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Abstract Established process models for knowledge

discovery find the domain-expert in a customer-like and

supervising role. In the field of biomedical research, it is

necessary to move the domain-experts into the center of

this process with far-reaching consequences for both their

research output and the process itself. In this paper, we

revise the established process models for knowledge dis-

covery and propose a new process model for domain-ex-

pert-driven interactive knowledge discovery. Furthermore,

we present a research infrastructure which is adapted to this

new process model and demonstrate how the domain-

expert can be deeply integrated even into the highly

complex data-mining process and data-exploration tasks.

We evaluated this approach in the medical domain for the

case of cerebral aneurysms research.

Keywords Doctor-in-the-loop � Expert-in-the-loop �
Interactive machine learning � Process model � Knowledge
discovery � Medical research

1 Introduction

Clinical researchers today are confronted with increasingly

large, complex, and high-dimensional datasets [1]. Con-

sequently, the application of interactive visual data explo-

ration in combination with machine-learning techniques for

knowledge discovery and data mining is indispensable.

However, these algorithms work well in lower-dimensional

spaces and well-defined environments, but in the biomed-

ical domain, we are confronted with probability, uncer-

tainty, incompleteness, vagueness, noise, etc., which make

the application of automated approaches difficult, and the

complexity of machine-learning algorithms have kept away

non-computing experts from the application of such solu-

tions in their daily research workflow. These clinical

researchers, or domain-experts are usually no computing

experts. They have highlevel medical domain-expert

knowledge to perform their research, to interpret newly

gained knowledge and patterns in their data, but in practice

rather only have basic or rudimentary computation know-

how. A smooth interaction of the domain-expert with the

data would greatly enhance the whole knowledge-discov-

ery process chain [2]. In daily clinical research, the actual

process differs significantly from the established process
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descriptions. In the commonly known definitions (see [3]

for a good overview), the domain-expert is seen in a

supervising, consulting, and a customer role: a person who

is outside the process and assists in crucial aspects with

domain knowledge and receives the results. All the other

steps of the process are performed by the so-called data

analysts, who are supported by the domain-experts in

understanding for the current research project the relevant

aspects of the research domain and in interpreting the

results. However, for the analysis of medical data, detailed

and explicit medical expert knowledge and knowledge of

clinical processes is urgently required. Roddick et al. [4]

point out that data mining in medical domain requires

significant domain-expertise and cannot be performed

without the intense cooperation of medical domain-experts.

This clearly distinguishes the data mining in the medical

domain from data mining in the market basket or financial-

trading data. Furthermore, Roddick et al. suggest that the

findings of data mining in medical research should only be

interpreted as suggestions for further research. Cois and

Moore [5] stress the uniqueness of medical data mining,

caused by the nature of its data and other aspects. This is

also supported by Bellazi and Zupan [6], who stress the

safety aspect of medical knowledge discovery, which is an

often neglected part, as the expert-in-the-loop (in the

biomedical sciences, we speak of a ‘‘doctor-in-the-loop’’)

is a new paradigm in information-driven medicine, seating

the expert as authority inside a loop supplying him/her with

information on the actual patient data [7].

The integration of the domain-expert directly into data

exploration and data mining tasks is a relatively recent

approach, and it should be emphasized that data mining is

only one step of the whole interactive knowledge-discovery

process chain (see Fig. 2 in [2]). Consequently, it is

mandatory to investigate which tasks arise for the domain-

experts as central actors of the whole knowledge-discovery

process, and what consequences this paradigm shift has for

the process itself. In this paper, we focus on aspects of a

novel, process model. We also present an ontology-based

research-data infrastructure for medical research which is

based upon the newly presented process model for knowl-

edge discovery. Furthermore, we will show by a concrete

example how this generic infrastructure is used in everyday

clinical research.We also showhow the elaborated structural

meta-information of the domain ontology is used to lower the

technical barriers for medical domain-experts to use

advanced visualization and data-mining algorithms.

2 Related research

There is not considerable amount of research as yet on this

hot topic. A reason for sure is that the term ‘‘interactive

knowledge discovery’’ is not a well-established or clearly

defined term.

A recent work from 2014 by Mirchevska et al. [8]

presents a method for combining domain knowledge and

machine learning for classifier generation and online

adaptation, which exploits advantages in domain knowl-

edge and machine learning as complementary information

sources. The authors state that while machine-learning

methods may discover patterns in domains that are too

subtle for humans to detect, domain knowledge of an

expert may contain information on a domain not even

present in the available domain data. This aspect may have

huge influence on medical research.

