
The diversity rank-score function for combining human visual
perception systems

Christina Schweikert . Darius Mulia . Kilby Sanchez .

D. Frank Hsu

Received: 9 December 2015 / Accepted: 27 January 2016 / Published online: 15 February 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract There are many situations in which a joint

decision, based on the observations or decisions of multiple

individuals, is desired. The challenge is determining when

a combined decision is better than each of the individual

systems, along with choosing the best way to perform the

combination. It has been shown that the diversity between

systems plays a role in the performance of their fusion.

This study involved several pairs of people, each viewing

an event and reporting an observation, along with their

confidence level. Each observer is treated as a visual per-

ception system, and hence an associated scoring system is

created based on the observer’s confidence. A diversity

rank-score function on a set of observation pairs is calcu-

lated using the notion of cognitive diversity between two

scoring systems in the combinatorial fusion analysis

framework. The resulting diversity rank-score function

graph provides a powerful visualization tool for the

diversity variation among a set of system pairs, helping to

identify which system pairs are most likely to show

improved performance with combination.

Keywords Cognitive diversity � Combinatorial fusion

analysis � Diversity rank-score function � Multiple scoring

systems � Rank-score characteristic (RSC) function

1 Introduction

The concept of multiple scoring systems has been applied

to a variety of domains [1, 2]. In situations where multiple

scoring systems are constructed, we are interested in con-

ducting a meta-analysis to gain an understanding of the

relationship between the systems, specifically the diversity

between them. It has been shown that the combination of

two scoring systems can outperform individual systems

when there is some diversity between the systems, and they

are of relatively good performance [1, 3]. To this end,

quantitative measures of diversity can be used to generate

diversity scores for pairs of systems, which can then be

analyzed within the combinatorial fusion analysis (CFA)

framework [1].

Human beings are constantly and naturally performing

fusion of information within and among the senses. There

is extensive research in this area on the neurological level

pertaining to how fusion in the sensory system works [4–

6], how visual information is combined with information

from other senses [7–11], and how visual systems are

combined [12, 9, 13]. In this study, however, we are

focused on the inter-human level of information and fusion

of the information at the decision level.

There are many situations in which two people’s

observations are considered for a decision, such as referees

in a football or tennis match, physicians examining a

patient, co-pilots navigating a plane, and so on. For

example, when two physicians are examining a new

patient, each may observe different symptoms that can

indicate different diseases; interactive consultation may

lead to a final diagnosis. When two people are interactively

making a decision based on visual input, research by

Bahrami et al [12], Ernst and Banks [7], and Kepecs et al

[13] suggests that these decisions are improved when two
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people are interactively making the decision, rather than an

individual. The question then becomes, if we have two

people making visual observations of an event, how do we

integrate these observations or decisions? Do we choose

one of the observer’s results, or create a combination of the

two? Koriat [14] emphasizes the importance of confidence,

and that it may be a good option to take the decision of the

more confident person. The approach taken in our study is

to combine the observations or decisions made by two

people in an attempt to outperform the individual deci-

sions. The visual observations tested in this project involve

pairs of volunteers that are asked to give the location of a

small object they observe being tossed in a field.

In order to perform the desired combination, by score or

by rank, a scoring system must first be constructed for each

participant in a trial. Each participant’s observation, or

perception system, is represented as a scoring system,

which is made up of a score function and a rank function.

Given this multiple scoring system scenario, we then

analyze the cognitive diversity between the scoring sys-

tems of a trial. A quantitative diversity measure, the dis-

tance between two rank-score functions, is used to

represent the cognitive diversity between two scoring

systems [1, 2]. Examining the relative diversities between

the system pairs, together with the performance of their

combinations, can give us insight into how diversity vari-

ation may play a role in the performance of system com-

binations. The diversities between systems are analyzed

using the diversity rank-score functions, which are then

visualized in diversity rank-score graphs. This visualization

of diversity variation is beneficial in situations where there

are a large number of scoring system pairs (hundreds or

thousands). Interactive data visualization [15–17] is a

dynamic field in which data are visualized with the intent

to facilitate an end user in a particular task. The diversity

rank-score function graph is such a tool that has potential to

be integrated into various data analytics and software

systems.

