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Abstract Although emotion detection using electroen-

cephalogram (EEG) data has become a highly active area

of research over the last decades, little attention has been

paid to stimulus familiarity, a crucial subjectivity issue.

Using both our experimental data and a sophisticated

database (DEAP dataset), we investigated the effects of

familiarity on brain activity based on EEG signals.

Focusing on familiarity studies, we allowed subjects to

select the same number of familiar and unfamiliar songs;

both resulting datasets demonstrated the importance of

reporting self-emotion based on the assumption that the

emotional state when experiencing music is subjective. We

found evidence that music familiarity influences both the

power spectra of brainwaves and the brain functional

connectivity to a certain level. We conducted an additional

experiment using music familiarity in an attempt to rec-

ognize emotional states; our empirical results suggested

that the use of only songs with low familiarity levels can

enhance the performance of EEG-based emotion classifi-

cation systems that adopt fractal dimension or power

spectral density features and support vector machine,

multilayer perceptron or C4.5 classifier. This suggests that

unfamiliar songs are most appropriate for the construction

of an emotion recognition system.

Keywords Electroencephalogram � Music-emotion �
Classification � Familiarity

1 Introduction

Owing to the high temporal resolution and low cost of elec-

troencephalography (EEG), it has been extensively used in

recent attempts to detect emotional states due to its prominence

in high temporal resolution but low cost. EEG and emotion

correlation reported in numerous studies [1, 2] combined with

computational modeling [3] enables possibility of automati-

cally estimating emotional states. The use of musical excerpts

as stimuli is considered to be a promising approach because

music is understood to be capable of strongly eliciting various

emotions [4].However, very little is currently knownabout the

subjective characteristics of human music perception.

Music experience can be influenced by cultural back-

ground, age, gender, training, and familiarity with the

music [5]. Specifically, as listening to familiar music

involves expectation and prediction based on prior

knowledge to musical excerpts, a listener’s memory might

play a crucial role in musical perception and can affect the

emotional reaction. Recent studies have used various

measuring tools to determine the relationship between

music familiarity and physiological signals. An fMRI study

revealed that a feeling of familiarity with music or odors

induced activation in the deep left hemisphere, while a

feeling of unfamiliarity induced activation in the right

hemisphere [6]. Researchers concluded that it is possible to

trigger neural processes specific to the feeling of familiarity

regardless of the type of triggering stimuli via processes

that are likely related to the semantic memory system.

Another fMRI study reported the role of familiarity in the

brain’s correlation of music appreciation and suggested

that music familiarity is related to limbic, paralimbic, and

reward circuitries [7]. Evidence from electrodermal activ-

ity studies demonstrates that certain levels of expectation
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and predictability caused by familiarity play an important

role in the experience of emotional arousal in response to

music [8]. In another study, musical melody familiarity

was seen to be correlated with event-related potentials

observed along the frontocentral scalp with melodies with a

higher degree of familiarity producing more negative

potentials [9]. The researchers suggested that the feeling of

familiarity could be involved in the processing mechanism

at the conceptual level. To the best of our knowledge,

however, the effect of music familiarity on brainwave

patterns has not yet been fully explored. Even though the

past decade has seen a growing interest in the automatic

detection of emotion using EEG, such studies have over-

looked music familiarity effects; however, if music famil-

iarity actually has an effect on brain signals, ignoring

familiarity would degrade EEG-based emotion recognition.

In this study, we present the first attempt to investigate

the neural correlates of music familiarity by focusing on

the differences among brain responses engendered by

music samples of varying levels of familiarity. We con-

structed a model to classify emotional response to musical

material in a manner similar to conventional approaches

with taking familiarity into account. In this study, we used

two different datasets; one constructed from our experi-

mental work, and one extracted from the database for

emotion analysis using physiological signals (DEAP) [10],

an existing affective EEG database that has been exten-

sively used in recent years in affective computing research.

The experiments that produced both datasets focused on

self-emotion annotation approaches based on the assump-

tion that the emotions incurred when experiencing music

are subjective.

Importantly, the emotion produced when experiencing

musical stimuli can change over time, especially when

listening to long-duration music. Cortical activity alterna-

tion over time during long music exposure was found in a

previous EEG study [2]. Consequently, recent research has

emphasized the importance of taking into account the time-

varying characteristics of emotion [11] and performing

emotion recognition in a continuous paradigm [12]. In this

study, we took the continuous emotion recognition into

account by applying the technique of temporal segmenta-

tion to both datasets and employing temporal continuous

emotion annotation in our experiment.

