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Abstract To isolate the brain from non-brain tissues

using a fully automatic method may be affected by the

presence of radio frequency non-homogeneity of MR

images (MRI), regional anatomy, MR sequences, and the

subjects of the study. In order to automate the brain tumor

(Glioblastoma) detection, we proposed a novel approach of

skull stripping for axial slices derived from MRI. Then, the

brain tumor was detected using multi-level threshold seg-

mentation based on histogram analysis. Skull-stripping

method, was applied by adaptive morphological operations

approach. This is considered an empirical threshold by

calculation of the area of brain tissue, iteratively. It was

employed on the registration of non-contrast T1-weighted

(T1-WI) and its corresponding fluid attenuated inversion

recovery sequence. Then, we used multi-thresholding

segmentation (MTS) method which is proposed by Otsu.

We calculated the performance metrics based on the sim-

ilarity coefficients for patients (n = 120) with tumor. The

adaptive algorithm of skull stripping and MTS of seg-

mented tumors were achieved efficient in preliminary

results with 92 and 80 % of Dice similarity coefficient and

0.3 and 25.8 % of false negative rate, respectively. The

adaptive skull stripping algorithm provides robust skull-

stripping results, and the tumor area for medical diagnosis

was determined by MTS.
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Abbreviations

BET Brain extraction tool

BSE Brain surface extractor

DSC Dice similarity coefficient

FNR False negative rate

FPR False positive rate

FBR Feature-based registration

FLAIR Fluid-attenuated inversion recovery

IBR Intensity-based registration

JSC Jaccard similarity coefficient

MRI Magnetic resonance imaging

MIP Morphological image processing

MTS Multi-thresholding segmentation

SE Structuring element

T1-WI T1-weighted

1 Introduction

Brain images provide signals of brain anatomy and can be

useful in diagnosis of numerous brain abnormalities such as

malignant glioma [1]. Tumor and skull have resembled

intensity which makes automatic tumor detection difficult.

To overcome this challenge, skull-stripping algorithm is

desired as a pre-processing step for detecting the brain tumor.

Similar tumors have different imaging features on T1-WI,

when compared to T2 weighted and FLAIR. Numerous

malignant brain tumors can be seen by registration technique

which is a process of aligning images from different

modalities using the translating, rotation, and various scales

[2, 3]. This registration can be done by fixing T1-WI image

and moving its FLAIR corresponding image (Fig. 1). After

this step, skull stripping is preferred to apply, and then whole

abnormalities area can be detected by MTS.
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For skull-stripping algorithms, three approaches, namely,

region-based, edge-based, and hybrid methods are used

currently which are also being used for segmentation in

numerous domains.

Using region-based methods, the brain tissue can be dis-

tinguished from surrounding tissues like fat, bone, and mus-

cles. Brain regions can be extracted by morphology operators

such us erosion, dilation, opening, and closing using many

techniques such as region growing andwatershed [4–8]. Fully

automated 3D skull-stripping algorithm was done indepen-

dent of scan orientation [4]. Histogram analysis and mor-

phological operation havebeen considered for achievement of

skull stripping [4, 7].Morphological operations are simple and

fastmethods, and can be appliedwith statistical techniques for

3D skull stripping [5]. Another algorithm of skull stripping

works based on foreground/background thresholding, and

isolates the brain, skull, and head tissues using the morpho-

logical operations [8]. Morphological operation-based

method is relativity sensitive to isolate enough brain tissues,

similar to brain extraction tool (BET), [9, 10]. Watershed

techniques have been employed but it is sensitive to the noise

factors [11]. The other techniques are dependent on predefine

criteria, such as the growing region which is based on pixels

groups, and cannot be fully automated because they need a

user to set the prior information [12].

Edge-based methods as a level set and snake algorithms

which are based on minimizing total image energy for

detecting brain tissue. In this term, model-based level

set algorithm has been applied for robust skull stripping

[10]. However, these techniques based on edge which is

sensitive by noise factors, need the contour initialization by

user and have a high time computation.

Hybrid methods included combined region and edge

techniques. For example, combined anisotropic diffusion

filtering, edge detector, and morphology operations have

been applied to enhance the automate process, such as

brain surface extractor (BSE), [13]. Combined multiple

results of various skull-stripping techniques have been

analyzed and discussed for showing the advantage and

disadvantage for each proposed method [14, 15]. Addi-

tionally, numerous algorithms have been employed and

showed limited success in large-scale data [16, 17]. Also,

low contrast levels and connections between the brain and

surrounding tissues can be a problem for these algorithms.