Information fusion can be applied to many situations

where there are multiple scoring systems, or multiple

classifiers. For example, the CFA framework [18, 1, 2] has

been applied to information retrieval [19], text catego-

rization [20], target tracking [21], sensor feature selection

and combination [22], and image skeleton pruning [23].

Combinatorial fusion has also been used for enhancing the

analysis of various biomedical datasets including virtual

screening for molecular compounds [3], protein structure

prediction [24], and ChIP-seq peak detection [25]. When

combining multiple models (performing information

fusion), it would be useful to know in advance whether the

fusion will outperform the best model. Ng and Kantor [26]

identify system features that can help predict whether

fusion will be beneficial. Combination of multiple

classifiers has also been shown to improve results in the

area of pattern recognition. [27, 28]

The content of this paper is organized as follows: Sect. 2

describes the concept of multiple visual perception sys-

tems, along with the corresponding multiple scoring sys-

tems, which are considered a generalization of multiple

classifier systems. The CFA framework, which establishes

each visual perception system as a scoring system and

combines two such systems, is also described. The diver-

sity rank-score function can be used as a guiding light to

combine pairs of visual perception systems based on the

diversity variation across a set of trials. In Sect. 3, we

describe the visual perception dataset, present the results of

scoring system combinations, and examine the role of the

diversity rank-score function graph in the context of

diversity variation and visualization. Concluding remarks

and discussion are included in Sect. 4.

2 Multiple visual perception systems

2.1 From multiple classifier systems to multiple

scoring systems

In many domains, such as biomedical informatics, finance,

security, information retrieval, among others, classification

models are created in order to generate class predictions for

new data. Binary classifiers attempt to categorize items into

one of two classes (or labels). For example, determining

whether a webpage is relevant to a search term or not, or

whether a patient tests positive or negative for a disease.

Some binary classification problems are asymmetric,

meaning one class occurs much less frequently than the

other. Multiclass classifiers involve more than two classes.

The output of a classification system includes a class

prediction, along with an associated probability. Treating

these probabilities as scores, and sorting the results by

score to generate rankings, enables us to consider classifi-

cation systems as a scoring system that have a score

function and a rank function.

In an effort to improve classification accuracy, it is often

desired to incorporate the results from multiple classifiers

that are varied in terms of their approach or algorithm. The

element of variety, or diversity, is essential since different

classifiers may contribute various perspectives, results, or

predictions, on the data. Generally, the results from mul-

tiple classifier systems are combined using ensemble

methods such as majority voting (bagging) or weighted

voting (boosting). Table 1a, b contains a snapshot from a

classification example in which the class label of a sample

document is predicted in each of the following two cases:

(a) 3 class labels, and (b) 6 class labels (Table 1a, b). The

document is analyzed by 4 different classifiers, each of
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which output the probability that the document belongs to

class A, B, or C, in the case of 3 class labels. In Table 1b,

each document belongs to one of the 6 class labels: A, B,

C, D, E, or F. For each classifier, the class label with the

highest probability is considered the predicated class label

and is assigned rank 1. Likewise, the next highest proba-

bility is assigned rank 2, and so on. The ensemble approach

of majority voting is used to combine the results of the

individual classifiers. For each class label, we count the

number of times that class is ranked 1 (has the highest

probability) by a classifier. Then, the class label with the

highest number of votes is considered the predicted class

for the document.

If we consider the classifiers as scoring systems (see

Table 2), we can apply score and rank combinations as an

alternative ensemble approach. Here, the probabilities are

treated as scores, which are then ranked. Score combina-

tion (SC), in this example, is the average of the scores for a

class label across the 4 classifiers. The class label with the

highest average score is chosen as the result. The rank

combination (RC) is computed as the average rank for a

class label for all classifiers. The class label with the lowest

average rank is then selected. Weighted averages can be

used if the past performance of the classifiers is known. In

this example, we can see that combining by score or rank

may produce different results. Table 1b is a classification

Table 1 Combination of multiple classifier systems with (a) 3 class labels and (b) 6 class labels using majority voting (CMAJ), score combination