Human emotion can be systematically described through

mapping into a corresponding two-dimensional arousal-

valence emotion space in which valence is represented as a

horizontal axis indicating positivity of emotion and arousal

is represented as a vertical axis indicating activation level

of emotions. This emotion model was originally proposed

by Russell [13] and is still frequently used in affective

computing research, as it has been found to be a simple but

highly effective model [3, 5].

2 Experimental data

2.1 Our dataset

2.1.1 Experimental protocol

We recruited a homogeneous population of 15 healthy

subjects between 22 and 30 years of age (mean = 25.52, SD

= 2.14). All subjects were students of Osaka University and

had a minimal formal musical education; informed consent

was obtained from all individual subjects included in the

experiment. Each subject was requested to select 16

musical excerpts from a 40-song MIDI library and to

indicate their familiarity with each selected song on a scale

ranging from 1 to 6, corresponding to lowest and highest

familiarity, respectively. The subjects were instructed to

select eight songs with which they felt familiar (i.e., having

familiarity ranking of 4–6) and eight unfamiliar songs

(familiarity ranking 1–3). To facilitate familiarity judging,

our data collection software provided a function to play

short (\10s) samples of songs to the subjects.

To reduce cognitive load due to emotion reporting,

separate annotation sessions were conducted following

music listening/EEG recording sessions. In the first lis-

tening phase, the selected songs were presented as syn-

thesized sounds using the Java Sound API’s MIDI

package1, with four of the selected familiar songs played

first, followed by four of the unfamiliar songs, then the

other four familiar songs, and finally the remaining unfa-

miliar songs. Each song was played for approximately 2

min and a 16 s silent rest was inserted between each

musical excerpt to reduce any influence of the previous

song.

After listening to the 16 songs and taking a short rest,

each subject proceeded to the second phase, an emotion

annotation session without EEG recording. Using the

assumption that emotional response can change over the

course of time during a music listening session, each sub-

ject was instructed to describe his/her emotional reactions

to selected songs presented in the same order as in the

previous phase using our developed software. Each subject

described his/her changing emotions by continuously

clicking on the corresponding point in an arousal-valence

emotion space shown on a monitor screen. To facilitate

reporting, a brief guideline to the emotion space was also

provided throughout annotation session. Arousal and

valence were recorded independently as numerical values

ranging from –1 to 1. After providing an emotion annota-

tion for each song, each subject was asked to confirm or

change his/her familiarity with the song and indicate how

confident, on a discrete scale ranging from 1 to 3, he/she

1 http://docs.oracle.com/javase/7/docs/technotes/guides/sound/.
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was of the correspondence between the annotated emotions

and the emotions perceived during the first listening phase.

2.1.2 EEG recording and preprocessing

In this experiment, a Waveguard EEG cap2, placed in

accordance with the 10–20 international system and ref-

erenced to the Cz electrode, was used to record EEG sig-

nals at a sampling frequency of 250 Hz. Twelve electrodes

(Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, T3, T4, and Pz)

located near the frontal lobe which is believed to play a

crucial role in emotion regulation [14] were selected for

analysis. The impedance of each electrode was kept below

20 kX throughout the experiment. A notch filter, a band-

stop filter with a narrow stopband, was used to remove the

60 Hz power line noise. To minimize unrelated artifacts

throughout EEG recording, each subject was instructed to

close his/her eyes and to limit body movement. The EEG

signals were amplified using a Polymate AP15323 amplifier

and visualized on an APMonitor4 prior to filtering with a

0.5–60 Hz bandpass filter. We employed the

EEGLAB [15] toolbox to remove major artifacts caused by

unintentional body movement and then used the indepen-

dent component analysis (ICA) functionality of the toolbox

to remove eye-movement artifacts.

2.2 DEAP dataset

The DEAP dataset contains EEG and peripheral physio-

logical signals recorded from 32 subjects as they watched

40 selected 1 min excerpts of music videos [10]. In the data

collection process, 40 videos were presented in 40 trials,

with each trial comprising 2 s of progress display, 5 s of

baseline recording, and 1 min of music video watching

followed by self-emotion annotation. To self-assess emo-

tional level, each subject rated arousal, valence, domi-

nance, and like/dislike of each music video excerpt on a

continuous scale ranging from 1 (low) to 9 (high), and rated

familiarity to the music on a discrete scale ranging from 1

(‘‘never heard it before the experiment’’) to 5 (‘‘knew the

song very well’’). EEG signals acquired via 32 electrodes

were downsampled to 128 Hz and eye-movement artifacts

detected via electrooculography (EOG) were removed. A

bandpass filter was applied to extract signals in a frequency

range of 4–45 Hz.