A good example for interactive knowledge discovery is

the work by Mueller et al. [9] where. in the data-mapping

phase, which is done by a biomedical expert, the data

attributes of the meta-information are compared with the

visual capabilities of the graphical elements in order to

give a feedback to the user about the correctness of the

variable mapping.

In 2007, Inokuchi et al. [10] described MedTAKMI-

CDI, an online analytical processing system, which enables

the interactive discovery of knowledge for clinical decision

intelligence (CDI) which supports decision making by

providing in-depth analysis of clinical data from multiple

sources on a database of about 7000 patients at the National

Cancer Center in Japan.

The essence is that the elicitations of knowledge from

domain-experts and empirical machine learning are two

distinct approaches for knowledge discovery with different

and mutually complementary capabilities [11].

2.1 Established process models

In 1996, Usama Fayyad, Gregory Piatetsky-Shapiro, and

Padhraic Smyth published a number of articles [12], [13,

14] which build the base for what we call now the process

of knowledge discovery in databases. Soon, further process

models were published with different focuses, degrees of

detail [15, 16], and so on. In general, there is a huge

consensus among these process models. In their review

paper in 2006, Kurgan et al. [3, Table 1 on page 6] even

managed to extract a generic process model out of the

previous, most-established process models.

Aside from the significant consensus concerning the

steps of these process models, there is also a huge agree-

ment about the roles within these processes. The process is

executed by a so-called data analyst, a person whose profile

varies from that of a computer scientist, to that of statis-

tician or data-mining expert. The domain-expert is always

seen in an external position, as a customer and/or super-

visor. This fact is clearly reflected by the first steps of the

generic process model (and hence of most other process
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models): 1—Understanding the Domain and 2—Under-

standing the Data. Both steps would be unnecessary for

domain-experts within the process loop.

3 A new process model

3.1 Proposal

Keeping in mind that medical domain-experts are required

to be deeply involved into the process of medical knowl-

edge discovery [5], the known process models are hardly

suitable. A new process model is needed, which regards the

central role of the domain-experts.

We present a new process model for domain-expert-

centered knowledge discovery in biomedical research—see

Fig. 1. It is, of course, closely related to and derived from

the existing models, but differs in crucial aspects. The

major difference to the established definitions cannot be

seen in this process description, as it takes place at another

level. It is the role of the medical domain-experts switched

from the edge of the process to the center. Subsequently,

the first significant difference is the absence of the step,

‘Understanding of the Problem‘, which is of course caused

by the new major player of the process, who does no longer

need to invest time in getting into the research matter.

Hence, the steps of the new process are defined as follows:

1. Data modeling This step is closely related to the step,

‘Understanding of the Data,‘ in the definitions of [17].

It is necessary for the researcher(s) to be aware of what

kinds of data are needed to be able to answer the

research questions: Which data entities from my

research domain are relevant for the current research

projects? Which of their attributes are needed? and In

what kind of relations are they in? This term is closely

related to the term Experimental Design with the dif-

ference that experimental design is a kind of super set

of data modeling. Data modeling can be a part of the

experimental design, but it only focuses on the struc-

ture and validity rules of the research data that need to

be stored. Experimental design usually regards further

aspects, such as the desired sample sizes, inclusion and

exclusion criteria, the schedule, etc. as well. This data

definition, which will be called the domain ontology

from now on, builds the base for all further data-based

operations, and differs from one research project to

another and from one domain to another. This distin-

guishes this process definition from many conventional

definitions, where only available data—data which are

produced in everyday routines—are analyzed. In order

to be able to answer medical research questions, it is

necessary to overcome the bias of using only what is

easily available.

2. Data acquisition Especially in medical, scientific

research, it is often necessary to acquire the needed .

Data which are stored in electronic hospital informa-

tion systems (HIS) are hardy suitable for scientific

research because they often contain semi-structured,

textual data [18], or the data mostly used for billing

and documentation purposes [19]. Especially medical

diagnoses and interpretations of medical test are often

stored as free text. Furthermore, redundant and

contradictory data also occur. Although data mining

has already been performed directly on HIS, its results

are less scientifically applicable than for management

purposes [20, 21]. The missing or the lack of reusable

data stored in clinical information system has already

been identified as a major challenge to medical

informatics [22].