(CSC), and rank combination (CRC)

a

Classifier C1 C2 C3 C4 CMAJ CSC CRC

Class label

A(score, rank) (0.74, 1) (0.05, 3) (0.55, 1) (0.31, 3) 2 0.41 2

B(score, rank) (0.14, 2) (0.48, 1) (0.25, 2) (0.33, 2) 1 0.30 1.75

C(score, rank) (0.12, 3) (0.47, 2) (0.20, 3) (0.36, 1) 1 0.29 2.25

Class label A B A C A A B

b

Classifier C1 C2 C3 C4 CMAJ CSC CRC

Class label s r s r s r s r

A 0.32 1 0.05 3 0.03 6 0.30 1 2 0.18 2.75

B 0.11 4 0.04 4 0.25 2 0.11 4 0 0.13 3.5

C 0.01 6 0.03 5 0.45 1 0.08 5 1 0.14 4.25

D 0.27 2 0.81 1 0.04 5 0.22 3 1 0.34 2.75

E 0.05 5 0.01 6 0.11 4 0.06 6 0 0.06 5.25

F 0.24 3 0.06 2 0.12 3 0.23 2 0 0.16 2.5

Class label A D C A A D F

Table 2 Combining multiple scoring systems (with 3 scoring systems) to rank a set of items (with 8 items)

J1 J2 J3 s(SC) r(SC) s(RC) r(RC)

s r s r s r

d1 8.5 4 7 5 9.7 4 25.2 4 13 4.5

d2 7.6 7 8.4 3 9.6 6 25.6 3 16 7

d3 8.3 5 5.6 7 9.75 3 23.65 7 15 6

d4 6.4 8 7.4 8 9.81 2 21.61 8 18 8

d5 9.4 3 7.8 4 9.68 5 26.88 2 12 3

d6 9.5 2 8.5 2 9.2 7 27.2 1 11 2

d7 7.9 6 6.3 6 10 1 24.2 6 13 4.5

d8 10 1 10 1 5.1 8 25.1 5 10 1
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problem that involves more possible class labels. In this

example, we see that classifiers can be viewed as scoring

systems, where the scores are the class label probabilities.

The concept of multiple classifier systems with multiple

class labels (the case in Table 1b) is then generalized to

multiple scoring systems with multiple choices (items or

options) (as is the case in Table 2).

When constructing an ensemble, it is desired to have

diversity among the component classifiers or scoring sys-

tems. Several techniques for measuring diversity have been

proposed for regression and classification [29, 30]. It is

more challenging to measure diversity between classifiers

if we just consider the output class labels, without their

associated probabilities [29].

Viewing classification systems as scoring systems

enables us to apply the concept of diversity that has been

defined for multiple scoring systems [1, 2, 26, 3].

2.2 The combinatorial fusion framework

2.2.1 Establishing each visual perception system

as a scoring system

In situations where we have a set of documents (webpages,

genes, customers, etc.) that are assigned scores or proba-

bilities by an algorithm or classifier, creating a scoring

system is straightforward. However, in cases where we do

not have a set of scores to work with, a score function

needs to be generated based on the value(s) given. In this

experiment, when an observer is deciding on the proposed

landing point of the object based on the visual input, he/she

is selecting from several locations within a range. Intervals

within this visual range will be considered as the items (or

options) that will be scored and ranked. Since there are two

subjects within each trial, the corresponding score func-

tions must score the same set of intervals. To this end, a

common visual space is created, as described in previous

work [18]. First, the mean of the decisions (points) for the

two observers P and Q is computed in three different

versions, varying the weight given to the confidence radius

r. M0;M1, and M2, are computed as

Mi ¼
P
ri
1

þ Q
ri
2

1
ri
1

þ 1
ri
2

ð1Þ

The scoring system analysis is performed for each version

of Mi. Specifically, the Mi values are used as a foundation

point from which to create a common visual space. The Mi

points are always located between the P and Q original

points. The visual space is also extended on both sides of P

and Q. The common visual space is divided into 63

intervals. The interval scores are computed using a normal

distribution around Mi, using the confidence radius (0.5r)