3 Investigation of EEG correlates of familiarity

One proposal of this study was to investigate EEG corre-

lates underlying feelings of familiarity and unfamiliarity to

musical stimuli. As it remains unclear whether music

familiarity has any detectable association with EEG sig-

nals, we performed two different types of analysis on both

our dataset and the DEAP dataset. The first method

involved trying to find a familiarity clue in each electrode

used in the EEG, while the second one involved examining

the links between each of the electrodes.

3.1 Data acquisition

To maximize differences in familiarity and minimize any

label ambiguities resulting from the subjective familiarity

scores, only the data from the listening session with the

most (i.e., familiarity level 6) and least (i.e., familiarity

level 1) familiar samples in our dataset were used to per-

form the analysis. Consequently, we ignored data from

subjects 8 and 13, as there was no indication as to which

sample had the highest familiarity in their reports. Addi-

tionally, we disregarded data from subjects 1 and 3 owing

to their reported drowsiness during EEG recording. As

subject 12 misunderstood the instruction for familiarity

judging, this subject’s data were also discarded.

In the DEAP dataset, familiarity ratings were missing

for three subjects, namely subjects 2, 15, and 23. As

familiarity was not the main focus in the DEAP experiment

and the music videos were selected by the experimenters,

the number of music videos with a given level of famil-

iarity differed by subject. In particular, the incidence of

reported low familiarity was higher than that of high

familiarity. To better balance low and high familiarity

sessions, we defined scores 1–2 as low familiarity and 3–5

as high familiarity. However, as imbalance still remained

in the data procured from some of the subjects, we also

disregarded data from subjects whose high/low familiarity

report ratios were less than 0.30. As a result, the data from

subjects 4, 5, 25, and 27 were discarded.

3.2 Single-electrode-level power spectral density

analysis

For the investigation of the EEG correlates of music

familiarity, the power spectral density (PSD) approach,

which is based on the fast Fourier transform (FFT), was

adopted to obtain the characteristics of brain signals in the

frequency domain. In our dataset, the averaged PSDs over

the delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta

(13–30 Hz), and gamma (30–40 Hz) frequency bands were

extracted from all-12-electrode signals using the MATLAB

2 http://www.ant-neuro.com/products/waveguard.
3 http://www.teac.co.jp/industry/me/ap1132/.
4 Software developed for Polymate AP1532 by TEAC Corporation.
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Signal Processing Toolbox5. In order to obtain a higher

amount of data for analysis, we applied a non-overlapping

sliding window segmentation technique in which the win-

dow size was defined as 1000 samples, which was equiv-

alent to a 4 s window length (this length corresponds to

previous emotion classification work, as will be described

in the following section).

Similarly, we decomposed the brain signals in the DEAP

dataset into four distinct frequency bands using the PSD

approach and extracted the theta (4–8 Hz), alpha (8–13

Hz), beta (13–30 Hz), and gamma (30–40 Hz) bandwaves.

It should be noted that, as the preprocessed EEG signals of

the DEAP dataset had already been filtered between 4 and

45 Hz, we could not extract the PSD in the delta band. The

non-overlapping sliding window technique was also

applied, with the window size defined as 512 samples,

equivalent to a 4 s window length. However, we found that

the PSDs of the signals extracted from some electrodes

were oddly high in some subjects; therefore, we regarded

any PSD above 100 lV2=Hz as bad-channel PSD, as the

corresponding signals might have been contaminated by

unrelated noises. As a result, more than 25 % of the signals

obtained from each of the four subjects, namely subjects 9,

11, 22, and 24 were found to be bad-channel PSD; we

ignored all data from these subjects and performed analysis

using only the data from the other 21 subjects.

3.2.1 Statistical analysis

To determine how the PSDs of various bands were affected

by music familiarity (high and low) and subject individu-

ality, two-way analysis of variance (ANOVA) with repli-

cation was performed. For each frequency band and

electrode, we collected multiple PSDs from all subjects and

divided them into two groups: low and high familiarity.

Replication, i.e., multiple observations, involved obtaining

multiple PSDs from each subject. As diversity in song

selection and familiarity labeling of each subject produced

differences in the number of acquired PSDs, it was nec-

essary to unify the number of replications across subjects.

