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Abstract With rapid advances in neuroimaging tech-

niques, the research on brain disorder identification has

become an emerging area in the data mining community.

Brain disorder data poses many unique challenges for data

mining research. For example, the raw data generated by

neuroimaging experiments is in tensor representations,

with typical characteristics of high dimensionality, struc-

tural complexity, and nonlinear separability. Furthermore,

brain connectivity networks can be constructed from the

tensor data, embedding subtle interactions between brain

regions. Other clinical measures are usually available

reflecting the disease status from different perspectives. It

is expected that integrating complementary information in

the tensor data and the brain network data, and incorpo-

rating other clinical parameters will be potentially trans-

formative for investigating disease mechanisms and for

informing therapeutic interventions. Many research efforts

have been devoted to this area. They have achieved great

success in various applications, such as tensor-based

modeling, subgraph pattern mining, and multi-view feature

analysis. In this paper, we review some recent data mining

methods that are used for analyzing brain disorders.

Keywords Data mining � Brain diseases � Tensor
analysis � Subgraph patterns � Feature selection

1 Introduction

Many brain disorders are characterized by ongoing injury

that is clinically silent for prolonged periods and irre-

versible by the time symptoms first present. New approa-

ches for detection of early changes in subclinical periods

will afford powerful tools for aiding clinical diagnosis,

clarifying underlying mechanisms, and informing neuro-

protective interventions to slow or reverse neural injury for

a broad spectrum of brain disorders, including bipolar

disorder, HIV infection on brain, Alzheimer’s disease,

Parkinson’s disease, etc. Early diagnosis has the potential

to greatly alleviate the burden of brain disorders and the

ever increasing costs to families and society.

As the identification of brain disorders is extremely

challenging, many different diagnosis tools and methods

have been developed to obtain a large number of mea-

surements from various examinations and laboratory tests.

Especially, recent advances in the neuroimaging technol-

ogy have provided an efficient and noninvasive way for

studying the structural and functional connectivity of the

human brain, either normal or in a diseased state [1]. This

can be attributed in part to advances in magnetic resonance

imaging (MRI) capabilities [2]. Techniques such as diffu-

sion MRI, also referred to as diffusion tensor imaging

(DTI), produce in vivo images of the diffusion process of

water molecules in biological tissues. By leveraging the

fact that the water molecule diffusion patterns reveal
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microscopic details about tissue architecture, DTI can be

used to perform tractography within the white matter and

construct structural connectivity networks [3–7]. Func-

tional MRI (fMRI) is a functional neuroimaging procedure

that identifies localized patterns of brain activation by

detecting associated changes in the cerebral blood flow.

The primary form of fMRI uses the blood-oxygenation-

level-dependent (BOLD) response extracted from the gray

matter [8–10]. Another neuroimaging technique is positron

emission tomography (PET). Using different radioactive

tracers (e.g., fluorodeoxyglucose), PET produces a three-

dimensional image of various physiological, biochemical,

and metabolic processes [11].

A variety of data representations can be derived from

these neuroimaging experiments, which present many

unique challenges for the data mining community. Con-

ventional data mining algorithms are usually developed to

tackle data in one specific representation, a majority of

which are particularly for vector-based data. However, the

raw neuroimaging data are in the form of tensors, from

which we can further construct brain networks connecting

regions of interest (ROIs). Both of them are highly struc-

tured considering correlations between adjacent voxels in

the tensor data and that between connected brain regions in

the brain network data. Moreover, it is critical to explore

interactions between measurements computed from the

neuroimaging and other clinical experiments which

describe subjects in different vector spaces. In this paper,

we review some recent data mining methods for (1) mining

tensor imaging data; (2) mining brain networks; and (3)

mining multi-view feature vectors.

2 Tensor imaging analysis

For brain disorder identification, the raw data generated by

neuroimaging experiments are in tensor representations

[11–13]. For example, in contrast to two-dimensional

X-ray images, an fMRI sample corresponds to a four-di-

mensional array by recording the sequential changes of

traceable signals in each voxel.1

Tensors are higher order arrays that generalize the

concepts of vectors (first-order tensors) and matrices

(second-order tensors), whose elements are indexed by

more than two indices. Each index expresses a mode of

variation of the data and corresponds to a coordinate

direction. In an fMRI sample, the first three modes usually

encode the spatial information, while the fourth mode

encodes the temporal information. The number of variables

in each mode indicates the dimensionality of a mode. The

order of a tensor is determined by the number of its modes.

