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Abstract This paper presents a computational cognitive

model for action awareness focusing on action preparation

and performance by considering its cognitive effects and

affects from both prior and retrospective form relative to

the action execution. How action selection and execution

contribute to the awareness or vice versa is a research

question, and from the findings of brain imaging and

recording techniques more information has become avail-

able on this. Some evidence leads to a hypothesis that

awareness of action selection is not directly causing the

action execution (or behaviour) but comes afterwards as an

effect of unconscious processes of action preparation. In

contrast, another hypothesis claims that both predictive and

inferential processes related to the action preparation and

execution may contribute to the conscious awareness of the

action, and furthermore, this awareness of an action is a

dynamic combination of both prior awareness (through

predictive motor control processes) and retrospective

awareness (through inferential sense-making processes)

relative to the action execution. The proposed model in-

tegrates the findings of both conscious and unconscious

explanations for both action awareness and ownership and

acts as a generic computational cognitive model to explain

agent behaviour through the interplay between conscious

and unconscious processes. Validation of the proposed

model is achieved through simulations on suitable scenar-

ios which are covered with actions that are prepared

without being conscious at any point in time, and also with

the actions that agent develops prior awareness and/or

retrospective awareness. Having selected an interrelated set

of scenarios, a systematic approach is used to find a suit-

able but generic parameter value set which is used

throughout all the simulations that highlights the strength

of the design of this cognitive model.

Keywords Awareness � Prior � Retrospective � Cognitive
modelling

1 Introduction

Humans intuitively feel that their behaviour is an effect of

their conscious decisions for certain actions aiming for

desired outcomes [1]. However, what exactly is con-

sciousness is a well-known question among many scientists

in many disciplines (see [2, 3]); for example, is it just a

process in the brain, and if so, how is it composed? With

the developments in brain imaging and recording tech-

niques, more and more detailed information on various

brain processes becomes available, including the conscious

awareness of actions. One of the leading hypotheses for

action awareness is that humans may prepare for and per-

form actions without being conscious of these preparation

and execution processes. More specifically, the feeling of

intention for an action is not causing the behaviour but

comes after the action preparation and just before the ac-

tion execution time [4–8]. It has been found that for certain

types of actions, the decision to perform it is already made

at least hundreds of milliseconds (and even up to 10 s)

before any awareness state occurs [4, 5, 8]. The brain
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predicts the outcome of a decision even before the decision

reaches awareness and humans’ (illusionary) consciousness

seems like an after-effect of a set of unconscious cognitive

processes leading to the action [1, 4–8].

The human brain is a complex, intricate, adaptive, dy-

namic system; it is difficult to unravel it and comprehend

its mechanisms (cf. [9–14]). Therefore, given the com-

plexity and contradictions observed in different ex-

periments, alternative hypotheses are also proposed on

action awareness (cf. [15–19]). In particular, it is interest-

ing to analyse how an individual is acquiring skills related

with a task that he/she is not familiar before (i.e. before

something is becoming a habitual task) and how awareness

contributes in such a situation [2]. For example, someone

who is in the mid age but has no prior experience of cy-

cling, it is an interesting phenomenon to find the experi-

ences gone through in the learning process to develop this

skill. Most probably at the beginning of this task, it may be

really challenging and much attention and awareness are

required to perform the task. As a result of that he/she may

not be able to change the (visual) focus at all to other

environmental cues in order to maintain the balance, keep

the ride straight, take turns safely, and pedal up a sloop.

Most probably combining what is predicted and what is

observed, thereby minimising the error (prediction vs. ac-

tual) is the basis for the collected experience in the learning

period. Furthermore, how the awareness affects the neural

plasticity is an interesting phenomenon too. Although in

the learning period, a high level of awareness on the action

is important, once it becomes a habitual task such aware-

ness may practically become absent: most probably he/she

may not pay any attention at all on pedalling, balancing and

keeping straight. Therefore, in daily life experiences pre-

dictive and inferential processes for action awareness are

important. Nevertheless, when a person learned how to ride

a bicycle properly, still he/she may not able to have a small

snack or holding an umbrella in a rainy time while cycling

(though these can also become habitual tasks for some

people). Therefore, just slightly deviating from a habitual

task seems to require awareness or new experience.