for the standard deviation. The performance of each Mi is

measured as the distance from Mi to the actual location of

the object [31]. The scores, created for the intervals for P

and Q, give us the score functions sP and sQ. Given a set of

intervals d1; d2; . . .; dn, the scoring system P consists of a

score function sP, rank function rP, and rank-score char-

acteristic (RSC) function fP (see Fig. 1). The rank function

for the scoring systems P and Q are obtained by sorting sP
and sQ and assigning ranks to create the rank functions rP
and rQ. The Rank-Score Characteristic (RSC) function, as

defined by Hsu et al [1, 2], is the composite function of sp
and the inverse of rP. Rank-score functions map ranks to

scores, and are independent of the data items. Here, the

rank-score characteristic (RSC) function for the scoring

system P, fP : N ! R, is computed as

fPðiÞ ¼ ðsP � r�1
P ÞðiÞ ¼ sPðr�1

P ðiÞÞ ð2Þ

Similarly, fQ is computed for scoring system Q.

2.2.2 Combining two visual perception systems

Within the CFA framework [1, 2], system combination is

performed either by score or rank combination. A score

combination is computed as the average of the score

functions, sp and sQ for each interval, di, giving us the score

function of the score combination sSC. The rank function of

the score combination, rSC , is achieved by sorting sSC in

descending order and obtaining ranks for each di. In

addition, we compute the rank combination by averaging

the rank functions rP and rQ, to give us the score function

of the rank combination, sRC. We sort this function in

ascending order and assign ranks to get its associated rank

function, rRC (see the example in Table 2). The perfor-

mance of these combined results is measured by the dis-

tance of the newly computed points to the actual x,y

coordinates where the object landed in the field.

2.2.3 Cognitive diversity between two scoring systems

In cases where multiple scoring systems, algorithms, or

approaches exist, it is beneficial to know under what cir-

cumstances combining pairs of these systems could result

Fig. 1 Scoring system P with:

(a) score function sP, (b) rank

function rP, and (c) rank-score

characteristic (RSC) function fP
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in improved performance. Diversity between two scoring

systems A and B can be measured in a few different ways,

such as the distance between score or rank functions using

covariance (between sA and sB) or Kendalls tau (using rA
and rB), respectively. Another method to measure the

diversity between two scoring systems, which is used here

and called cognitive diversity, is to measure the distance

between the rank-score functions (fA and fB) of the two

systems [1, 2] (see formula (2) and Fig. 1). Figure 2

illustrates two RSC functions, fA and fB, for two arbitrary

scoring systems A and B. One distance measurement is the

area between the two RSC functions. We note that the

cognitive diversity between scoring systems A and B, as

seen in Fig. 2, provides a powerful visualization tool on the

similarity or dissimilarity between these two visual per-

ception systems, A and B, in the context of the current

study.

In this analysis, the concept of cognitive diversity is

applied to the trials and scoring systems P and Q, which

represent the 2 participants in a given trial pair. Therefore,

the cognitive diversity of the two observers P and Q,

d(P,Q), defined as the distance between the rank-score

functions of two systems P and Q, fP and fQ, is computed as

follows:

dðP;QÞ ¼ dðfP; fQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

ðfPðiÞ � fQðiÞÞ2

m

s

ð3Þ

2.3 Diversity rank-score function across a set of trials

Let T ¼ fðp1; q1Þ; ðp2; q2Þ; . . .; ðpn; qnÞg represent a set of n

trials, each consisting of an ordered pair of participants and

let R ¼ fdðp1; q1Þ; dðp2; q2Þ; . . .; dðpn; qnÞg represent the

diversity scores for each pair in T, where N ¼ 1; 2; . . .; n.

The cognitive diversity between each pair of scoring sys-

tems, P and Q, is measured by the diversity function

d(P,Q), as shown in equation (3), where m is the number of

items (intervals) to be scored; in this case m is 63, indi-

cating the number of intervals in the common visual space.