Hence, we defined the number of replications as the min-

imum size of the available dataset across subjects and

familiarity levels, and we aggregated data from each sub-

ject by randomly selecting available data up to the repli-

cation number. Two-way ANOVA was then performed

using MATLAB Statistics and Machine Learning Toolbox6

to test the hypotheses that the main effects of familiarity

and subjectivity were significant. Post-hoc comparisons

were performed using the Tukey test. In testing the DEAP

dataset, if a particular subject’s electrode produced bad-

channel PSD in any frequency band, all PSD data obtained

from the electrode were removed before performing

ANOVA.

3.2.2 Results

We performed ANOVA on our dataset to explore whether

there was any significant PSD difference (p\0.05) owing

to familiarity. The results showed the main effect of inter-

subject variability on variations in PSD values. However,

we still found that the familiarity had a statistically sig-

nificant effect on PSD value, particularly in the frequency

bands obtained by some of the electrodes, as shown in

Table 1. To investigate further, we calculated the average

of the power spectra across subjects under high and low

music familiarity and topologically plotted the variation in

averages (familiarity–unfamiliarity) on a scalp map, as

shown in Fig. 1. On this map, positive areas represent

locations where familiar songs evoked higher averaged

power spectra across subjects than did unfamiliar songs.

Similarly, we performed ANOVA at the significance level

p \ 0.0001 on the DEAP dataset. Again, we found sig-

nificant variation in PSD values owing to familiarity, as

shown in Table 2. The variation in the averaged PSD (fa-

miliarity–unfamiliarity) calculated from the DEAP dataset

is illustrated in Fig. 2. In the DEAP dataset, the PSD

variation owing to familiarity was prominent in the higher

frequency bands.

Table 1 Significance values p from our dataset of the differences

between familiar and unfamiliar songs across subjects under single-

electrode PSD analysis; emboldened characters emphasize that PSDs

taken while listening to music with high familiarity are higher than

those taken while listening to music with low familiarity

Band Electrodes Significant values p (p\ 0.05)

d Fz 0.0005

F7 0.0357

T3 0.0377

h Fz 0.0002

a Fp1 0.0153

Fp2 0.0260

Pz 0.0292

T4 0.0007

b Fz 0.0047

T3 0.0315

T4 0.0005

c C4 0.0105

Pz 0.0003

F8 0.0019

T4 0.0006

5 http://www.mathworks.com/products/signal/.
6 http://www.mathworks.com/products/statistics/.
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It was previously discovered that listening to unfamiliar

songs relates to recollection, the cognitive ability to recall a

former context associated with a musical excerpt by uti-

lizing episodic memory [16]. We hypothesized that sub-

jects in our experiment might recollect past experience

from episodic memory to identify a novel song. Previous

research [17] that showed relatively higher gamma power

over the parietal scalp during the act of recollection (as

opposed to the act of experiencing familiarity) is consistent

with our results that showed a marginally higher gamma-

PSD obtained from the Pz electrode while listening to an

unfamiliar song. In addition, Hsieh and Ranganath [18]

also reported on the implication of the frontal midline h in

working and episodic memory in which the associated

memories could possibly be relevant to unfamiliar song

listening. However, subjects in the DEAP experiments

produced higher gamma and frontal midline theta power

while watching familiar music videos; we suspect that the

underlying reason for this is that the subjects used memory

to a greater extent to anticipate the next scene of a music

video because they might have occasionally watched the

music video versions of regularly listened to songs. Unlike

our dataset, subjects in DEAP dataset experiment who

watched a particular music video for the first time or who

had minimal experience with the video would engage so

intensely enough in watching the video that they avoided

using any recollection memory to associate the music with

previous experiences. This evidence indicated that famil-

iarity to video scenes had a higher influence on brain

activities than familiarity with the music used as back-

ground sounds in the music video.

Moreover, the increase in Fz theta power in our results

corresponds with the previous reports of enhancement of

frontal midline theta rhythm (Fmh) during focused atten-

tion [19]. A likely underlying reason for this is that song

unfamiliarity induced our subjects to listen more atten-

tively in order to successfully annotate emotions subse-

quently in the following phase.

