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Abstract In this work, we propose SmartTracing, an

automatic tracing framework that does not require sub-

stantial human intervention. There are two major novelties

in SmartTracing. First, given an input image, SmartTracing

invokes a user-provided existing neuron tracing method to

produce an initial neuron reconstruction, from which the

likelihood of every neuron reconstruction unit is estimated.

This likelihood serves as a confidence score to identify

reliable regions in a neuron reconstruction. With this score,

SmartTracing automatically identifies reliable portions of a

neuron reconstruction generated by some existing neuron

tracing algorithms, without human intervention. These

reliable regions are used as training exemplars. Second,

from the training exemplars the most characteristic wavelet

features are automatically selected and used in a machine

learning framework to predict all image areas that most

probably contain neuron signal. Since the training samples

and their most characterizing features are selected from

each individual image, the whole process is automatically

adaptive to different images. Notably, SmartTracing can

improve the performance of an existing automatic tracing

method. In our experiment, with SmartTracing we have

successfully reconstructed complete neuron morphology of

120 Drosophila neurons. In the future, the performance of

SmartTracing will be tested in the BigNeuron project

(bigneuron.org). It may lead to more advanced tracing

algorithms and increase the throughput of neuron mor-

phology-related studies.

Keywords SmartTracing � Neuron reconstruction �
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1 Introduction

The manual reconstruction of a neuron’s morphology has

been in practice for one century now since the time of

Ramón y Cajal. Today, the technique has evolved such that

researchers can quantitatively trace neuron morphologies

in 3D with the help of computers. As a quantitative

description of neuron morphology, the digital representa-

tion has been widely applied in the tasks of modern neu-

roscience studies [1–3] such as characterizing and

classifying neuron phenotype or modeling and simulating

electrophysiology behavior of neurons. However, many

popular neuron reconstruction tools such as Neurolucida

(http://www.mbfbioscience.com/neurolucida) still rely on

manual tracing to reconstruct neuron morphology, which

limits the throughput of analyzing neuron morphology.

In the past decade, many efforts have been given to

eliminate such a bottleneck by developing automatic or

semi-automatic neuron reconstruction algorithms [1, 3]. In
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these algorithms, different strategies and models were

applied, such as pruning of over-complete neuron trees

[4, 5], shortest path graph [6], distance transforms [7],

snake curve [8], and deformable curve [9]. However, the

completeness and the attribute of resulted neuron mor-

phology vary tremendously between different algorithms.

Recently, to quantitatively assess such variability between

algorithms and advance the state of the art of automatic

neuron reconstruction method, a project named BigNeuron

[10, 11] has been launched to bench-test existing algo-

rithms on big dataset. One reason causing such variability

is that image quality and attributes vary between different

data sets—partially due to the differences in imaging

modality, imaging parameter, animal model, neuron type,

tissue processing protocol, and the proficiency of micro-

scopic operator. And some of the algorithms were devel-

oped based on specific data or were developed to solve

specific problem in the data which may not be applicable

for other types of data. Another reason is that most of the

tracing algorithms required user input of parameters. As a

consequence, the optimal parameters vary between images

and thus require manual tuning by the user with sufficient

knowledge of the algorithm.

We note that most of the current automatic neuron

reconstruction algorithms are not ‘‘smart’’ enough. Indeed,

many times they require human intervention to obtain

reasonable result. To conquer this limitation, one can adapt

learning-based methods; so the algorithm can be trained for

different data. In [12], the authors proposed a machine

learning approach to estimate the optimal solution of

linking neuron fragments. However, the fragments to link

were still generated by model-driven approaches, and it

requires manual work in generating training samples.