An mth-order tensor can be represented as

X ¼ ðxi1;...;imÞ 2 RI1�����Im , where Ii is the dimension of X
along the i-th mode.

Definition 1 (Tensor product) The tensor product of

three vectors a 2 RI1 , b 2 RI2 ; and c 2 RI3 , denoted by

a� b� c, represents a third-order tensor with the elements

a� b� cð Þi1;i2;i3 ¼ ai1bi2ci3 .

Tensor product is also referred to as outer product in

some literature [11, 12]. An mth-order tensor is a rank-one

tensor if it can be defined as the tensor product of

m vectors.

Definition 2 Given a third-order tensor X 2 RI1�I2�I3 and

an integer R, as illustrated in Fig. 1, a tensor factorization

of X can be expressed as

X ¼ X 1 þ X 2 þ � � � þ XR ¼
XR

r¼1

ar � br � cr ð1Þ

One of the major difficulties brought by the tensor data

is the curse of dimensionality. The total number of voxels

contained in a multi-mode tensor, say, X ¼ ðxi1;...;imÞ 2
RI1�����Im is I1 � � � � � Im which is exponential to the

number of modes. If we unfold the tensor into a vector, the

number of features will be extremely high [14]. This makes

traditional data mining methods prone to overfitting,

especially with a small sample size. Both computational

scalability and theoretical guarantee of the traditional

models are compromised by such high dimensionality [13].

On the other hand, complex structural information is

embedded in the tensor data. For example, in the neu-

roimaging data, values of adjacent voxels are usually cor-

related with each other [2]. Such spatial relationships among

different voxels in a tensor image can be very important in

neuroimaging applications. Conventional tensor-based

approaches focus on reshaping the tensor data into matrices/

vectors, and thus, the original spatial relationships are lost.

The integration of structural information is expected to

improve the accuracy and interpretability of tensor models.

2.1 Supervised learning

Suppose we have a set of tensor data D ¼ fðX i; yiÞgni¼1 for

classification problem, where X i 2 RI1�����Im is the

Fig. 1 Tensor factorization of a third-order tensor

1 A voxel is the smallest three-dimensional point volume referenced

in a neuroimaging of the brain.
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neuroimaging data represented as an mth-order tensor and

yi 2 f�1;þ1g is the corresponding binary class label of

X i. For example, if the i-th subject has Alzheimer’s dis-

ease, the subject is associated with a positive label, i.e.,

yi ¼ þ1. Otherwise, if the subject is in the control group,

the subject is associated with a negative label, i.e., yi ¼ �1.

Supervised tensor learning can be formulated as the

optimization problem of support tensor machines (STMs)

[15] which is a generalization of the standard support vector

machines (SVMs) from vector data to tensor data. The

objective of such learning algorithms is to learn a hyperplane

by which the samples with different labels are divided as

wide as possible. However, tensor data may not be linearly

separable in the input space. To achieve a better performance

on finding the most discriminative biomarkers or identifying

infected subjects from the control group, in many neu-

roimaging applications, nonlinear transformation of the

original tensor data should be considered. He et al. study the

problem of supervised tensor learningwith nonlinear kernels

which can preserve the structure of tensor data [13]. The

proposed kernel is an extension of kernels in the vector space

to the tensor space which can take the multidimensional

structure complexity into account. However, it cannot

automatically consider the abundant and complicated

information of the neuroimaging data in an integral manner.

Han et al. apply a deep learning-based algorithm, the hier-

archical convolutional sparse auto-encoder, to extract effi-

cient and robust features and conserve abundant detail

information for the neuroimaging classification [16].

Slightly different from classifying disease status (dis-

crete label), another family of problems uses tensor neu-

roimages to predict cognitive outcome (continuous label).

The problems can be formulated in a regression setup by

treating clinical outcome as the real label, i.e., yi 2 R, and

treating tensor neuroimages as the input. However, most

classical regression methods take vectors as input features.

Simply reshaping a tensor into a vector is clearly an

unsatisfactory solution.

Zhou et al. exploit the tensor structure in imaging data and

integrate tensor decomposition within a statistical regression

paradigm to model multidimensional arrays [14]. By

imposing a low-rank approximation to the extremely high-

dimensional complex imaging data, the curse of dimen-

sionality is greatly alleviated, thereby allowing development

of a fast estimation algorithm and regularization. Numerical

analysis demonstrates its potential applications in identify-

ing ROI in brains that are relevant to a particular clinical

response. In scenarios where the objective is to predict a set

of dependent variables, Cichocki et al. introduce a general-

ized multilinear regression model, higher order partial least

squares, which projects the electrocorticogram data into a

latent space and performs regression on the corresponding

latent variables [17, 18].