3.3 Functional connectivity analysis

As most brain functions have been shown to involve

multiple brain sites rather than a single specific site, EEG-

based analysis of brain activity at the level of interrelation

between electrode pairs can offer deeper insights into the

association between brain activity and music familiarity. In

addition to the above-described analysis at the single-

electrode level, we performed an investigation of brain

functional connectivity in association with music famil-

iarity. To perform analysis in specific EEG frequency

bands, we applied a fifth order bandpass Butterworth filter

to extract EEG signals in the delta, theta, alpha, beta, and

gamma frequency bands from our dataset and to extract

EEG signals in theta, alpha, beta, and gamma frequency

bands from the DEAP dataset. As in the single-electrode-

level analysis, we analyzed only valid data from the 10

subjects in our dataset and from the 21 subjects in the

DEAP dataset. We then calculated connectivity indices

from all pairs of electrodes independently in each fre-

quency band using the three following approaches, which

have been commonly employed in many studies of EEG

correlates, including studies of the neural correlates of

emotion [20]. These three connectivity indices have been

demonstrated to be sensitive to different characteristics of

EEG signals.

Correlation corresponds to the relationship between two

signals from different brain sites. Given signals x and y, the

correlation at each frequency (f) is a function of cross-

covariance Cf
xy and auto-covariances, Cf

xx and Cf
yy, of x and

y:

Rxyðf Þ ¼
Cf
xy

ffiffiffiffiffiffiffiffiffiffiffiffiffi

C
f
xxC

f
yy

q : ð1Þ

Coherence is similar to correlation that also includes the

covariation between two signals as a function of frequency.

This index indicates how much two brain sites are working

Fig. 1 A topological plot of the variation of average PSD values

across subjects produced by songs with high and low music

familiarity (familiarity power–unfamiliarity power) from our dataset;

positive areas represent regions in which high familiarity produces

higher power than low familiarity, while negative areas depict where

unfamiliarity produces higher power
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closely together at a specific frequency band. Given signals

x and y, coherence is a function of the respective power

spectral densities, Pxxðf Þ and Pyyðf Þ, of x and y, and of the

cross-PSD, Pxyðf Þ, of x and y:

Cohxyðf Þ ¼
�

� Pxyðf Þ
�

�

2

Pxxðf ÞPyyðf Þ
: ð2Þ

Phase synchronization index (PSI) is a non-linear measure

of connectivity. The PSI among brain regions indicates

connectivity in terms of the phase difference between two

signals. PSI can be restricted to certain frequency bands

reflecting specific brain rhythms. For two signals x and y

with data length L, the PSI is defined as

PSIxy ¼
1

L

X

L

t¼0

ei½/xðtÞ�/yðtÞ�

�

�

�

�

�

�

�

�

�

�

; ð3Þ

where /xðtÞ = arctan ~xðtÞ = xðtÞ is the Hilbert phase of

signal x and /yðtÞ is the phase of signal y, while ~xðtÞ is the
Hilbert transform of x(t).

3.3.1 Statistical analysis

The results of the single-electrode-level analysis showed

that inter-subject variability affected brainwave disparity to

a much greater degree than music familiarity. Unlike this

analysis at the single-electrode level, in which we retrieved

multiple data for statistical analysis from one subject, in the

multiple electrode analysis, we calculated a single func-

tional connectivity index for each subject to represent

overall brain connectivity in each electrode pair in each

frequency band. In other words, a single connectivity index

was derived from EEG signals produced for each subject-

song pair. Then, the connectivity indices were separated

into two groups in accordance with music familiarity (low

and high), and a unified index was calculated to represent

the overall index for all subject-song pairs in each famil-

iarity group. Because coherence and PSI range from 0 to 1

and correlation ranges from –1 to 1, we calculated the

arithmetic mean to derive the overall coherence and PSI,

and the quadratic mean to derive the overall correlation

across songs. We then performed paired t-test using the

MATLAB Statistics and Machine Learning Toolbox to

discover any statistically significant difference in EEG

functional connectivity associated with music familiarity

across subjects.

3.3.2 Results

The significant variations in functional connectivity were

mapped to a scalp map, as illustrated in Figs. 3 and 4. From

our dataset, we discovered an increase in connectivity,

especially in the higher frequency bands, when subjects

listened to unfamiliar songs. Burgess and Ali [17] reported

greater functional connectivity in the gamma band during

an experience of recollection compared to that during an

experience of familiarity. Our results agree with this study,

as we found higher connectivity resulting from unfamiliar

songs, especially in the gamma frequency range.