In this paper, based on machine learning algorithms, we

proposed SmartTracing, an automatic tracing framework

that does not require human intervention. The procedure of

the SmartTracing algorithm is outlined in Fig. 1. First, the

initial reconstruction was obtained based on existing

automatic tracing algorithms (Fig. 1b). Second, a confi-

dence metric proposed in this paper was computed for each

reconstruction segment to identify reliable tracing

(Fig. 1c). Third, a training sampler (Fig. 1d) and the most

characteristic features were obtained. Fourth, a classifier

was then trained and the foreground containing neuron

morphology was predicted (Fig. 1e). Finally, after adjust-

ing the image based on prediction result, the final recon-

struction was traced (Fig. 1f).

The paper is organized as follows. We first discuss the

key steps of SmartTracing. Then we describe the imple-

mentation and the availability of the algorithm. Finally, we

present experimental results on real neuron image data,

followed by some brief discussion of the pros and cons and

the future extension of SmartTracing.

2 Method

2.1 Automatic search training exemplars

2.1.1 Confidence score of reconstruction

In SmartTracing, we first identify the reliable neuron

reconstructions as training exemplars. A neuron recon-

struction can be decomposed into multiple segments by

breaking the reconstruction at the branch point. Whether or

not a segment is trustworthy can be tested by checking if

there is an alternative path connecting the two ends of the

segment compared to this segment. Our premise is that a

segment with no better alternative pathway (e.g., Fig-

ure 2c) is more reliable in comparison with a segment with

alternative pathway (e.g., Figure 2d). Specifically, for a

segment Lij between points i and j, the image intensity

along Lij will be masked to 0 first. Then, the shortest path

L�ij weighted by intensity between points i and j will be

identified. In the original image, the average intensity along

Lij and L�ij will be measured:

Iij ¼
R
Lij
IðxÞdx
Lij

; ð1Þ

where I(x) is the intensity of x and Lij is the length of Lij.

Then the confidence metric can be obtained by dividing

Iij
�
by Iij:

Cij ¼ Iij
�
=Iij: ð2Þ

Our method is that if an alternative path exists, Iij
�
will

be closer to or even larger than Iij and Cij will be close to 1.

Otherwise, L�ij will be a relatively straight line passing

through background with low intensity connecting i and j,

and thus Cij � 1. This measurement is based on the

assumption that background intensity is lower than fore-

ground intensity. When the background intensity is greater

than foreground (e.g., for brightfield images), we can

simply invert Cij in Eq. (2).

2.1.2 Obtaining training exemplars

Based on the confidence score obtained, the original image

can be classified into 4 groups of regions—foreground

samples (labeled neurons), background samples (no-neuron

area), uncertain regions, and the irrelevant area (Fig. 1d).

Foreground samples are defined as the skeleton regions of

confident reconstruction segments. Background samples

are defined as the non-skeleton regions surrounding the

confident reconstruction segments. The intermediate zones

between these two regions are taken as uncertain regions.

And the zones surrounding less-confident reconstructions
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are taken as uncertain regions as well. These 3 types of

regions compose 3 layers surrounding the confident recon-

structions—core layer: foreground samples; middle layer:

uncertain regions; and outer layer: background samples.

2.2 Extracting features for classification

Image intensity-based features are extracted by adopting

the method proposed in [13]. The whole procedure is

outlined in Fig. 3. For each sample voxel, features are

extracted in a 3D cube surrounding this voxel (Fig. 3a).

Multi-resolution wavelet representation (MWR) is applied

to project the sub-volume of the local 3D cube into a

feature space (Fig. 3b. c). Then, a subset of features is

selected based on minimum-Redundancy Maximum-Rele-

vance (mRMR) method [14] for classification (Fig. 3d).

MWR codes the information in both frequency domain

and spatial domain. It is effective for identifying local and

multi-scale features from signals or images and has been

widely used in pattern recognition tasks. The MWR

framework was firstly introduced on 1-dimensional (1D)

signals and then extended to 2-dimensional (2D) images by

Mallat [15]. In brief, a pair of functions was defined to

conduct wavelet transform—the mother wavelet w(x)—
representing the detail and high-frequency parts of a signal

and the scaling function u(x) representing the smooth and

low-frequency parts of the signal. To decompose signal

into multiple resolutions, the calculation is performed

iteratively on the smoothed signal calculated based on

u(x). In practice, for discrete signal, instead of calculating

wavelet w(x) and scaling function u(x), a high pass filter H

and a low pass filter L will be applied to calculate MWR.