2.2 Unsupervised learning

Modern imaging techniques have allowed us to study the

human brain as a complex system by modeling it as a net-

work [19]. For example, the fMRI scans consist of activa-

tions of thousands of voxels over time embedding a complex

interaction of signals and noise [20], which naturally pre-

sents the problem of eliciting the underlying network from

brain activities in the spatio-temporal tensor data. A brain

connectivity network, also called a connectome [21], con-

sists of nodes (gray matter regions) and edges (white matter

tracts in structural networks or correlations between two

BOLD time series in functional networks).

Although the anatomical atlases in the brain have been

extensively studied for decades, task/subject specific net-

works have still not been completely explored with con-

sideration of functional or structural connectivity

information. An anatomically parcellated region may

contain subregions that are characterized by dramatically

different functional or structural connectivity patterns,

thereby significantly limiting the utility of the constructed

networks. There are usually trade-offs between reducing

noise and preserving utility in brain parcellation [2]. Thus,

investigating how to directly construct brain networks from

tensor imaging data and understanding how they develop,

deteriorate, and vary across individuals will benefit disease

diagnosis [12].

Davidson et al. pose the problem of network discovery

from fMRI data which involves simplifying spatio-tem-

poral data into regions of the brain (nodes) and relation-

ships between those regions (edges) [12]. Here the nodes

represent collections of voxels that are known to behave

cohesively over time; the edges can indicate a number of

properties between nodes such as facilitation/inhibition

(increases/decreases activity) or probabilistic (synchro-

nized activity) relationships; and the weight associated

with each edge encodes the strength of the relationship.

A tensor can be decomposed into several factors.

However, unconstrained tensor decomposition results of

the fMRI data may not be good for node discovery because

each factor is typically not a spatially contiguous region

nor does it necessarily match an anatomical region. That is

to say, many spatially adjacent voxels in the same structure

are not active in the same factor which is anatomically

impossible. Therefore, to achieve the purpose of discov-

ering nodes while preserving anatomical adjacency, known

anatomical regions in the brain are used as masks and

constraints are added to enforce that the discovered factors

should closely match these masks [12].

Yang et al. investigate the inference of mouse brain

networks and propose a hierarchical graphical model

framework with tree-structural regularization [22]. In the

hierarchical structure, voxels serve as the leaf nodes of the
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tree, and a node in the intermediate layer represents a

region formed by voxels in the subtree rooted at that node.

For edge discovery problem, Papalexakis et al. leverage

control theory to model the dynamics of neuron interac-

tions and infer the functional connectivity [23]. It is

assumed that in addition to the linear influence of the input

stimulus, there are hidden neuron regions of the brain,

which interact with each other, causing the voxel activities.

Veeriah et al. propose a deep learning algorithm for pre-

dicting if the two brain neurons are causally connected

given their activation time-series data [24]. It reveals that

the exploitation of the deep architecture is critical, which

jointly extracts sequences of salient patterns of activation

and aligns them to predict neural connections.

Overall, current research on tensor imaging analysis

presents two directions: (1) supervised: for a particular

brain disorder, a classifier can be trained by modeling the

relationship between a set of neuroimages and their asso-

ciated labels (disease status or clinical response); (2)

unsupervised: regardless of brain disorders, a brain net-

work can be discovered from a given neuroimage.

3 Brain network analysis

We have briefly introduced that brain networks can be

constructed from neuroimaging data where nodes corre-

spond to brain regions, e.g., insula, hippocampus, thala-

mus, and links correspond to the functional/structural

connectivity between brain regions. The linkage structure

in brain networks can encode tremendous information

about the mental health of human subjects. For example, in

brain networks derived from fMRI, functional connections

can encode the correlations between the functional activi-

ties of brain regions. While structural links in DTI brain

networks can capture the number of neural fibers con-

necting different brain regions. The complex structures and

the lack of vector representations for the brain network data

raise major challenges for data mining.

Next, we will discuss different approaches on how to

conduct further analysis for constructed brain networks,

which are also referred to as graphs hereafter.

Definition 3 (Binary graph) A binary graph is repre-

sented as G ¼ ðV ;EÞ, where V ¼ fv1; . . .; vnvg is the set of

vertices, and E � V � V is the set of deterministic edges.