Moore and Haggard [20] have investigated how pre-

dictive or inferential processes of action execution play a

role in conscious awareness of an action. They have pro-

posed that awareness of an action is a dynamic combina-

tion of both prior awareness (i.e. awareness of the action

prediction) and retrospective awareness (i.e. the awareness

of the effects of an action), through predictive motor

control and inferential sense-making relative to the action

execution, respectively (cf. [20, 21]). When a prior

awareness state occurs, he/she may become aware of going

to perform the action. Having such a prior awareness state

still may leave open whether the agent is able to con-

sciously decide to perform or not to perform the action (cf.

[1, 4–8]). For example, is still some form of vetoing of the

action possible? In principle, the awareness state may play

the role of generating a kind of green light for execution of

the action. However, equally well the prior awareness state

may just play the role of a warning for the agent to be

prepared that the action will happen (anyway). As stated in

[5, 8] it has been found that for certain types of actions, the

decision to perform it is already made at least hundreds of

milliseconds (and even up to 10 s) before any awareness

state occurs. These findings may suggest that prior

awareness often will have no effect on the decision. But

this may strongly depend on the type of action. For ex-

ample, it will be difficult to believe that the action of

buying a car or a house remains unconscious and may not

be amendable to vetoing based on awareness states (the

Monty Hall Problem is also another good situation for this

concern). An awareness state can also develop in retro-

spect, after the action was performed and this will answer

the question: ‘what have I done?’. Such a retrospective

awareness state often relates to acknowledging others from

and taking responsibility for having performed the action.

It may also play an important role in learning as mentioned

in the previous example (i.e. by evaluating the obtained

effect in a conscious manner leads to improvement of the

performance of the action selection).

This paper extends the work published in [22] by re-

fining the neurologically inspired agent model with more

realistic simulation results, new scenarios and a detailed

formal specification of the model, together with a more

sophisticated parameter estimation methodology. The se-

lected scenarios include a reasonable spectrum of situations

in which (a) actions are prepared without being conscious

at any point in time, (b) the agent develops prior awareness

or retrospective awareness or both. An example of a schi-

zophrenic patient and of a patent in an early stage that may

lead to a depression situation are also included. As research

questions, this paper mainly contributes to

(1) How does the internal prediction process shape or

contribute to the (prior) awareness of the action?

(2) How does the inferential sense-making shape or

contribute to the (retrospective) awareness of the

action execution?

(3) How does the awareness contribute to action

execution?

(4) What is the relation and interplay between conscious

and unconscious action formation through action

ownership and relevant awareness states?

In addition to awareness states, ownership states for an

action are also considered in this paper. They are mainly

used as important states in the unconscious action forma-

tion process. The specific role of the ownership states (in

prior and retrospective form) has been separately discussed
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in [23]; such a more detailed overview is not included in

this paper. The structure of the paper organised with a

conceptual basis that includes evidences from cognitive

neuroscience which followed with a model description in

which a detail explanation of the model together with its

mathematical basis and formal specification will be pre-

sented. To validate the workings of the proposed model,

eight scenarios are simulated through a unique parameter

value set which was estimated using a systematic approach.

Finally, a discussion will be presented highlighting the

usefulness of a model in this nature and future works.