(a) original image

(e) foreground prediction

(b) initial reconstruction

(d) classifier training samples

(f) final reconstruction result

confident      not confident

foreground samples

foreground regions

background samples

uncertain regions

background regions

(c) confidence metric of reconstructed segments

Fig. 1 Overview of SmartTracing method and the result for a single

image. In each sub-figure, the global 3D view of images and the

overlapped reconstructions is shown on the left. The zoomed-in 3D

view (a–c) and (f) or slice view (d–e) are shown on the right. The

locations of the zoomed-in view are highlighted in a
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Mallat has shown that MWR can be extended from 1D

signal to 2D image by convolving the image with the filters

in one dimension first and then convolving the output

image with the filters in the other dimension [15]. Such

operation can be further extended to 3D volume [16]. As

illustrated in Fig. 3b, in one level of decomposition, 8

groups of wavelet coefficients are obtained by convolving

volume with different permutations of two filters in three

directions successively. The smoothed volume LLL is

further decomposed in the next level to achieve multi-

resolution representations.

After MWR decomposition, the dimension of feature

space is relatively high—the number of features ffig equals

the number of voxels in the sub-volume (Fig. 3c). Since

some of these features may carry redundant information or

non-discriminative information, using the full set of MWR

Fig. 3 Illustration of feature selection procedure. a Extracting sub-volume in 3D cube surrounding the sample voxel. b Wavelet decomposition

for volume data. c Multi-resolution wavelet representation. d Selecting a characterizing subset of features based on mRMR for classification

(b) (a) 

(c) (d) 

∗

∗

alternative path
original path

alternative path
original path

Fig. 2 Illustration of alternative

path. For each segment in the

reconstructions, after masking

the image along the segment,

the alternative path will be

searched by fast marching from

one end to the other end of the

segment based on intensity.

a neuron to reconstruct, b initial

reconstructions, c alternative

path of Lij, d alternative path of

Lpq
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coefficients directly may lead to inaccurate result. To better

discriminate patterns and improve the robustness and

accuracy of training framework, we select the most char-

acterizing subset of features S. We consider the mRMR

feature selection method to solve the problem. The algo-

rithm has been widely applied in selecting features in high-

dimensional data such as microarray gene expression data

to solve classification problems [17]. In the algorithm, the

statistical dependency between the exemplar type and the

joint distribution of the selected features will be maxi-

mized. To meet this criterion, mRMR method search for

the features that are mutually far away from each other

(minimum redundancy) but also individually most similar

to the distribution of sampler types (maximum relevance).

In practice, these two conditions were optimized

simultaneously:

max
S2W

1

Sj j
X

i2S
Iðc; fiÞ �

1

Sj j2
X

i;j2S
Iðfi; fjÞ

( )

; ð3Þ

where W denotes the full set of MWR coefficients, c

denotes the vector of sampler type, Sj j is the number of

features, and I(x, y) is the mutual information between x

and y. The first term in the equation is the maximum rel-

evance condition, and the second term is the minimum

redundancy condition. It has been shown in [14] that the

solution can be computed efficiently in Oð Sj j � Wj jÞ.

2.3 Training classifier and tracing neuron

reconstruction

Based on the extracted features of training samplers,

supervised training can be performed to train a classifier for

foreground/background predictions. In our proposed

framework, we use Support Vector Machine (SVM)

implemented in LIBSVM tool kit [18]. The default

parameter setting of LIBSVM is used. A subset of fore-

ground and background training samplers is randomly

chosen from the pool to make sure that the numbers of

training samplers from each class are the same.