3.1 Kernel learning on graphs

In the setting of supervised learning on graphs, the target is

to train a classifier using a given set of graph data

D ¼ fðGi; yiÞgni¼1, so that we can predict the label ŷ for a

test graph G. With applications to brain networks, it is

desirable to identify the disease status for a subject based

on his/her uncovered brain network. Recent development

of brain network analysis has made characterization of

brain disorders at a whole-brain connectivity level possible,

thus providing a new direction for brain disease

classification.

Due to the complex structures and the lack of vector

representations, graph data cannot be directly used as the

input for most data mining algorithms. A straightforward

solution that has been extensively explored is to first derive

features from brain networks and then construct a kernel on

the feature vectors.

Wee et al. use brain connectivity networks for disease

diagnosis on mild cognitive impairment (MCI), which is

an early phase of Alzheimer’s disease (AD) and usually

regarded as a good target for early diagnosis and thera-

peutic interventions [25–27]. In the step of feature

extraction, weighted local clustering coefficients of each

ROI in relation to the remaining ROIs are extracted from

all the constructed brain networks to quantify the preva-

lence of clustered connectivity around the ROIs. To select

the most discriminative features for classification, statis-

tical t test is performed and features with p values smaller

than a predefined threshold are selected to construct a

kernel matrix. Through the employment of the multi-

kernel SVM, Wee et al. integrate information from DTI

and fMRI and achieve accurate early detection of brain

abnormalities [27].

However, such strategy simply treats a graph as a col-

lection of nodes/links, and then extracts local measures

(e.g., clustering coefficient) for each node or performs

statistical analysis on each link, thereby blinding the con-

nectivity structures of brain networks. Motivated by the

fact that some data in real-world applications are naturally

represented by means of graphs, while compressing and

converting them to vectorial representations would defi-

nitely lose structural information, kernel methods for

graphs have been extensively studied for a decade [28].

A graph kernel maps the graph data from the original

graph space to the feature space and further measures the

similarity between two graphs by comparing their topo-

logical structures [29]. For example, product graph kernel

is based on the idea of counting the number of walks in

product graphs [30]; marginalized graph kernel works by

comparing the label sequences generated by synchronized

random walks of labeled graphs [31]; and cyclic pattern

kernels for graphs count pairs of matching cyclic/tree

patterns in two graphs [32].

To identify individuals with AD/MCI from healthy

controls, instead of using only a single property of brain

networks, Jie et al. integrate multiple properties of fMRI

brain networks to improve the disease diagnosis perfor-

mance [33]. Two different yet complementary network
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properties, i.e., local connectivity and global topological

properties are quantified by computing two different types

of kernels, i.e., a vector-based kernel and a graph kernel.

As a local network property, weighted clustering coeffi-

cients are extracted to compute a vector-based kernel. As a

topology-based graph kernel, Weisfeiler-Lehman subtree

kernel [29] is used to measure the topological similarity

between paired fMRI brain networks. It is shown that this

type of graph kernel can effectively capture the topological

information from fMRI brain networks. The multi-kernel

SVM is employed to fuse these two heterogeneous kernels

for distinguishing individuals with MCI from healthy

controls.

3.2 Subgraph pattern mining

In brain network analysis, the ideal patterns we want to

mine from the data should take care of both local and

global graph topological information. Graph kernel meth-

ods seem promising, which, however, are not interpretable.

Subgraph patterns are more suitable for brain networks,

which can simultaneously model the network connectivity

patterns around the nodes and capture the changes in local

area [2].

Definition 4 (Subgraph) Let G0 ¼ ðV 0;E0Þ and G ¼
ðV;EÞ be two binary graphs. G0 is a subgraph of G (denoted

as G0 � G) iff V 0 � V and E0 � E. If G0 is a subgraph of G,

then G is supergraph of G0.

A subgraph pattern, in a brain network, represents a

collection of brain regions and their connections. For

example, as shown in Fig. 2, three brain regions should

work collaboratively for normal people and the absence of

any connection between them can result in Alzheimer’s

disease in different degrees. Therefore, it is valuable to

understand which connections collectively play a signifi-

cant role in disease mechanism by finding discriminative

subgraph patterns in brain networks.

Mining subgraph patterns from graph data has been

extensively studied by many researchers [34–37]. In gen-

eral, a variety of filtering criteria are proposed. A typical

evaluation criterion is frequency, which aims at searching

for frequently appearing subgraph features in a graph

dataset satisfying a prespecified threshold. Most of the

frequent subgraph mining approaches are unsupervised.