3. Data validation The quality of the outcome of a

research projects strongly depends on the quality of the

underlying data. As already mentioned above, data

quality is a widely underestimated issue in medical

datasets, and even data from electronic sources (hos-

pital information systems, etc.) are erroneous and
Fig. 1 A new process model for domain-expert-centered knowledge

discovery in biomedical research
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inconsistent. Considering the complexity and the huge

amount of medical data needed for medical research,

the need for an automatic data validation becomes

obvious. Data quality is known to be a generally

underrepresented topic in medical publications [23].

4. Data preparation Data analysis is rarely performed

directly on the whole dataset. Usually, datasets of

interest are created for certain hypotheses, and erro-

neous or implausible data are removed from these sets.

Furthermore, in medicine, very often changes or

differences (functions on data values), rather than

raw data, contain valuable information [4]. Conse-

quently, it is necessary to define these desired func-

tions on the data and make their results accessible to

researchers/users as new calculated variables.

5. Data analysis In this phase, the actual step of

knowledge discovery is performed, using either con-

ventional statistics or methods of data mining, machine

learning, or means of visual analytics.

6. Evaluation In this final step, the gained knowledge

must be clinically evaluated and verified.

The steps of this process are not necessarily aligned to

follow a strict sequence. On the one hand, steps happen in

parallel or strongly overlap with each other. Hence, it is pos-

sible to see the steps of data acquisition and data validation

follow a sequential order, where validation is performed as

soon as all the data are acquired. Alternatively, data acquisi-

tionanddatavalidation canoccur inparallelwhere eachnewly

entered item of data is immediately verified. Furthermore, it is

of course possible to perform data preparation and subsequent

analysis alongside, while the data acquisition is still in pro-

gress. On the other hand, there exist a number of feedback

loops, such as from almost any step of the process to data

modeling. This means at any of these steps, it may become

necessary to adapt the actual domain ontology. Furthermore,

insights gained from data validation and data analysis may

require reacquisition or revision of the existing data. And

results from first data analysis may reveal systematic data

errors, which entail a revision of the data-validation rules or

the data-preparation algorithms.

3.2 Consequences and challenges

The researching medical domain-experts face a number of

challenges and obstacles when they try to perform medical

research and knowledge discovery. The situation is wors-

ened by the fact that research projects with limited funding

often complete lack an explicit IT support. So the

researchers find themselves in a situation where they have

to deal with both, the complexity of their research domain

and the complexity of their own data and data structures

with all its consequences.

The selection, setup, and maintenance of a research data

infrastructure have already been identified as a major

obstacle in biomedical research [24]. In 2007, a survey

among biomedical researchers [25] found out that data

handling in general had become a major barrier in a

number of biomedical research projects. Furthermore,

biomedical researchers are often hardly able to cope with

the complexity of their own data. The fact that many

researchers use general-purpose office applications, which

do not provide any support in data handling, worsens the

situation.

Although highly sophisticated data mining (DM) and

machine-learning (ML) algorithms have been used in other

domains for decades, their usage in the field of medical

research is still limited. A survey from 2012 among hos-

pitals from South Africa, Germany, Switzerland, Lithuania,

and Albania [26] showed that only 29 % of the medical

personnel of responders were familiar with a practical

application of DM. Although the survey is sure not globally

representative, it indicates that medical research is still

widely based on basic statistical methods, which might be

sufficient in low-dimensional settings, but medical data

tend to be high dimensional. One reason for this rather low

acceptance rate is the relatively high technical obstacle that

needs to be taken in order to apply these algorithms com-

bined with the limited knowledge about the algorithms

themselves and their output. A view that is shared by [27]

who states that ’the grand challenge is to combine these

diverse fields to support the expert end users in learning to

interactively analyze information properties thus enabling

them to visualize the relevant parts of their data’.

Since the medical domain itself is a very complex one

and data acquisition is usually done by multiple persons

over a certain period of time, it is crucial for subsequent

data analysis to check the plausibility and validity of the

collected data. Simple recording errors can usually be

detected by simple rules, but systematic and procedural

errors, which are known to cause severe bias to the study

outcome [28], can rather be detected by high complex

rules. In general, data quality in medical research project is

not a well-researched topic [23].

