 K axons, ~ 261 K dendrites, and ~ 409 K back-
ground. In this article, AlexNet and a revised model 
were used as demonstration. In Fig.  8, both AlexNet 
and our revised model can accurately classify con-
tinuous dendritic and discrete axonal signals. How-
ever, when the signal of axons is similar to dendrites 
(Fig. 8b), AlexNet mistakenly classified axons into den-
drites, while the revised model with one more convo-
lutional layer successfully distinguished axons from 

Table 2  Fivefold cross-validation on 122 manual reconstructions of biocytin-labeled mouse neuron dataset

Training set Consistency score

Training Validation

Axon (%) Dendrite (%) Overall (%) Axon (%) Dendrite (%) Overall (%)

{1–122}\{1–24} 97.02 99.35 98.45 95.90 99.74 98.30

{1–122}\{25–48} 96.69 99.68 98.45 97.51 98.07 97.94

{1–122}\{49–72} 97.14 99.31 98.52 95.66 99.79 97.95

{1–122}\{73–96} 96.67 99.34 98.41 96.48 99.58 98.02

{1–122}\{97–122} 96.82 99.39 98.36 98.07 99.61 99.15

Average 96.87 99.41 98.45 96.47 99.34 98.25

Table 3  Comparison results of  consistency scores 
on human and mouse neuron reconstructions

Number Axon (%) Dendrite (%) Overall (%)

Human 10 98.23 99.60 98.93

Mouse 21 94.28 99.40 95.38
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dendrites. Table  4 shows the comparison of classifica-
tion accuracy between the two models on the training 
samples. We found that the revised model yields much 
better classification performance. In exchange, the effi-
ciency of the revised model is sacrificed due to much 
more number of outputs in each convolutional layer 
(3.27-s forward–backward time for AlexNet; 335.91-s 
forward–backward time for the revised model).

3 � Discussion
In this paper, we presented a new deep learning-
based  Open Source  toolbox for neuron tracing: Deep-
Neuron. With extensible framework, DeepNeuron 
currently provides five modules to comprehend the 
major tasks:

• • For a neuron image stack, it can be used to automati-
cally detect neurite signals.

• • For a neuron image stack with detected 3D signals, 
it can automatically connect signals to generate local 
segments.

• • For a neuron image stack with its associated auto-
mated reconstruction, it can be used as a filter to 
clean up all false positive tracing and generate a 
refined result.

• • For a neuron image stack with its associated manual 
reconstructions, it can evaluate how consistent and 
reliable the reconstructions are.

• • For a neuron image stack with interactive human 
annotation via the user interface, it can label neurite 
types in real time.

Fig. 8  Comparison of dendrite and axon classification using AlexNet and a revised model. (a) Axons are discrete, and dendrites are continuous. (b) 
Both axons and dendrites are continuous. The left segment is extracted from a long axon. The right segment is extracted from a local dendrite. Red 
color indicates the axon, and blue color indicates the dendrite in (a) and (b). Note that all these 3D segments are manually annotated using Virtual 
Finger technology [7, 9]; neurite types are automatically annotated by the proposed module

Table 4  Comparison of AlexNet with a revised model

Deep learning 
network

Averaged 
forward–
backward 
time (s)

Deemed 
axon 
(%)

Deemed 
dendrite 
(%)

Deemed 
background 
(%)

AlexNet 3.27 84.79 93.86 99.04

A revised 
model

335.91 97.89 98.55 99.82
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DeepNeuron has been implemented as an Open Source 
plugin in Vaa3D (http://vaa3d​.org) [7, 8]. DeepNeuron 
toolbox is a highly flexible vehicle allowing investigators 
to take advantage of deep learning to facilitate neuron 
tracing in their research. As mentioned in this article, 
researchers can freely replace different network mod-
els that suit their needs. Combined with other related 
features in Vaa3D including 30+ automatic neuron 
tracing plugins, semiautomatic neuron annotation, anno-
tation utilities, neuron image/reconstruction visualiza-
tion, DeepNeuron works as a smart artificial intelligence 
engine which offers great help to biologists in exploring 
neuronal morphology.

4 � Toolbox and software availability
 The DeepNeuron toolbox was written in C++ as a plugin 
to Vaa3D. DeepNeuron source code is available at https​://
githu​b.com/Vaa3D​/vaa3d​_tools​/tree/maste​r/hacka​thon/
MK/DeepN​euron​. In addition, the DeepNeuron plugin 
is also included as a plugin in binary releases of Vaa3D, 
which can be downloaded at https​://githu​b.com/Vaa3D​/
Vaa3D​_Data/relea​ses/tag/1.0.
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