With the trained classifier, we then examine the voxels

in the image and label them as foreground or background

(Fig. 1e). Since in neuron tracing problem foreground

signals are often sparse and relatively continuous in the

image, we use a fast marching algorithm to search for the

foreground signals. Initially, the voxels of foreground

samples are pre-labeled as foreground and the rest voxels

are marked ‘‘unknown.’’ The algorithm would then march

from foreground voxels to their adjacent unknown voxels.

For each of such ‘‘unknown’’ voxels, its feature will be

extracted and will be classified into foreground or back-

ground based on the classifier trained. If the voxel is

classified as foreground, it will be taken as a new starting

point for the next round of marching. The marching will

stop if no more foreground voxel can be reached, and all of

the unknown voxels left will be labeled as background.

Based on the labeled image, the original image is

adjusted to obtain the final tracing result. The intensity of

background voxels is set to 0. For foreground voxel, if its

intensity is lower than threshold set for tracing algorithm,

the intensity of the voxel will be set as the threshold value.

Otherwise, its intensity will be kept unchanged. Then the

tracing algorithm will be re-run on the adjusted image to

trace the final corrected neuron reconstruction.

3 Implementation

Intuitively, the proposed sampling, training, and prediction

framework can be applied on any existing neuron tracing

algorithms to test and improve its performance. In our

implementation, we used the APP2 tracing algorithm [4] to

generate the initial tracing from original image as well as

the final tracing from the image after prediction. To our

best knowledge, APP2 tracing algorithm is the fastest

tracing algorithm among existing methods and is reliable in

generating tree shape morphology for neuron reconstruc-

tions, which makes it an ideal algorithm to implement

proposed framework. On the other hand, the APP2 algo-

rithm has its own limitations. It will stop tracing when

there is a gap between signals such as the ones highlighted

by arrows in Fig. 1b. Also, like many other tracing algo-

rithms, it needs to fine tune the background threshold and

other parameters to avoid over-tracing. Thus, our proposed

framework can further improve the performance of APP2.

We implemented the SmartTracing algorithm as a plu-

gin of Vaa3D [19, 20] which is the common platform to

implement algorithms for the BigNeuron project (bigneu-

ron.org) bench-testing. Since the APP2 algorithm has

already been implemented in Vaa3D, the algorithm was

directly invoked via the Vaa3D plugin interface. The

default parameters of APP2 were taken to generate initial

neuron reconstruction. To generate the final reconstruction,

the background threshold was set to 1 since the intensity of

all the background voxels was set to 0 as introduced in the

previous section. The neighborhood 3D window size was

16 9 16 9 16 voxels. The cube of each such 3D small

window was decomposed into 3 levels of MWR. The

mRMR feature selection was implemented based on the

code downloaded from http://penglab.janelia.org/proj/

mRMR/, and the top 20 characteristic features were

selected. Classifier training and prediction were imple-

mented based on the code downloaded from LIBSVM tool

kit (http://www.csie.ntu.edu.tw/%7cjlin/libsvm/).

SmartTracing: self-learning-based neuron reconstruction 139

123

http://penglab.janelia.org/proj/mRMR/
http://penglab.janelia.org/proj/mRMR/
http://www.csie.ntu.edu.tw/%7ecjlin/libsvm/


4 Experimental results

The whole framework was tested on 120 confocal images

of single neurons in the Drosophila brain downloaded from

the flycircuit.tw database. The dimension of each image is

1024 9 1024 9 120 voxels. For some of the images, APP2

works reasonably well in reconstructing neuron mor-

phologies. However, due to the loss of signals during

image preprocessing, there could be a gap between neuron

segments which resulted in incomplete reconstructions by

APP2. Ten examples of incomplete reconstructions were

shown and highlighted by arrows in Fig. 4. Those gaps

were classified as foreground with proposed SmartTracing

framework and filled for complete tracing (red skeletons in

Fig. 4). The quantitative measurements of the morphology

and the computational running time (using single CPU) of

these 10 examples are listed in Table 1.