4 Application and implementation

In order to address all these challenges we developed a

generic, ontology-centered research infrastructure. The

main principle is the following: By modeling the actual

research domain in the form of a domain ontology (Step 1

of the process), the domain-experts build the base for all

subsequent steps. The whole research infrastructure derives

its structure and behavior from the central domain ontol-

ogy—at run-time. Changes to the ontology have immediate
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effects on the whole system, which consists of three main

modules. Firstly, a management tool, which allows the user

to model and maintain the domain ontology, but also

process and analyze the research data. The other two

components are an ontology-derived electronic data inter-

face based upon and open-source ETL (Extract-Transform-

Load) suite, and an ontology-derived web interface for

manual data input and processing. Wherever possible the

elaborate structural meta-information is used to actively

support the user in data handling, processing and analyz-

ing. The system always appears to the user as if it was

especially tailored for his domain. For further information

in more detail on the infrastructure itself, the reader is

kindly referred to [29, 30, 31].

Based on one particular example, we now want to show

how this process in combination with an appropriate soft-

ware system can enable the domain-expert to utilize

advanced visualization methods and machine-learning

algorithms.

4.1 Ontology-guided meta-classification

Given the following situation: The researcher used the

above-mentioned research infrastructure for collecting his

research data and now wants to investigate the influences

(possibly nonlinear) of a number of features on a target

class. Experts in the field of computer science will recog-

nize this problem as a binary classification problem. In

order to answer this question to the researcher, the fol-

lowing approach was made: After the user selects the

potential features and the desired target class for a given

dataset, a number of classification algorithms in numerous

configurations are launched in parallel in the background.

The whole data transformation and pre-processing are

performed automatically by means of the extensive struc-

tural meta-information available from the current domain

ontology. For all resulting classification models a tenfold

cross validation is performed and the area under the RoC

curve of each classification algorithm and configuration is

calculated. As a result, the best area under RoC of each

algorithm are consolidated and presented in a user-friendly

way. In this way the research gets an indication whether the

assumed influence is measurable or not. This approach is

based upon the following assumptions:

1. The quality of the classification model that is devel-

oped by a classification algorithm in a reasonable

(default) configuration or in an automatically opti-

mized configuration provides an indication as to

whether a reliable classification is possible at all, or

not; for example. if such a classification model shows

an area under the ROC curve of something close to 0.5,

then it is rather unlikely to increase the quality of the

classification model to a satisfying level just by

adjusting and tuning the algorithms’ parameters. The

more promising way is to adjust the input set of input

variables.

2. If none of the applied classification algorithms in any

of the used configuration is able to yield a satisfying

classification model then it is assumed that there is no

measurable influence of the input features on the target

class within the available dataset.

It has to be kept in mind, that this approach shows a

number of limitations and restrictions: The yielded result is

an indication whether an influence can be assumed, not a

classification model. The models themselves are only a

means to get a result. The result does not provide any

information an statistical significance of the discovered

phenomena. The result does not provide any information

on causalities and reasons for the discovered phenomena.

This approach has yet to take into account the correlations

among the input features. This approach has yet to provide

any information whether a subset of the chosen features

would have been sufficient to predict the class label. This

approach does not provide any explanation component on

how strong or in which way the features influence the

target class. Nonetheless, it does yield an easy-to-use and

easy-to-interpret indication on whether the assumed (even

nonlinear) influence can be measured in the data.

For a first test setup, the following algorithms were

used: A Naive Bayes classifier, a Random Forest, a

Logistic Regression, a Support Vector Machine with Grid

Search optimization [32], and a Multi-Layer Perceptron.

The ontology-guided meta-classifier was tested using a

number of generated and publically available datasets with

promising results (see [33]) and will now be tested on

actual clinical research data.

4.2 Ontology-guided dimensionality reduction

for visual analytics

It is an often re-occurring requirement in medical research

to find groups of similar elements, e.g., patients with

similar symptoms or anamnesis. This process is often

referred to as clustering or unsupervised learning. Cluster

analysis is defined as the organization of a collection of

patterns (usually represented as a vector of measurements,

or a point in a multidimensional space) into clusters based

on similarity [34]. Cluster algorithms try to find groups of

similar records and group them into meaningful clusters.

The cluster membership of each data record is usually

marked with a cluster number or cluster label. Without any

visual check the result of the clustering is very hard to

interpret. It provides no information one shape of each

cluster and no information of the topology among the
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clusters. Although cluster analysis is an established state-

of-the-art method, its direct benefit for the domain-expert is

very limited.