The set of diversity values itself can be treated as a scoring

system, making the diversity function into a diversity score

function. For this purpose, the number d(P,Q), which is the

diversity between scoring systems P and Q, is considered

as the diversity score function value of the trial (p,q) and is

denoted as sðp;qÞ. The diversity rank function is attained by

sorting the score function and generating ranks, giving

rðp;qÞ. A diversity rank-score function, fðp;qÞ, is computed as

fðp;qÞðiÞ ¼ ðsðp;qÞ � r�1
ðp;qÞÞðiÞ ¼ sðp;qÞðr�1

ðp;qÞðiÞÞ ð4Þ

The diversity rank-score function is a mapping from

diversity ranks to diversity scores. The relationship

between sðp;qÞ, rðp;qÞ, and fðp;qÞ is shown in Fig. 3.

3 Case analysis using diversity rank-score graph

3.1 Visual perception dataset

The setting for the data collection was in a grassy field in

NYC’s scenic Central Park. A lab member was tasked with

recruiting pairs of participants for the experiment. The

pairs of subjects varied in terms of gender and relationship

between the individuals. The subject pairs were randomly

chosen and could be friends, siblings, husband and wife,

colleagues, or acquaintances. A small metal object that was

made of metal plates, nuts, and a bolt, and of size 1.5 by 1.5

inches was used for the experiment, since it was possible to

throw it far distances, small enough to be hidden in the

grass, and would not roll from its position once landed. The

subject pairs stood 40 feet from a marked square of size

250 by 250 inches, and the individuals stood a distance of

10 feet away from each other. A member of our group

tossed the metal object into the designated square. Each

participant is asked individually to walk and point to where

he/she believed the object landed. A marker is placed at

these locations. The participants are also asked to give a

measure of their confidence of his or her guess in the form

of a confidence radius around the specified mark. Lab

members helped the participants gauge their confidence

Fig. 2 Rank-score characteristic function graph of two scoring

systems, A and B

Fig. 3 Diversity scoring system

(p,q) with: (a) diversity score

function sðp;qÞ, (b) diversity rank

function rðp;qÞ, and (c) diversity

RSC function fðp;qÞ

The diversity rank-score function for combining human 67

123



radius by using tool consisting of 2 poles of length 36 by 36

inches to represent the x and y coordinates. Smaller radius

values indicate higher confidence of the subject. A lab

member measures the distance from the actual position

where the object landed and the guess positions of the

subjects.

The subjects are given feedback as to how far off their

guess is from the actual landing point of the object. The

values collected are: x,y coordinates for subject P and Q

from each experiment, a confidence radius for each par-

ticipant, along with the actual landing x,y coordinate of the

object. All measurements are in inches. The values for the

trials in this most recent experiment are shown in Table 3.

Our group has conducted previous data collection activities

of this type, the data of which can be found in [18].

The distribution functions for P and Q for a sample trial

are shown in Fig. 4a. Sample rank-score functions for a

trial are shown in Fig. 4b.

3.2 Analysis results of combinations

The experimental results are presented in Fig. 5. The per-

formances of P and Q, shown in column (a), are the dis-

tances to the actual landing point of the object. The

confidence radii are included in column (b), in which a

shaded cell indicates that the more confident participant

leads to the best performance. The performance of the

weighted means M0, M1, and M2 is listed in column (c). C

represents the score combination and D represents the rank

combination. The last column, (d), presents information for

the results using each of the weighted means, along with

the score and rank combinations (C and D). For each i ¼
f0; 1; and 2g, P, Q, Mi, C, and D are ranked in descending

order of performance; repeated ranks indicate tied perfor-

mance. Rank 1 showed the best performance, meaning the

closest interval to the actual location of the object. Cases

where the score (C) or rank (D) combinations either out-

performed or tied the best individual system are

highlighted.

3.3 The role of diversity rank-score graphs

After performing the score and rank combinations for the

three different computations of M ( M0, M1, and M2), we

can summarize the results as follows: Using M0, the score

and/or rank combination for 14/16 trials showed either tied

or improved performance compared to the best individual

system; using M1, 9/16 trials; and using M2, 7/16 trials.