For example, Yan and Han develop a depth-first search

algorithm: gSpan [38]. This algorithm builds a lexico-

graphic order among graphs, and maps each graph to a

unique minimum DFS code as its canonical label. Based on

this lexicographic order, gSpan adopts the depth-first

search strategy to mine frequent connected subgraphs

efficiently. Many other approaches for frequent subgraph

mining have also been proposed, e.g., AGM [39], FSG

[40], MoFa [41], FFSM [42], and Gaston [43].

Moreover, the problem of supervised subgraph mining

has been studied in recent work which examines how to

improve the efficiency of searching the discriminative

subgraph patterns for graph classification. Yan et al.

introduce two concepts structural leap search and fre-

quency-descending mining, and propose LEAP [37] which

is one of the first work in discriminative subgraph mining.

Thoma et al. propose CORK which can yield a near-opti-

mal solution using greedy feature selection [36]. Ranu and

Singh propose a scalable approach, called GraphSig, that is

capable of mining discriminative subgraphs with a low-

frequency threshold [44]. Jin et al. propose COM which

takes into account the co-occurrences of subgraph patterns,

thereby facilitating the mining process [45]. Jin et al. fur-

ther propose an evolutionary computation method, called

GAIA, to mine discriminative subgraph patterns using a

randomized searching strategy [34]. Zhu et al. design a

diversified discrimination score based on the log ratio

which can reduce the overlap between selected features by

considering the embedding overlaps in the graphs [46].

Conventional graph mining approaches are best suited

for binary edges, where the structure of graph objects is

deterministic, and the binary edges represent the presence

of linkages between the nodes [2]. In fMRI brain network

data, however, there are inherently weighted edges in the

graph linkage structure, as shown in Fig. 3 (left). A

straightforward solution is to threshold weighted networks

to yield binary networks. However, such simplification will

result in great loss of information. Ideal data mining

methods for brain network analysis should be able to

overcome these methodological problems by generalizing

the network edges to positive and negative weighted cases,

e.g., probabilistic weights in fMRI brain networks and

integral weights in DTI brain networks.

Definition 5 A weighted graph is represented as

eG ¼ ðV ;E; pÞ, where V ¼ fv1; . . .; vnvg is the set of ver-

tices, and E � V � V is the set of nondeterministic edges.

p : E ! ð0; 1� is a function that assigns a probability of

existence to each edge in E.

fMRI brain networks can be modeled as weighted

graphs where each edge e 2 E is associated with a prob-

ability p(e) indicating the likelihood of whether this edge

should exist or not [47, 48]. It is assumed that p(e) of

different edges in a weighted graph are independent from

each other. Therefore, by enumerating the possible exis-

tence of all edges in a weighted graph, we can obtain a set

of binary graphs. For example, in Fig. 3 (right), consider

the three red nodes and links between them as a weighted

graph. There are 23 ¼ 8 binary graphs that can be implied
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with different probabilities. For a weighted graph eG, the

probability of eG containing a subgraph feature G0 is

defined as the probability that a binary graph G implied by

eG contains subgraph G0. Kong et al. propose a discrimi-

native subgraph feature selection method based on

dynamic programming to compute the probability distri-

bution of the discrimination scores for each subgraph

pattern within a set of weighted graphs [48].

For brain network analysis, usually we only have a small

number of graph instances [48]. In these applications, the

graph view alone is not sufficient for mining important

subgraphs. Fortunately, the side information is available

along with the graph data for brain disorder identification.

For example, in neurological studies, hundreds of clinical,

immunologic, serologic, and cognitive measures may be

available for each subject, apart from brain networks.

These measures compose multiple side views which con-

tain a tremendous amount of supplemental information for

diagnostic purposes. It is desirable to extract valuable

information from a plurality of side views to guide the

process of subgraph mining in brain networks.