In order to overcome these drawbacks of classical

cluster algorithms the decision was made to follow a visual

analytics paradigm. Therefore, the potentially high-di-

mensional research data need to be mapped onto a two-

dimensional display. Two well-known algorithms for these

tasks are the Self-Organizing or Kohonen Map (SOM) [35]

and the nonlinear mapping algorithm of Sammon’s map-

ping [36]. Both algorithms try to minimize the error or

mismatch between topologies in the n-dimensional source-

space and the (mostly) two-dimensional target space.

For the medical researcher, the nonlinear mapping

algorithm is hidden behind the notion ’Visual Clustering.’

The only configuration, which is required by the user, is the

selection of attributes that should be taken into account for

the calculation of the distance or dissimilarity of two

records. Then, the algorithm normalizes the data. Subse-

quently, a distance matrix is calculated, whereas for the

numerical variables, an Euclidean distance (after normal-

ization) is used and an extension of the well-known Jaccard

Metric for categorical variables. The Jaccard Metric was

extended in a way that it takes into consideration the

similarity of categorical concepts if they are organized in a

hierarchical structure, e.g., the ICD-10 catalog. The simi-

larity is determined base on the relative position of con-

cepts in the concept hierarchy. A publication on this

extension is in progress. Finally, the result is presented in a

scatter plot. By means of a mouse wheel, the user is able to

change the variable that is used to color the dots. In this

way, not only patterns in the topology of the data can be

identified but also the correlation to other attributes

according to the coloring. Within the plot, the user is able

to select datasets of interest and directly access and process

the underlying data records. Plots showing the same set of

interest are linked with each other in such a way that the

selection on one plot is automatically highlighted on all

other plots as well.

4.3 Clinical application

4.3.1 The aneurysm registry

A medical registry is a systematic collection of a clearly

defined set of health and demographic data for patients

with specific health characteristics, held in a central data-

base for a predefined purpose [37]. The aneurysm registry

was driven by the need of the Institute for Radiology at

Campus Neuromed of the Medical University Linz to

collect and analyze the medical outcome data of their

patients, who have cerebral aneurysms. The main research

subjects of the database are the clinical and morphological

follow-ups of patients with cerebral aneurysms, who were

treated with an endovascular procedure—either surgically

or conservatively.

4.3.2 Definition of cerebral aneurysm

A cerebral aneurysm is the dilation, ballooning-out, or

bulging of part of the wall of an artery in the brain.

Cerebral aneurysms can occur at any age, although they are

more common in adults than in children, and are slightly

more common in women than in men. The signs and

symptoms of an unruptured cerebral aneurysm will partly

depend on its size and rate of growth. For example, a small,

unchanging aneurysm will generally produce no symp-

toms, whereas a larger aneurysm that is steadily growing

may produce symptoms such as loss of feeling in the face

or problems with the eyes. Immediately after an aneurysm

ruptures, an individual may experience such symptoms as a

sudden and unusually severe headache, nausea, vision

impairment, vomiting, and loss of consciousness, leading

to a mortality rate of up to 50 % in severe cases. [38]

4.3.3 Epidemiological aspects

Intracranial aneurysms occur in the range between 1 and 5

% of the adult population, which accounts for about 12

million patients in the US. Most of these aneurysms (50–80

%) are rather small and do not rupture during a patient’s

life time. The estimated incidence rate of subarachnoidal

hemorrhage (SAH) from a ruptured intracranial aneurysm

is 1 case per 10,000 persons (in the US). SAH is more

common in women than in men (2:1), and the peak inci-

dence is found in persons aged 55–60 years. Although the

causes of intracranial aneurysms are not known yet, genetic

factors may play a role in the development of aneurysms

[39, 40].

4.3.4 Clinical issues

In the course of this evaluation, we will try to verify the

algorithms and their ontology-guided implementation by

means of checking them against established medical

knowledge and experience from the domain-experts. The

medical experts identified a number of features that are

known to have an impact on the risk of rupture of a cere-

bral aneurysm, which are as follows:

– The size of the aneurysm

– The localization of the aneurysm

– The existence of multiple aneurysms

– The age of the patient

– The sex of the patient

138 D. Girardi et al.

123



We will try to verify this set of influence factors using

the proposed ontology-guided meta-classification algo-

rithm and use the ontology-guided dimensionality-reduc-

tion algorithm for exploratory data analysis. It is not the

intention of this paper to reveal the newly gained medical

knowledge, but to verify the gained output of the domain-

expert-operated, ontology-guided exploration algorithms

against the already known medical evidence.