It can be a difficult task for automating skull stripping

without initialization of parameters and high execution

time. Fully automated skull-stripping methods should have

the capability to extract the brain accurately from a large

database of T1-WI MRI of head scans without any user

intervention according to Somasundaram et al. [18].

Since sometimes there are not enough boundaries

between brain and the bone, intensity of the skull can be

read as tumor enhancing portion in automated segmenta-

tion. This paper is presenting a specific skull-stripping

method applying when there is not enough space between

brain tissue and skull.

In order to overcome the limitations of skull stripping

and segmentation methods and in order to obtain more

automate processing, we propose a fully automated tumor

detection by registered T1-WI and its corresponding

FLAIR sequence, skull stripping using the iterative mor-

phological operations, and MTS to detect the brain tumor.

The rest of this paper is organized as follows: The

methods section describes the implementation of the pro-

posed algorithm; the results section summarizes the results

and performance assessment metrics. The discussion sec-

tion discusses the proposed iterative morphological method

and tumor segmented based on MTS method of this

research to solve robust of the skull-stripping and tumor-

detection problem.

Fig. 1 Example of axial brain image with resembles intensity value of both skull and tumor. Brain image within tumor on T1-WI, the

corresponding axial FLAIR sequence, and the corresponding rigid registration based on fixed image T1-WI and moving image FLAIR sequence
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2 Materials and methods

2.1 Patient and data acquisition

In this study, data from 120 glioblastoma multiforme (GBM)

patients (age: average = 57, median 56, minimum = 34,

and maximum = 81) were collected from the cancer

imaging archive (TCIA) database (http://cancerimagingarc

hive.net/) and used to validate the proposed method. The

GBM data were acquired prior to any treatment from

patients with brain tumors that were subsequently diagnosed

as GBM. 3D Slicer software was used for illustrating the

GBM tumor and testing that the patient images can be

correctly registered using non-contrast T1-WI and FLAIR

sequence. Schematic represents the proposed method for the

skull stripping and tumor detection using raw data from MR

images (Fig. 2). The images are converted into grayscale

before further processing. A description provided on pre-

processing, followed by the adaptive skull stripping and

MTS for tumor detection. Only T1-WI and FLAIR

sequences were used for evaluating the proposed algorithm

of skull stripping and MTS. All of the images had

512 9 512 pixels acquisition matrices, and only one slide

image including the GBM tumor with its phenotypes (Ne-

crosis, active tumor/contrast enhancement and edema/inva-

sion) from each patient was collected for skull tripping and

segmentation process. The imaging protocol used whole-

brain T1-WI and FLAIR scanning using a 3T MRI scanner

(GE-Healthcare). T1-WI and FLAIR scans were acquired

based on the slice thickness (ST) = 5 mm.

2.2 T1-WI- and FLAIR-based registration

Registration is based on transformation by using several fac-

tors such as translating and rotating [2, 3]. Many algorithms

have been proposed, however, two principal registration

approaches usedmostly are as follows: feature- and intensity-

based registration. Feature-based registration (FBR)works for

the identification of corresponding points in the two images

namely, fixed image (T1-WI) and a moving image (FLAIR).

In volume data, multiple of landmark methods is used to

establish a rigid transformation between two volumes [19].

Note that the errors decreased when the number of points

increased [20, 21]. In this study, intensity-based registration

(IBR)/voxel similarity-based is considered. It works by

applying a transformation to the source image which com-

puted a value for how similar it is to the target.More precisely,

it works based on the iterative process, and the source will

generally be transformed many times until the two images

performed and achieved highest similarity [2, 22, 23]. We

aligned and registered the scans to each other.Moreover,most

of the voxel size of the FLAIR, and T1-W1 images were

similar and simply registered. However, in case that the voxel

size was dissimilar, we resampled the FLAIR volume to the

matrix of T1-W1 voxel size. The patient’s images which have

complex rotation modifications and registrations were not

considered inorder to achieve anerror\2 mm.Theaverage of

computational time necessary to complete each volume reg-

istration is 40–50 s, (Fig. 3, column1).An example shows the

registration based on the corresponding T1-WI and FLAIR

sequences (Fig. 1). And registration for each patient’s data

was done by using T1-WI and its corresponding FLAIR

sequence using Matlab software.