The diversity rank-score functions for the scoring systems

created according to the three different computations of the

mean: M0, M1, and M2, are depicted in Fig. 6. Exami-

nation of these graphs, along with the performance of the

corresponding system pair combinations, can help us

understand the role of cognitive diversity in system com-

binations by score and rank. To make the connection with

the trials, Table 4 is included to show the ranking of trials

according to the diversity of their component scoring sys-

tems, for each case of M0, M1, and M2. When comparing

with the performances of the system combinations, we

detect a tendency for pairs of systems with relatively high

diversity to have more improved performance. In this

Table 3 Data collected for the

observed points and confidence

radii for trials, along with the

actual x,y coordinates

Trial P Confidence

radius

Q Confidence

radius

Actual

x y x y x y

1 126 243 12 114 287 6 120 270.5

2 69 362 8 89 358 6 85 362

3 105 220 18 60 287 10 93 321

4 93 336 10 91 285 16 81 318

5 152 170 14 141 162 16 126.5 180

6 66 250.5 16 81 288 12 88 119

7 24 314 16 31 310 8 6 313

8 94 278 12 98 220 6 86 236

9 24 235 12 23 256 12 25 240

10 96 95 8 131 71 10 107 337

11 52 187 20 97 243 16 102 269

12 107 246 10 113 233 8 113 242

13 121 191.5 10 141.5 191 8 127.5 185

14 46 277 10 73 229 8 52 254

15 73 264 18 79 267 12 84 282

16 24 442 10 23 413 10 23 432
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study, this observation is most strongly supported by the

data in the M1 scenario. In new situations, where we may

not be able to predict the performance, analyzing the rel-

ative diversities between scoring systems may give us

insight into which pairs of systems are most likely to show

improvement with combination.

We observe that the diversity rank-score graphs are

good indicators for the combination outcome. For example,

trials d5 and d16 appear at the very end of the graph in M0,

M1, and M2 (see Figure 6 and Table 4). In these two trials,

neither rank nor score combination helps improve the

outcome. However, even though trial d9 has a very low

diversity (Table 4), its combination of scoring systems P

and Q is better than or equal to the best of P and Q since P

has a relatively high performance.

4 Conclusion and further work

In this paper, we studied the combination of multiple visual

perception systems using the CFA framework and the

diversity rank-score function. By establishing each visual

perception system as a scoring system on a set of options

(possible locations, in our context) in a common visual

space, the problem of combining multiple visual perception

systems is treated as a problem of combining multiple

Fig. 4 Distribution functions

and Rank-score characteristic

functions for P and Q in Trial 1

based on M2. a Distribution

functions for Trial 1, based on

M2. b Rank-score functions for

Trial 1, based on M2
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Fig. 5 Analysis results for 16 trials [31]

Fig. 6 Diversity rank-score graphs based on M0, M1, and M2, respectively
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scoring systems. Using a dataset of an experiment with

sixteen trials where each trial consists of a pair of two

observers, we studied various issues as to how the diversity

between these two observers (and their individual percep-

tion systems) affects the performance of the combined

system.

At the individual trial level, we illustrated that the rank-

score characteristic (RSC) function graphs of the two

scoring systems (perception systems) can provide a useful

visualization tool on the similarity or dissimilarity between

these two visual perception systems (see Fig. 2 and Sect.

2.2.3). At the population level, the diversity rank-score

graphs on three common visual space definitions, M0, M1,

and M2, respectively provide a powerful visualization

comparison, not only among all (sixteen) trials in an

experiment, but also among all (three) analytic methods

based on M0, M1, and M2, respectively (see Fig. 5 and

Sect. 2.3). Our current study suggests a few issues which

are worthy of further investigation. We list three here:

1. With the diversity rank-score function defined in

formula (4) and the diversity rank-score graphs based

on M0, M1, and M2, extend the study to include

higher order of Mi, i = 4, 5, and so on (refer to formula

1).

2. Establish a CFA framework to study the combination

of more than two visual perception systems. In this

regard, the notion of diversity among more than two

systems would have to be defined differently.

3. Apply the visualization tool illustrated in current work

to combination of multiple sensing systems, multiple

robotics systems, and multi-modal physiological imag-

ing systems such as MRI, EEG, and EKG.
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