For the 120 confocal images tested, the proposed

SmartTracing algorithm successfully improved the overall

completeness of reconstructions. In comparison with initial

Fig. 4 Visualization of reconstructed neuron morphology of 10

selected examples. In each sub-figure, initial reconstruction generated

by APP2 (colored skeletons) was overlapped on the original image

(gray skeletons). The corresponding final reconstruction obtained by

SmartTracing was shown in red skeletons on the right. The initial

reconstructions were color coded by confidence scores (blue more

confident, red less confident). The incomplete part of the reconstruc-

tion and the gap that caused the problem were highlighted by black

arrows. The detailed measurements of these reconstructions are listed

in Table 1. (Color figure online)
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reconstructions, the total length, bifurcation number,

branch number, and tip number all increased after the

optimization of SmartTracing (Fig. 5). Among those, the

completeness of 30 reconstructions was significantly

improved (the total length of final reconstruction is 1.2

times larger than that of initial reconstruction). By visual

inspection, the SmartTracing algorithm only failed to trace

the complete neuron morphology on 1 image out of the 120

images. In this failure case, there is a gap that is too big to

be filled (Fig. 6b).

Notably, SmartTracing is able to run iteratively. The

reconstruction generated from the previous round is used as

the initial reconstruction for the next round. However, for

the reconstruction that is relatively complete, further iter-

ation will not change the result significantly (Fig. 6a) and is

time consuming. On the other hand, for the incorrect

Table 1 The running time of each procedure and the quantitative neuron morphology measurement of 10 selected example datasets

ID Running time (seconds) Length Bifurcation Branch Tip

Tin Ts Tm Tt Tp Tst Rin Rst Rin Rst Rin Rst Rin Rst

1 10.4 254 0.19 12.7 110 12.7 3027 4686 69 74 141 153 72 79

2 10.6 456 0.22 17.9 185 15.1 4469 7557 112 180 228 367 116 187

3 11.1 474 0.23 12.1 89 14.6 4611 6163 145 159 293 325 149 167

4 9.2 310 0.17 7.4 58 15.9 483 5823 5 117 11 240 7 124

5 10.9 310 0.19 8.5 119 16.7 3992 5635 84 92 175 188 91 96

6 9.2 29 0.17 7.5 133 22.2 176 8298 4 174 9 359 6 186

7 9.3 249 0.16 7.9 120 19.2 4408 7016 74 98 151 198 77 101

8 9.3 61 0.17 11.6 69 9.9 545 1174 7 8 14 16 8 9

9 10.1 307 0.17 9.2 53 13.4 3021 4024 75 93 155 190 81 98

10 9.0 37 0.16 7.3 78 15.3 125 3494 2 76 5 159 3 83

Visualization of the morphology of reconstructions and the original image of these examples are shown in Fig. 4

Tin generating initial reconstruction by APP2; Ts computing confidence score; Tm mRMR feature selection; Tt SVM classifier training; Tp
searching foreground; Tst generating final reconstruction; Rin initial reconstruction; Rst final reconstruction; Length unit: voxel

Fig. 5 Box plots of neuron morphology measurements of the 120 neuron reconstructions obtained
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Fig. 6 Examples of performing SmartTracing iteratively. Recon-

struction shown in red tube is overlapped on the original image shown

in gray. a Reconstruction of the first and second rounds of

SmartTracing of case #7 shown in Fig. 4. b Reconstruction of the

case that failed in the first round of SmartTracing but succeeded after

two rounds shown in different angles. The gap that caused the failure

in the first round is highlighted by arrows. (Color figure online)

Fig. 7 Comparisons of the reconstructions generated by 3 different

tracing algorithms using 3 testing images. Image ID is the same as

Fig. 4. The original images are shown in the top row followed by the

reconstructions generated by MOST (red), Snake (blue), and

SmartTracing (green). (Color figure online)
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reconstruction, better training samples could be obtained

based on the reconstruction from the previous iteration

which may successively remedy the reconstruction. Thus

we tried performing SmartTracing iteratively on the pre-

viously failed case. Intriguingly, it only took two rounds of

SmartTracing to successfully fill the gap and obtain com-

plete reconstruction (Fig. 6b). This is mainly because. with

the result from the first round, more training samples from

the gap area were obtained to train the classifier, so the gap

can be filled in the second round.