Table 2 Significance values p from the DEAP dataset of the differ-

ences between familiar and unfamiliar music videos across subjects

under single-electrode analysis; emboldened characters emphasize

that the PSD resulting from watching music videos with high famil-

iarity is higher than that resulting from watching music videos with

low familiarity

Band Electrodes Significant values p (p\ 0.0001)

h CP1 4.98 9 10-5

Fz 1.75 9 10-5

F8 5.44 9 10-6

FC2 8.66 9 10-5

a F7 7.95 9 10-5

CP1 1.55 9 10-8

Oz 6.75 9 10-5

Fp2 9.48 9 10-5

FC6 4.08 9 10-7

b Fp1 9.62 9 10-5

FC5 1.46 9 10-6

FC1 6.85 9 10-8

C3 5.43 9 10-6

T7 8.19 9 10-8

CP5 4.23 9 10-6

CP1 5.21 9 10-6

P3 1.32 9 10-5

P7 4.64 9 10-7

Oz 4.36 9 10-10

Pz 2.78 9 10-7

AF4 2.02 9 10-7

Cz 3.89 9 10-9

P4 7.70 9 10-6

P8 1.08 9 10-5

PO4 5.39 9 10-8

O2 3.37 9 10-6

c Fp1 1.03 9 10-6

T7 1.91 9 10-5

P3 2.29 9 10-6

P7 4.08 9 10-9

Oz 1.81 9 10-8

AF4 5.16 9 10-15

Cz 9.16 9 10-9

P8 4.81 9 10-5

PO4 8.50 9 10-5

O2 1.63 9 10-7
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Imperatori et al. [21] found higher delta and gamma band

connectivity during the performance of autobiographical

memory tasks. In light of our hypothesis regarding episodic

memory use during unfamiliar song listening, our results

were consistent with their findings. Additionally, we found

an increase of connectivity in the DEAP dataset, especially

in higher frequency bands, when the subjects watched

familiar music video excerpts. This phenomenon is prob-

ably related to cognitive recollection, and hypothesized use

of episodic memory to anticipate the next video scene

might be the underlying cause.

Interestingly, the correspondence between single-elec-

trode-level analysis and functional connectivity analysis

might confirm that music familiarity elicits

detectable changes in brain activities that probably relate to

memory recollection.

4 Familiarity effects in emotion recognition systems

In the previous section, we demonstrated that music

familiarity affects EEG signals using both analysis at the

single-electrode level and the functional connectivity level.

In this section, we present the results of EEG-based emotion

recognition assessment that takes music familiarity into

account. To measure this, we separated EEG signals into

two groups in accordance with familiarity level (low and

high). In our dataset, we separated the data from songs into

a high familiarity data group (4–6 familiarity scores) and a

low familiarity data group (1–3 familiarity scores). For the

DEAP dataset, we used the same separation approach as in

the previous section. Features were then separately extrac-

ted from the EEG signals of each data group and used to

train emotion recognition models. As a comparison with the

traditional approach that overlooks the familiarity effect,

we also trained a model to use features extracted from all

data groups (i.e., the original data before separation).

4.1 Feature extraction

The fractal dimension (FD) value reveals the complexity of

a time-varying EEG signal and has been recently used in

affective computing research, including studies of EEG-

based emotional state estimation [22]. A higher FD value

for an EEG signal reflects higher activity in the brain [23].

The FD approach is appealing because of its simplicity and

ability to informatively reveal characteristics that can

properly indicate a variety of brain states. In this study, we

derived the FD value by using the Higuchi algorithm [24].

We also extracted PSD data to characterize EEG signals

in the frequency domain, which has become a common

practice in the estimation of emotional states [3]. We used

the same PSD ranges as those used in the previous section

as features for emotion classification model training.

A review of literature on the subject of using DEAP

datasets reported that the best emotion classification results

Fig. 2 A topological plot of the variation of average PSD value

across subjects exposed to music videos with high and low music

familiarity (familiarity power–unfamiliarity power) from the DEAP

dataset; positive areas represent regions in which high familiarity

produces higher power than low familiarity, while negative areas

depict where unfamiliarity produces higher power

Fig. 3 Functional connectivity with significant difference values

(p\0.05) owing to music familiarity from our dataset; lines indicate

significantly higher (solid) and lower (dash) connectivity indices

resulting from listening to unfamiliar songs as compared to listening

to familiar songs
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could be obtained by using a sliding window size of 3 s for

arousal classification and 6 s window size for valence

classification in the feature extraction process [25]. For the

sake of simplicity, in this work, we applied a 4 s sliding

window without overlapping between consecutive win-

dows for both arousal and valence classification in order to

retrieve a higher amount of data points from each song/

video. Using timestamps, we labeled each instance with an

associated ground-truth emotion. In our dataset, we used a

majority approach to determine the associated emotional

label for each particular window containing variation in

emotion annotation. In the DEAP dataset, multiple

extracted features from each video were labeled using the

single emotion reported by each subject.