2.3 Proposed skull-stripping algorithm

Skull stripping is performed based on morphological image

processing (MIP) which is operated by passing a structur-

ing element (SE) over the image in an activity similar to

convolution [19]. Note that the SE can have different sizes

and shapes, and is a sub-image. At each pixel position, a

specified operation is applied between the SE and the

matrix data of image. The created effect depends on the

size, shape, content of the element structure, and the nature

of the operation. Moreover, the choice of the SE is

depending on the desired object within an image. A review

of various fundamental MIP techniques, namely, erosion,

dilation, opening, and closing is presented below. Binary

and gray scale images have been considered in the mor-

phological operations of skull stripping. Let B be a binary

image and S be the SE containing any complement of ‘0’

and ‘1.’ Both defined on a 2D Cartesian grid. Denote by Sxy

T1-Weighted

FLAIR
Registration Skull stripping Axial 

images 
(MRI) Area

MTS

Ground truth of skull stripping 

Ground truth of segmented tumor
Performance metrics

Fig. 2 Schematic diagram of the proposed method for adaptive skull stripping and tumor detection based on MTS. Skull-stripping algorithm

applied using the registration output, and MTS works based on the output from skull-stripping algorithm
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the structuring element after it has been translated so that

its origin is located at the point (x, y). We employed the

skull striping based on the following fundamental MIP

techniques.

2.3.1 Erosion

Erosion is the process of shrinking an object in the image,

leaving it smaller in area. The erosion of B by S is defined

according to

B� S ¼ ðx; yÞ Sxy � B
�
�

� �

: ð1Þ

Output result from B � S is a binary image from eroding

B by S.

2.3.2 Dilation

It can expand an object in the image, leaving it larger in

area. The dilation of B by S is defined as

B� S ¼ x; yð Þ Sxy \ B
� �

6¼ ;
�
�

�
�

� �

: ð2Þ

The binary image B � S which is a result of dilating B by

S, S is translated so that its origin is located at (x, y), and

then its intersection with B is not empty.

Additionally, dilation followed by erosion is called

closing. It uses for filling small and thin holes in objects,

connecting nearby objects, and generally smoothing the

boundaries of larger objects without significantly changing

their area. It can be expressed according to

Start

Registration T1WI  and 
FLAIR 

I(x,y)>th
No

End

Filling in holes inside the 
brain region FI(x,y)

XOR (I(x, y), FI(x,y))

Dilation followed filling in 
holes inside the brain region 

FI(x,y)  

Area  threshold
Yes

Skull stripped 
result

End

T1WI (fixed)  and 
FLAIR (moving)

Linear transformation 
(rigid) consisting of 

translation and rotation. 

2D MR T1W, 
FLAIR Brain 

No

Erosion brain region FI(x,y)  

Yes

Multi-thresholding 
segmentation 

Column 1

Column 2

Column 3

Fig. 3 Flowchart of the skull-

stripping and tumor-detection

algorithm. Registration,

iterative design within

morphological operators of the

proposed skull-stripping

algorithm and MTS algorithm
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B� S ¼ B� Sð Þ� S: ð3Þ

For eliminating small and thin objects, breaking objects

at these points, and generally smoothing the boundaries of

larger objects without significantly changing their area. We

use the opening process which is based on the erosion

followed by dilation. It can be expressed according to

B � S ¼ B� Sð Þ � S: ð4Þ

To perform the skull stripping, we used XOR function

which is a logical exclusive-OR. It can be expressed

between two images B(x,y) and I(x,y), according to

BXOR I ¼ 0 if B xi; yj
� �

¼ I xi; yj
� �

1 if B xi; yj
� �

6¼ I xi; yj
� �

�

ð5Þ

where i and j are the indexes of pixel coordinates.

Figure 3 shows the flowchart algorithm of skull strip-

ping by using the morphological operations. This algorithm

is simply applied on 2D axial brain image for skull

removing. The novelty of the algorithm is the threshold

based on the iterative calculation of the brain material area.

It is an adaptive algorithm that can be run and iterative

numerous times to obtain the brain material images without

skull based on two steps. It starts by using the IBR regis-

tration, then the output of IBR segments based on Otsu

method which chooses a threshold to minimize the intra-

class variance of the black and white pixels. Followed by

the filling of all the holes in brain image FI(x,y).

In this step, output is the binary image I(x,y). Then, we

obtained an image with a skull and brain area which is

represented by the binary pixels ‘1.’ Using the XOR

operator between I(x,y) and FI(x,y), we obtained the sub-

dural space which is surrounding the brain as a contour,

and by the dilation, filling, and erosion we can extract the

brain without skull. Unfortunately, some images do not

have enough subdural space, or have a thin space dis-

continuity which provides a problem for skull stripping.

To resolve the problem, we increased the dilation window

size by one pixel in each step of the loop, then the same

window size of the filling and erosion similar area of

original brain image was kept. Here, the threshold is an

area (area: represents the number of pixels) of brain

which was extracted in each step when the extracted brain

area is greater than the threshold (th), it means that we

obtained the brain without skull (status of convergence).