Figure 4 illustrates two strategies of leveraging side

views in the process of selecting subgraph patterns. Con-

ventional graph classification approaches treat side views

and subgraph patterns separately and may only combine

them at the final stage of training a classifier. Obviously,

the valuable information embedded in side views is not

fully leveraged in the feature selection process. In order to

fuse heterogeneous data sources at an early stage thereby

exploring their correlations, Cao et al. introduce an

+ Alzheimer's disease + Alzheimer's disease + Alzheimer's disease

- Normal - Normal - Normal

A discriminative subgraph pattern

Fig. 2 An example of

discriminative subgraph

patterns in brain networks
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Fig. 3 An example of fMRI

brain networks (left) and all

possible instantiations of

linkage structures between red

nodes (right) [47]. (Color

figure online)
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effective algorithm for discriminative subgraph selection

using multiple side views as guidance [49]. Side informa-

tion consistency is first validated via statistical hypothesis

testing which suggests that the similarity of side view

features between instances with the same label should have

higher probability to be larger than that with different

labels. Based on such observations, it is assumed that the

similarity/distance between instances in the space of sub-

graph features should be consistent with that in the space of

a side view. That is to say, if two instances are similar in

the space of a side view, they should also be close to each

other in the space of subgraph features. Therefore the target

is to minimize the distance between subgraph features of

each pair of similar instances in each side view [49]. In

contrast to existing subgraph mining approaches that focus

on the graph view alone, the proposed method can explore

multiple vector-based side views to find an optimal set of

subgraph features for graph classification.

For graph classification, brain network analysis

approaches can generally be put into three groups: (1)

extracting some local measures (e.g., clustering coefficient)

to train a standard vector-based classifier; (2) directly

adopting graph kernels for classification; and (3) finding

discriminative subgraph patterns. Different types of meth-

ods model the connectivity embedded in brain networks in

different ways.

4 Multi-view feature analysis

Medical science witnesses everyday measurements from a

series of medical examinations documented for each sub-

ject, including clinical, imaging, immunologic, serologic,

and cognitive measures [50], as shown in Fig. 5. Each

group of measures characterizes the health state of a sub-

ject from different aspects. This type of data is named as

multi-view data, and each group of measures form a dis-

tinct view quantifying subjects in one specific feature

space. Therefore, it is critical to combine them to improve

the learning performance, while simply concatenating

features from all views and transforming a multi-view data

into a single-view data, as the method (a) shown in Fig. 6,

would fail to leverage the underlying correlations between

different views.

4.1 Multi-view learning and feature selection

Suppose we have a multi-view classification task with n

labeled instances represented from m different views:

D ¼ x
ð1Þ
i ; x

ð2Þ
i ; . . .; x

ðmÞ
i ; yi

� �n on

i¼1
, where x

ðvÞ
i 2 RIv , Iv is

the dimensionality of the v-th view, and yi 2 f�1;þ1g is

the class label of the i-th instance.

Representative methods for multi-view learning can be

categorized into three groups: co-training, multiple kernel

learning, and subspace learning [52]. Generally, the co-

training style algorithm is a classic approach for semi-su-

pervised learning, which trains in alternation to maximize

the mutual agreement on different views. Multiple kernel

learning algorithms combine kernels that naturally corre-

spond to different views, either linearly [53] or nonlinearly

[54, 55] to improve learning performance. Subspace

learning algorithms learn a latent subspace, from which

multiple views are generated. Multiple kernel learning and

subspace learning are generalized as co-regularization style

algorithms [56], where the disagreement between the

functions of different views is taken as a part of the

objective function to be minimized. Overall, by exploring

the consistency and complementary properties of different

views, multi-view learning is more effective than single-

view learning.

In the multi-view setting for brain disorders, or for

medical studies in general, a critical problem is that there

may be limited subjects available (i.e., a small n) yet

introducing a large number of measurements (i.e., a largePm
i¼1 Ii). Within the multi-view data, not all features in

different views are relevant to the learning task, and some

irrelevant features may introduce unexpected noise. The

irrelevant information can even be exaggerated after view

combinations thereby degrading performance. Therefore, it

is necessary to take care of feature selection in the learning

process. Feature selection results can also be used by

researchers to find biomarkers for brain diseases. Such

biomarkers are clinically imperative for detecting injury to

the brain in the earliest stage before it is irreversible. Valid

biomarkers can be used to aid diagnosis, monitor disease

progression, and evaluate effects of intervention [48].