5 Results

The tests were performed by the medical domain-experts

on the research data of 1032 cerebral aneurysms belonging

to 774 patients. 397 of these aneurysms were ruptured,

representing an incidence rate of 38 %.

5.1 Meta-classification

The medical research team tried a number of combinations

of potentially influential parameters, and the results were

later on discussed. For the first run of the meta-classifica-

tion algorithm, the following target class was chosen:

– Aneurysm.Ruptured This indicates whether the aneur-

ysm is ruptured and can cause a subarachnoid

hemorrhage.

As potential input features, the following where selected:

– Aneurysm.Presentation Defines how the patient was

originally presented at hospital admission. Possible

values are Epilepsy, Follow-up, SAH (subarachnoid

hemorrhage), and Coincidental.

– Aneurysm.Location The anatomic location of the

aneurysm with the cerebral vessel structure.

– Aneurysm.Width The longest possible diameter

throughout the aneurysm volume, which is usually

measured via digital substraction angiography (DSA)

and 3D volume reconstruction.

– Patient.Number of Aneurysms The number of aneur-

ysms the patient has in total.

– Patient.Age The age of the patient at the diagnosis date

of the aneurysm.

For the first test run, the results are shown in Table 1.

Table 1 shows very promising results at a first glance,

but they have to be seen very critically from a medical

point of view. The variable Aneurysm.Presentation was

part of the feature set. This variable contains the value

SAH, which indicates that the aneurysm is already rup-

tured. Consequently, when we have an aneurysm which

was presented with SAH, then it is absolutely clear that it

had already ruptured. Nonetheless, this is a good example

that even primitive, linear straight-forward influences can

be reliably detected with this method.

In the second mapping, the feature Aneurysm Presen-

tation was omitted, in order to investigate how the other

parameters influence the risk of rupture. The results are

shown in Table 2.

The areas under the ROC curve for all algorithms are

significantly lower than for the first feature set. However,

an obvious distance from the 0.5 area remains, indicating

the influences of these features on the risk of rupture, the

same as those that the medical experience confirms. In a

further step, the set of features was extended by the sex of

the patient. The results are shown in Table 3.

Here, only a minimal improvement compared to Table 2

could be observed.

5.2 Dimensionality reduction

The visual clustering algorithms were applied to the same

datasets using the same feature set as described in Sect. 5.1.

Furthermore, the visualizations aim to show the related

correlations and patterns that were already identified by the

ontology-guided meta-classification.

Figure 2 shows the results for the first mapping. The

distance of the aneurysms in the high-dimensional source

space was calculated based on the following features:

Aneurysm.Presentation, Aneurysm. Location, Aneurysm.

Width, Patient.Number of Aneurysms, and Patient.Age.

Figure 2 contains two screenshots directly taken from the

ontology-centered research infrastructure. The first one

(a) is colored according to the presentation type of the

aneurysm, and the latter one (b) is colored by the rupture

state. The visualization echoes the impression that we

gained from the tests with the meta-classifier. Once the

Table 1 The area under the ROC curve for the best configuration of

each algorithm for the features: Aneurysm.Presentation,

Aneurysm.Location, Aneurysm.Width, Patient.Number of Aneur-

ysms, and Patient.Age

NB RF MLP LR SVM

0.987 0.992 0.988 0.984 0.994

NB Naive Bayes, RF Random Forest, MLPMulti-Layer Perceptron,

LR Logistic Regression, SVM Support Vector Machine

Table 2 The areas under the ROC curves for the best configuration of

each algorithm for the features: Aneurysm.Location, Aneur-

ysm.Width, Patient.Number of Aneurysms, and Patient.Age

NB RF MLP LR SVM

0.779 0.814 0.776 0.793 0.809

NB Naive Bayes, RF Random Forest, MLP Multi-Layer Perceptron,

LR Logistic Regression, SVM - Support Vector Machine
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aneurysm presentation type is known, the prediction of the

rupture state of the aneurysm is possible with a very high

reliability.

In accordance with the tests in Sect. 5.1, a second

mapping was created by omitting the variable Aneurysm.

Presentation but taking into account the sex of the patient.

The results of this visual clustering are shown in Fig. 3.