We then compared the result generated by SmartTracing

with other methods. Specifically, the results generated by

micro-optical sectioning tomography (MOST) ray-shooting

tracing [21] and open-curve snake (Snake) tracing [8, 22]

were compared. By visual inspection, the results generated

by our proposed SmartTracing were more complete, more

topologically correct, and better at reflecting the mor-

phology of the neurons in original images than other

tracing methods (Fig. 7).

5 Discussion

In our experiments, the proposed SmartTracing method

improved the APP2 tracing and successfully reconstructed

120 Drosophila neurons from confocal images. In addition

to filling the gaps between neuron segments, SmartTracing

can also reduce over-traces due to image noise, inhomo-

geneous distribution of image intensity, and inappropriate

tracing parameters. Essentially, SmartTracing is an adap-

tive and self-training image preprocessing procedure that

segments the image into the foreground area containing

neuron signals and the background voxels. The major

novelty of SmartTracing lies in two aspects.

First, we proposed a likelihood measurement that

serves as a confidence score to identify reliable regions in

a neuron reconstruction. With this score, reliable portions

of a neuron reconstruction generated by some existing

neuron tracing algorithms are identified, without human

intervention, as training exemplars for learning-based

tracing method. On the other hand, the human proof-

reader can also benefit from the metric. By ranking the

reconstructions by the confidence score, the human

annotators are able to prioritize on the less-reliable

reconstructions, which increases the overall accuracy and

saves time.

Second, from the training exemplars the most charac-

teristic wavelet features are automatically selected and used

in a machine learning framework to predict all image areas

that most probably contain neuron signal. Since the training

samples and their most characterizing features are selected

from each individual image, the whole process is auto-

matically adaptive to different images and does not require

prior knowledge on the object to identify. Potentially, the

proposed machine learning and prediction framework can

be extended to other image segmentation tasks and 3D

object recognition systems such as neuron spine detection,

cell segmentation, etc.

SmartTracing is applicable to most of the existing

tracing algorithms. However, the performance and the

outcome of SmartTracing largely relied on the tracing

algorithm applied. For instance, the cause of the only failed

case among 120 tested images is that APP2 did not gen-

erate sufficient initial reconstruction due to the gap which

results in a lack of training exemplars. One solution to this

limitation is to run SmartTracing iteratively, so better

training samples can be acquired from the previous itera-

tion. Also, we can take the merit of different tracing

algorithms and use different algorithms in different steps to

further improve the performance of the framework—e.g.,

use MOST algorithm to generate initial tracing for scoring

and thus training since it is not sensitive to gaps and can

capture more signals; then use APP2 to generate final

tracing since it is robust, efficient, and optimal to generate

tree shape topology of neurons.

Another limitation of SmartTracing is the relatively high

computational complexity. At present, the top two time-

consuming procedures are the computation of confidence

metric, which is proportional to the initial neuron recon-

struction complexity, and the predictions of foreground

voxels, which is proportional to the size of the neuron. The

previously reported computation time is calculated based

on a single CPU. With parallel computation framework,

both steps can be sped up.

In recent years, a growing number of model-driven

approaches have been proposed for automatic neuron

reconstructions. To our best knowledge, SmartTracing is

one of the earliest machine learning-based methods for

automatic neuron reconstruction. Different from the tra-

ditional learning-based method, SmartTracing does not

require human input of training exemplars and can self-

adapt to different types of neuroimage data. Additionally,

the method can be applied to improve the performance of

other existing tracing methods. As part of future work,

the performance of SmartTracing will be further exam-

ined and improved by BigNeuron project. In the near

future, we hope that SmartTracing can significantly

facilitate manual tracing and contribute to the neuron

morphology reconstructions in large.
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