Conventional feature selection approaches can be divi-

ded into three main directions: filter, wrapper, and

Subgraph Patterns

Side Views

Mine

noisuFetaLnoisuFylraE

Brain Networks Graph Classification
Input

Fig. 4 Two strategies of

leveraging side views in feature

selection process for graph

classification: late fusion and

early fusion

A review of heterogeneous data mining for brain disorder identification 259

123



embedded methods [57]. Filter methods compute a dis-

crimination score of each feature independently of the

other features based on the correlation between the feature

and the label, e.g., information gain, Gini index, Relief [58,

59]. Wrapper methods measure the usefulness of feature

subsets according to their predictive power, optimizing the

subsequent induction procedure that uses the respective

subset for classification [51, 60–63]. Embedded methods

perform feature selection in the process of model training

based on sparsity regularization [64–67]. For example,

Miranda et al. add a regularization term that penalizes the

size of the selected feature subset to the standard cost

function of SVM, thereby optimizing the new objective

function to conduct feature selection [68]. Essentially, the

process of feature selection and learning algorithm interact

in embedded methods which means the learning part and

the feature selection part cannot be separated, while

wrapper methods utilize the learning algorithm as a black

box.

However, directly applying these feature selection

approaches to each separate view would fail to leverage

multi-view correlations. By taking into account the latent

interactions among views and the redundancy triggered by

multiple views, it is desirable to combine multi-view data

in a principled manner and perform feature selection to

obtain consensus and discriminative low-dimensional fea-

ture representations.

4.2 Modeling view correlations

Recent years have witnessed many research efforts devoted

to the integration of feature selection and multi-view

learning. Tang et al. study multi-view feature selection in

the unsupervised setting by constraining that similar data

instances from each view should have similar pseudo-class

labels [69]. Considering brain disorder identification, dif-

ferent neuroimaging features may capture different but

complementary characteristics of the data. For example,

the voxel-based tensor features convey the global infor-

mation, while the ROI-based automated anatomical label-

ing (AAL) [70] features summarize the local information

from multiple representative brain regions. Incorporating

these data and additional nonimaging data sources can

potentially improve the prediction. For Alzheimer’s disease

(AD) classification, Ye et al. propose a kernel-based

method for integrating heterogeneous data, including ten-

sor and AAL features from MRI images, demographic

information, and genetic information [11]. The kernel

framework is further extended for selecting features

(biomarkers) from heterogeneous data sources that play

more significant roles than others in AD diagnosis.

Huang et al. propose a sparse composite linear dis-

criminant analysis model for identification of disease-re-

lated brain regions of AD from multiple data sources [71].

Two sets of parameters are learned: one represents the

common information shared by all the data sources about a

feature, and the other represents the specific information

only captured by a particular data source about the feature.

Experiments are conducted on the PET and MRI data

which measure structural and functional aspects, respec-

tively, of the same AD pathology. However, the proposed

approach requires the input as the same set of variables

from multiple data sources. Xiang et al. investigate multi-

source incomplete data for AD and introduce a unified

feature learning model to handle block-wise missing data

which achieves simultaneous feature-level and source-level

selection [72].

For modeling view correlations, in general, a coefficient

is assigned for each view, either at the view-level or

HIV/
seronega�ve

View 1

View 3

View 2

View 6

View 4

View 5

Immunologic 
measures

Clinical measuresSerologic measures

MRI sequence B

MRI sequence A Cogni�ve measures

Fig. 5 An example of multi-view learning in medical studies [51]

View 3

View 2

View 1

Modeling Feature selec�on
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Method (c)

Fig. 6 Schematic view of the key differences among three strategies

of multi-view feature selection [51]
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feature-level. For example, in multiple kernel learning, a

kernel is constructed from each view and a set of kernel

coefficients are learned to obtain an optimal combined

kernel matrix. These approaches, however, fail to explicitly

consider correlations between features.

4.3 Modeling feature correlations

One of the key issues for multi-view classification is to

choose an appropriate tool to model features and their

correlations hidden in multiple views, since this directly

determines how information will be used. In contrast to

modeling on views, another direction for modeling multi-

view data is to directly consider the correlations between

features from multiple views. Since taking the tensor pro-

duct of their respective feature spaces corresponds to the

interaction of features from multiple views, the concept of

tensor serves as a backbone for incorporating multi-view

features into a consensus representation by means of tensor

product, where the complex multiple relationships among

views are embedded within the tensor structures. By min-

ing structural information contained in the tensor, knowl-

edge of multi-view features can be extracted and used to

establish a predictive model.

Smalter et al. formulate the problem of feature selection

in the tensor product space as an integer quadratic pro-

gramming problem [73]. However, this method is compu-

tationally intractable on many views, since it directly selects

features in the tensor product space resulting in the curse of

dimensionality, as the method (b) shown in Fig. 6. Cao et al.

propose to use a tensor-based approach tomodel features and

their correlations hidden in the original multi-view data [51].