The asymmetries of features in spatially symmetric

electrode pairs were taken into account in this study, as

such hemispheric asymmetries have been shown to be

informative in classifying emotions in previous

research [10, 22, 26]. An additional differential asymmetry

feature was calculated by subtracting a feature in the right-

hemisphere electrode’s signal from the same feature

extracted from the signal produced by the symmetric

electrode in the left hemisphere. We obtained additional

features from our dataset from five symmetric electrode

pairs throughout the brain and from 14 symmetric electrode

pairs in the DEAP dataset. In total, 17 FD and 85 PSD

features were extracted from our dataset, while 46 FD and

184 PSD features were extracted from the DEAP dataset.

4.2 Emotion classification

Emotion recognition was converted into a binary classifi-

cation by separating arousal into high and low classes and

valence into positive and negative classes. Each class in

our dataset was determined by the positivity of arousal and

valence ratings. In the DEAP dataset, the instances were

classified into the high arousal class when arousal rating

was higher than 4.5; otherwise, they were placed in the low

arousal class. Similarly, the data with a valence rating of

above 4.5 were placed in the positive valence class, and the

other data points were placed in the negative valence class.

We used the WEKA [27] library to apply three com-

monly used algorithms to classify emotional classes: a

support vector machine (SVM) based on the Pearson VII

Fig. 4 Functional connectivity with significant difference values (p\ 0.05) owing to music familiarity from the DEAP dataset; lines indicate

significantly higher (solid) and lower (dash) connectivity indices when listening to unfamiliar songs as compared to listening to familiar songs
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kernel function (PUK) kernel, a multilayer perceptron

(MLP) with one hidden layer, and C4.5. The overall per-

formance of emotion recognition within each subject was

evaluated using the 10-fold cross-validation method. As we

relied on self-annotation from subjects, the imbalance of

datasets has misled us in the interpretation of results; cor-

respondingly, we defined a new baseline—the chance level

or percentage of data points in the majority class. For

instance, a dataset from a subject comprising of 60 %

positive and 40 % negative arousal samples would have a

chance level of 60 %. In each subject’s data group, the

results of classification were compared to the chance levels

in order to evaluate the performance of emotion recogni-

tion relative to that of the majority-voting classification.

4.3 Results of emotion classification

As described in the previous section, data from three sub-

jects were removed from our dataset owing to reports of

drowsiness and instruction misunderstanding. We then

classified data from these remaining 12 subjects. The

averaged confidence level of correspondence in annotation

across these remaining subjects was 2.4063 (SD ¼ 0:6565),

which indicated that the annotated data in our dataset were

applicable. We also classified the data produced by the

remaining 21 subjects in the DEAP dataset.

The classification accuracies above the chance levels

averaged over the subjects from our dataset are shown in

Fig. 5. In arousal recognition, the degree of classification

above the chance level using only data from unfamiliar

song sessions was superior to that using the overall dataset,

and the data from familiar song sessions achieved the

lowest performance. The best results were obtained by

classifying FD features with SVM using unfamiliar song

data, which achieved 87.80 % (SD ¼ 7:73%) averaged

accuracy against a chance level of 64.86 % (SD ¼ 7:04%).

Similarly, valence recognition using unfamiliar song data

provided better results than using familiar song data or the

total dataset. Again, classifying FD features using SVM

produced the highest relative accuracy: 86.91 %

(SD ¼ 8:13%) averaged absolute accuracy against a

chance level of 68.10 % (SD ¼ 11:79%). However, the

results of a statistical t-test indicated that the superiority of

using unfamiliar data over other types of data in emotion

classification was not statistically significant.

Figure 6 shows the averaged classification accuracies

over the chance levels across subjects using the DEAP

dataset. Similar to the results obtained using our dataset,

classifying arousal and valence by using data from unfa-

miliar music video sessions achieved higher performance

than by using either high familiarity sessions or the overall

dataset. In arousal recognition, the best result over the

chance level was obtained by classifying PSD features with

SVM using data from low familiarity sessions; this

methodology achieved 73.30 % (SD ¼ 7:71%) averaged

accuracy across subjects against a chance level of 64.15 %

(SD ¼ 10:70%). In valence recognition, using PSD fea-

tures extracted from EEG signals in low familiarity ses-

sions to classify using SVM achieved the highest relative

performance, with an absolute performance of 72.50 %

(SD ¼ 6:91%) against a chance level of 62.49 %

(SD ¼ 8:02%). Furthermore, statistical t-test revealed that

classifying PSD features with either SVM or MLP using

data from low familiarity music video sessions were sig-

nificantly better than classifying by the same approach

using the overall dataset.