Threshold was chosen by the empirical test of brain area

computation in order to robust this process with minimum

error.

2.4 MTS-based tumor detection

We employed histogram thresholding-based segmentation

on the skull stripped result for segmenting the brain tumor.

Figure 3 shows an example of the tumor segmented based

on MTS technique. To perform MTS, we applied Otsu’s

method [24]), which is described below:

Consider the histogram of a magnitude image as a dis-

crete probability density function (pdf), p(i):

pi ¼
fi

N
and

XJ

i¼0

pi ¼ 1; ð6Þ

where p(i) C 0, fi is the frequency of the intensity level

I and N is the total number of pixels in the image. Each

pixel in the image assumes an intensity level from the set

(0, 1, …, J - 1), where J denotes the number of intensity

levels or histogram bins.

The Otsu’s method assumes that the threshold image

contains two classes of pixels or a bi-modal histogram with

regions r1 and r2. It calculates the optimum threshold (T)

separating those two classes so that their combined inter-

class variance is minimal. That is,

T ¼ argmax pr1 dð Þ mr1 dð Þ � mI½ �2 þ pr2 dð Þ mr2 dð Þ � mI½ �2
n o

;

ð7Þ

where mI is the mean intensity. By dividing the histogram

into regions with intensity level d, the respective region

probabilities can be expressed according to

pr1 dð Þ ¼
Xd

i¼0

pðiÞ ð8Þ

pr2 dð Þ ¼
XJ�1

i¼dþ1

pðiÞ: ð9Þ

Note that the means of the respective regions are given

according to

mr1 ¼
Xd

i¼0

i � pðiÞ
pr1ðdÞ

ð10Þ

mr2 ¼
XdJ�1

i¼dþ1

i � pðiÞ
pr2ðdÞ

: ð11Þ

Moreover, all values of d are considered and the corre-

sponding equations ofT are evaluated. The intensity value, d,
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that produces the maximum sum of the class variance is

chosen as the threshold value T. Similarly, it can extend to

MTS of an image in order to find and detect the object (brain

tumor) which is localized in one of these levels of image

intensity. In order to automate brain tumor detection, we

have to resolve the resemble noise pixels problem. This latter

can be easily removed by the average filter size of 3 9 3

which is not affected the impact of the tumor detection.’

2.5 Performance metrics of skull stripping and GBM

detection

Skull stripping was performed by using the implemented

algorithm on MATLAB software. Also, tumors have been

segmented automatically by MTS method. Ground truth of

the whole axial images which was used in the process of

skull stripping and tumor detection was prepared and

reviewed by experts (three radiologists were manually

performed the skull stripping and tumor segmentation by

3D Slicer) in order to evaluate the algorithms performance.

We calculated four performance metrics namely, Jaccard

similarity coefficient (JSC), Dice similarity coefficient

(DSC), false positive rate (FPR), and false negative rate

(FNR). Moreover, JSC and DSC measure the degree of

correspondence between ground truth images and skull-

stripping images [25, 26]. Similarly, we calculated the

similarity metrics between the ground truth of tumor and

segmented tumor of MTS method. JSC can be formulated

according to

JSC A;Bð Þ ¼ A \ Bð Þ= A [ Bð Þ; ð12Þ

where A is the area of the brain region in the ground truth

skull-stripped image and B is the area of the brain region of

the corresponding image with skull stripped using the

proposed algorithm. Additionally, the JSC of 1 represents

complete overlap. Whereas an index of 0 represents that

there are no overlapping pixels.

DSC was also employed to describe the overall level of

similarity between automatic and ground truth of skull

stripping. In this term, DSC has been calculated according

to the following equation

DSC A;Bð Þ ¼ 2 A \ Bð Þ= Aj j [ Bj j: ð13Þ

Moreover, false positive rate (FPR) and the false negative

rate (FNR) were used to quantify over and under segmen-

tation. Both FPR and FNR were calculated according to

FPR A;Bð Þ ¼ A=Bð Þ= A [ Bð Þ ð14Þ
FNR A;Bð Þ ¼ B=Að Þ= A [ Bð Þ: ð15Þ

We can find a direct relation between JSC, FPR, and

FNR according to the following expression:

JSC A;Bð Þ ¼ 1� FPR� FNR: ð16Þ

3 Experimental results

Skull stripping is a challenging and critical component of

image processing and in particular the MRI images post-

processing. Automate processing has a variety of problems

which require a pre-processing manual intervention to be

resolved. We employed and validated the proposed

approaches by the comparative study using ground truth

and skull stripping and segmentation results from the

automatic algorithm. All algorithms were simulated using

MATLAB R 2013a (Mathworks Inc., Novi, MI, USA). We

considered 120 patients with the brain tumor for assessing

the proposed algorithms.