The operation of tensor product can be used to bringm-view

feature vectors of each instance together, leading to a ten-

sorial representation for common structure across multiple

views, and allowing us to adequately diffuse relationships

and encode information among multi-view features. In this

manner, the multi-view classification task is essentially

transformed from an independent domain of each view to a

consensus domain as a tensor classification problem.

By using X i to denote
Qm

v¼1 �x
ðvÞ
i , the dataset of labeled

multi-view instances can be represented as

D ¼ fðX i; yiÞgni¼1. Note that each multi-view instance X i is

an mth-order tensor that lies in the tensor product space

RI1�����Im . Based on the definitions of inner product and

tensor norm, multi-view classification can be formulated as

a global convex optimization problem in the framework of

supervised tensor learning [15]. This model is named as

multi-view SVM [51], and it can be solved with the use of

optimization techniques developed for SVM.

Furthermore, a dual method for multi-view feature

selection is proposed in [51] that leverages the relationship

between original multi-view features and reconstructed

tensor product features to facilitate the implementation of

feature selection, as the method (c) in Fig. 6. It is a wrapper

model which selects useful features in conjunction with the

classifier and simultaneously exploits the correlations

among multiple views. Following the idea of SVM-based

recursive feature elimination [60], multi-view feature

selection is consistently formulated and implemented in the

framework of multi-view SVM. This idea can extend to

include lower order feature interactions and to employ a

variety of loss functions for classification or regression

[74].

5 Future work

The human brain is one of the most complicated biological

structures in the known universe. While it is very chal-

lenging to understand how it works, especially when dis-

orders and diseases occur, dozens of leading technology

firms, academic institutions, scientists, and other key con-

tributors to the field of neuroscience have devoted them-

selves to this area and made significant improvements in

various dimensions.2 Data mining on brain disorder iden-

tification has become an emerging area and a promising

research direction.

This paper provides an overview of data mining

approaches with applications to brain disorder identifica-

tion, which have attracted increasing attention in both data

mining and neuroscience communities in recent years. A

taxonomy is built based upon data representations, i.e.,

tensor imaging data, brain network data, and multi-view

data, following which the relationships between different

data mining algorithms and different neuroimaging appli-

cations are summarized. We briefly present some potential

topics of interest in the future.

5.1 Bridging heterogeneous data representations

As introduced in this paper, we can usually derive data

from neuroimaging experiments in three representations,

including raw tensor imaging data, brain network data, and

multi-view vector-based data. It is critical to study how to

train a model on a mixture of data representations, although

it is very challenging to combine data that are represented

in tensor space, vector space, and graph space, respec-

tively. There is a straightforward idea of defining different

kernels on different feature spaces and combing them

through multi-kernel algorithms. However, it is usually

hard to interpret the results. The concept of side view has

been introduced to facilitate the process of mining brain

2 http://www.whitehouse.gov/BRAIN
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networks, which may also be used to guide supervised

tensor learning. It is even more interesting if we can learn

on tensors and graphs simultaneously.

5.2 Integrating multiple neuroimaging modalities

There are a variety of neuroimaging techniques available

characterizing subjects from different perspectives and

providing complementary information. For example, DTI

contains local microstructural characteristics of water dif-

fusion; structural MRI can be used to delineate brain atro-

phy; fMRI records BOLD response related to neural activity;

and PET measures metabolic patterns [27]. Based on such

multimodality representation, it is desirable to find useful

patterns with rich semantics. For example, it is important to

know which connectivity between brain regions is signifi-

cant in the sense of both structure and functionality. On the

other hand, by leveraging the complementary information

embedded in the multimodality representation, better per-

formance on disease diagnosis can be expected.

5.3 Mining bioinformatics information networks

Bioinformatics network is a rich source of heterogeneous

information involving disease mechanisms, as shown in

Fig. 7. The problems of gene-disease association and drug-

target binding prediction have been studied in the setting of

heterogeneous information networks [75, 76]. For example,

in gene-disease association prediction, different gene

sequences can lead to certain diseases. Researchers would

like to predict the association relationships between genes

and diseases. Understanding the correlations between brain

disorders and other diseases and the causality between

certain genes and brain diseases can be transformative for

yielding new insights concerning risk and protective rela-

tionships, for clarifying disease mechanisms, for aiding

diagnostics and clinical monitoring, for biomarker

discovery, for identification of new treatment targets, and

for evaluating effects of intervention.
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