The superior performance of SVM relative to other

algorithms has also been shown in the previous studies [3].

Fig. 5 Arousal and valence classification accuracies above the chance levels for high familiarity (familiar songs), low familiarity (unfamiliar

songs), and combined (all songs) data groups from our dataset
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This superiority can be attributed to SVM’s better capability

for analyzing the non-linear behaviors of the brain.

5 Discussion

Our EEG-correlate evidence reveals that the effects of

familiarity are reflected in brain activities measured

through PSD results and brain functional connectivity

studies. However, the effectiveness of emotion recognition

using EEG might suffer if the subject’s familiarity with the

musical stimuli is disregarded. Experiments using both our

dataset and the DEAP dataset came to the consistent con-

clusion that data from sessions using only unfamiliar

musical excerpts provide better EEG-based emotion clas-

sification than data using familiar musical excerpts or a

combination of both data types. In summary, the empirical

results of our emotion recognition study suggest that

unfamiliar musical stimuli might be the most appropriate

material to evoke emotion in the construction of an emo-

tion recognition system. In addition, experiencing unfa-

miliar musical stimuli would also eliminate the factors of

expectation and predictability that have been reported to

influence emotional response to music [8].

One of the major differences between our dataset and

the DEAP dataset is the approach to annotation. Our EEG

experiments allowed subjects to continuously report emo-

tion in arousal-valence space; by contrast, subjects who

produced the DEAP dataset could report only one per-

ception for each music video watched. The temporal con-

tinuity of emotion reporting in our experiments led to a

higher granularity in emotion capturing compared to the

DEAP dataset, which could be the underlying reason why

the emotion recognition using our dataset had achieved

higher performance over the chance level than that using

the DEAP dataset.

Another difference between the two datasets was the

stimuli used. In our dataset, MIDI files were used and

subjects were instructed to close their eyes while listening

to the music. By contrast, the experiments producing the

DEAP dataset used music videos and the subjects kept their

eyes open to watch these. According to our results, the FD

approach could achieve better performance in terms of

emotion classification than PSD, whereas the PSD per-

formed better for the DEAP dataset. The superiority of the

PSD to the FD approach in EEG-based emotion recognition

was also seen in previous work using music videos [28]

and movie clips [29] as stimuli. To the best of our

knowledge, although FD features have been found to be

successful in emotion recognition when using music as

stimuli [22], none of the previous works directly compared

performance in terms of music-emotion recognition

between FD and PSD features. This study, therefore, pro-

vides an initial of music-emotion classification comparison

between the use of FD and PSD features. The actual

association between stimuli difference and classification

results is a subject worthy of systematic investigation in a

dedicated study, which we propose to conduct in future

work. In addition, as the DEAP dataset produced variations

in PSD that most prominently appeared in higher frequency

bands, which are related to high cognitive functions, we are

encouraged to further study whether the cognitive level has

any influence on familiarity and its related processes.

Despite the novel results of the study discussed in this

paper, the mechanisms underlying the effects of music

familiarity on brainwaves remain unclear and are worthy of

Fig. 6 Arousal and valence classification accuracies above the chance levels for high familiarity (familiar songs), low familiarity (unfamiliar

songs), and combined (all songs) data groups from the DEAP dataset
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further investigation. Extending the present study by

including more subjects or using another sophisticated

analysis tool such as event-related potential to validate the

current findings is another prospective area for our future

work. In addition, incorporating familiarity information

into the process of building an emotion classifier can

possibly improve the performance of emotion estimation,

which represents yet another avenue for future work.

6 Conclusions

This study presented evidence for the association between

EEG signals and music familiarity based on the analysis of

single-electrode-level PSD and brain functional connec-

tivity. We demonstrated that classifying emotion using

typical algorithms can benefit from controlling the famil-

iarity level of the subject to musical stimuli. In particular,

using data collected solely from unfamiliar stimuli per-

ception can help achieve more accurate emotion classifi-

cation results, which suggests that unfamiliar musical

stimuli are more appropriate for use in the construction of

emotion recognition systems.
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