Figure 4 shows the flexibility of MTS based on Otsu’s

method. It can provide several thresholds based on the

previous equations [7–11]. Tumors can be detected by

using the optimum threshold T8. The output result based on

T8, is the tumor with some noises which can be easily

removed using the average or median filter. Note that the

input images are the output of skull stripped (see Fig. 3,

column 2 and 3).

Figure 5 shows an example of six cases with registra-

tion, skull stripped, and segmentation. In patient index P1,

P2, P4, and P6, three operations namely; registration, skull

stripping, and segmentation performed successfully with

high performance metrics. In P3, skull stripped was done

with low performance of segmentation which detected the

tumor and its similar intensity pixels value. In P5, skull

stripped was affected by the limited space between the

skull and brain materials, however, its corresponding tumor

segmentation was successfully done.

Table 1 shows high performance metrics with a JSC,

DSC, FPR, and FNR of range (0.847–0.866), (0.928–0.917),

(0.146–0.177), and (0.007–0.003), respectively. Using

ground truth of skull-stripped images from three radiolo-

gists. This algorithm showed a pronounced value of simi-

larity coefficients (Table 1).

Based on ground truth of segmented tumor done by

three radiologists, Table 2 shows the performance metrics

of the tumor segmented with average JSC, DSC, FPR, and

FNR of range (0.606–0.676), (0.749–0.803), (0.029–0.11),

and (0.258–0.372), respectively. Clearly, the similarity

metrics of segmentation is less than the skull stripped.

These metrics represent the heterogeneity factor of tumor

area where the algorithm of MTS detects the area of pixels

greater than the determined threshold.

Moreover, the low intensity of tumor phenotype and the

discontinuity of other phenotype area can provide a tumor

area segmented like patient P2. For instance, tumor seg-

mented has a high performance metric like the case of

patient P6 which represents a tumor area with continuity of

phenotype area.
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A comparative study of skull-stripping algorithm

showed a close JSC value of 0.86 and 0.85 considering

the proposed algorithm and BET, respectively [9]. Fol-

lowed by BSE with JSC value of 0.71 (Table 3), [13]. We

note that the FPR is common with 0.14 in our work and

BET, while BSE model has 0.26 which represents less

performance. Moreover, our algorithm showed a best

performance value with FNR value 0.007, while BET and

BSE models showed a FNR of 0.008 and 0.04, respec-

tively (Table 3). For the specific case of limited subdural

space within the image, BSE and BET partially isolate the

skull from the brain material which is resolved by the

proposed skull-stripping algorithm based on morphology

operation.

Fig. 4 Tumor detection by using MTS. Eight thresholds provided based on Otsu’s method, where T1 = 0.03, T2 = 0.11, T3 = 0.18, T4 = 0.22,

T5 = 0.26, T6 = 0.29, T7 = 0.35, T8 = 0.4

Fig. 5 Registration, skull stripped, and tumor segmentation result of

the proposed approach on 2D axial MR images. Example of six cases

of GBM patients, namely P1, P2, P3, P4, P5, and P6, registration based

on fixed image T1-WI and its corresponding mobile image FLAIR

sequence (first row). Skull stripped applied on the output registered

using the proposed algorithm (second row) and tumor segmented by

using multi-thresholding segmentation based on Otsu’s approach

(third row)
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The proposed method is able to successfully segment the

whole brain in all 120 patients images. It has better per-

formance than the two most popular methods in the liter-

ature, BET [9, 10], and BSE [13]. However, it outperforms

these methods due to its simplicity and speed. We estimate

that in group comparison studies of skull stripping, our

method can be successfully used. Note that this work is part

of a large focus on data analysis of glioblastoma [27–31].

This work showed that our method outperformed the

two popular methods for skull stripping, proved to be more

sensitive and robust, and most successfully retained brain

tissue even within the limited subdural space case. It notes

a limitation of the proposed algorithm that is successfully

used for axial brain image in 2D, however, BET and BSE

works with 3D images.

4 Conclusions

In this paper, novel iterative algorithm of skull stripping

dedicated to MRI images was proposed. MTS has been

developed to detect the tumor area within axial brain

image. Preliminary experimental results with 120 patients

with tumors confirmed the efficacy of this novel algorithm

for automatic skull stripping and brain tumor segmentation

in axial images. Moreover, comparison with ground truth

of skull stripping and segmented tumor showed that our

approach was highly promising for obtaining high perfor-

mance metrics.
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