The distance of the aneurysms in the high-dimensional

source space was calculated based on the following fea-

tures: Aneurysm.Width, Aneurysm. Location, Pa-

tient.Number of Aneurysms, Patient.Age, and Patient.Sex.

The general structure of the shows four clearly separable

clusters, while the two clusters on the left-hand side show

female patients and the clusters on the right-hand side show

male patients. The size difference reflects the fact that

about two-thirds of aneurysm patients are female. The

horizontal separation is caused by the location of the

aneurysm. The northern clusters contain aneurysms, loca-

ted in the anterior circulation of the brain. The southern

area contains aneurysms of the posterior circulation. The

dots in the upper plot (a) are colored according to the exact

location of the aneurysm. The dots in the lower plot (b) are

again colored by the rupture state of the aneurysms. In

comparison with the section (b) of Fig. 2, the separation

between the ruptured and the non-ruptured aneurysms is

not that clear anymore. However, there are still areas with

higher densities of red dots and areas where this density is

remarkably lower, which is in accordance with the results

that were observed in Sect. 5.1, when the Aneurysm.Pre-

sentation was removed as a feature. Remarkable in section

(b) of Fig. 3 are the two very dense red (ruptured) areas

which are marked with a capital A. The same areas are

marked in section (a) of the same figure. It immediately

strikes that both areas are marked with the same color,

meaning they share the same location. The separation

between these two clusters is caused by the split by

Patient.Sex, which was also a feature in this case. The

Table 3 The areas under the ROC curves for the best configuration of

each algorithm: Aneurysm.Location, Aneurysm.Width,

Patient.Number of Aneurysms, Patient.Age, and Patient.Sex

NB RF MLP LR SVM

0.789 0.820 0.773 0.800 0.812

NB Naive Bayes, RF Random Forest, MLP Multi-Layer Perceptron,

LR Logistic Regression, SVM Support Vector Machine

Fig. 2 An ontology-guided nonlinear mapping of 1032 cerebral

aneurysms with a distance calculation based on the following

features: Aneurysm.Presentation, Aneurysm.Width, Aneurysm.Loca-

tion, Patient.Number of Aneurysms, and Patient.Age. a The aneur-

ysms are colored according to their presentation: green is incidental,

blue is coincidental, and red is after a subarachnoid bleeding. b The

aneurysms are colored according to their rupture state red are

ruptured, white are non-ruptured. (Color figure online)

Fig. 3 An ontology-guided nonlinear mapping of 1032 cerebral

aneurysms with a distance calculation based on the following

features: Aneurysm.Width, Aneurysm.Location, Patient.Number of

Aneurysms, and Patient.Age. a The aneurysms that are colored

according to their location. b The aneurysms that are colored

according to their rupture state red are ruptured, white are non-

ruptured. (Color figure online)
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right-hand side aneurysms are from male patients and the

left ones from females. The said location is the Anterior

Communicating area, which is known to have a higher risk

for aneurysm rupture [41].

6 Discussion

All the known and relevant process models for knowledge

discovery find the (medical) domain-expert in a customer-

like, supervising role [3, 42]. While the scientific com-

munity is slowly realizing what benefits can be gained

when the domain-expert is deeply integrated into the data-

mining and machine-learning loop, no relevant research on

the knowledge-discovery process could be found.

We proposed a new process model for expert-driven

knowledge discovery in medical research. It eliminates the

frequent tasks, Understanding the Domain and Under-

standing the Data, from the known models and replaces

these tasks by the following tasks: Data Modeling, Data

Acquisition, and Data Validation. For the software support

of this new process model, an ontology-centered approach

was chosen. In the first step of the new process (Data

Modeling), the domain-experts define what data (struc-

tures) are necessary for the current research questions to be

answered. This definition is stored in the form of a domain

ontology, which is subsequently used to actively support

the user in all the tasks of the process.

In this paper, we demonstrated how the extensive use of

ontology-originated, structural meta-information can help

the medical domain-expert to familiarize himself with the

application of advanced machine-learning and visualiza-

tion algorithms—algorithms that are usually the preserved

domain for the IT and machine-learning experts. By

automatizing the data pre-processing and algorithm

parametrization to a very high degree, it is possible even

for a non-IT user to apply these algorithms and find

answers to their research questions. The visual-analysis

algorithms were able to detect a correlation between the

risk of rupture and the location of the aneurysm, which was

already medically evident.
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