2 Action awareness viewed neurologically,

psychologically and behaviourally

In neurological, psychological and behavioural literature,

the notions of awareness and ownership of an action have

received much attention. Action ownership is a useful

concept which is mainly important to differentiate in how

far a person attributes an action to him or herself, or to

another person (see [23]). Although in many cases, the

feeling that you get when you perform something or an-

other person is performing the same action may be similar,

it is clearly possible to identify whether the action belongs

to you or to someone else. More importantly, the infor-

mation about another person’s behaviour influences your

self evaluation and vice versa, which makes humans social

beings (cf. [24, 25]). After the discovery of mirror neurons,

such social phenomena including empathy, imitation, and

coordination in a social context can be explained more

scientifically as a cognitive process [26–28]. Mirror neu-

rons have been mainly identified in two cortical areas: the

posterior part of the inferior frontal cortex and the anterior

part of the inferior parietal lobule [28]. They have shown

strong correlations not only with specific movements, but

also with specific goals (or goal directed actions: e.g.

reaching for and grasping an object). From the develop-

ment perspective of human cognition on self and other

representations, their interconnection and how those relate

to the cognitive processing were highlighted:

Over the first several years of life, children acquire

knowledge of both objective and subjective aspects of

self and others. By 18–24 months of age infants can

recognize their own mirror image, a capacity that has

been linked to the emergence of self-conscious emo-

tions (e.g. embarrassment […]). During the pre-

school years, children simultaneously develop the

capacity to represent their own and others’ mental

states […]. This development entails the ability to

recognize when self and other perspectives and ex-

periences are shared and thus congruent, and under

which circumstances they differ from one another.

Interestingly, the development of mental state un-

derstanding is functionally related to executive

functions […], suggesting that the prefrontal cortex

is implicated in self/other cognitive representations.

Indeed, neuroimaging data suggest that theory of

mind tasks and executive function tasks share over-

lapping areas of activation in the medial prefrontal

cortex ([24], pp. 527–528)

This separation of self and other is contributing to the

ability to recognise ownership of your own action. Re-

search has shown evidence that action prediction (based

on sensory information) leads to an action execution with

ownership, while when there are problems with action

prediction that leads to abnormal states of ownership of

that action. For example, when you are tickled by

someone, as you have not predicted the action you will

experience various sensations due to this sudden action,

and the ownership of that action may not be with you

(though you do have the body ownership in this situation)

(cf. [29]). Chaminade and co-workers [25] have high-

lighted this:

The neural underpinnings of internal models for

motor control have been investigated with human

non-invasive neuroimaging techniques (for review

see [30]). Motor commands that are used by forward

models to suppress sensory signals are believed to

originate upstream from the primary motor cortex

[31], though they may also involve premotor areas in

the posterior inferior frontal gyrus [32]. Actual sen-

sory feedback is used to compute prediction errors

for model evaluation and update. When we are tick-

led by another person [33] the sensory consequences

of its actions are unpredictable, and the lack of

predictability leads to a high prediction error asso-

ciated with increased activity in the secondary so-

matosensory cortex. This area, located bilaterally in

the parietal opercula [34], plays a key role in sen-

sorimotor integration [35], and has been involved in

the assessment of action ownership ([25], p. 2, [36])

The nature of human actions varies from direct re-

sponses on stimuli to actions that take longer periods to

process and react. Here the first types of action are often

labelled as automatic or unconscious and the other types as

more conscious or intentional [37]. In contrast to action

ownership, action awareness is a conscious state. Patients

with the anarchic hand syndrome (AHS) [patients with

frontal lobe and callosal damage (cf. [38])] always have

some form of ownership and awareness of their action but

are not able to control the action [39]. For example, in a

cafe just seeing a cup of coffee of an unknown person, for
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an AHS patient might be sufficient to reach and grasp it due

to the automatic activation of action plans on this habitual

task. In normal context this has been trained as a habitual

task, but with the (prior) awareness of people who know

when he or she should do this. A few more of such AHS

examples are grabbing a doorknob or scribbling with a

pencil or combing one’s hair [38]. Furthermore, persons

suffering from schizophrenia may easily attribute self-

generated actions to (real or imaginary) other persons (see

[23]). Furthermore, it has been noted that the problem with

AHS patients is to control their action, while with a schi-

zophrenic patient it is a problem with awareness of the

action (an AHS patient tries to prevent abnormal behaviour

of the alien hand by the good hand after it executed the

action) [38]. Through learning with intention and aware-

ness, people have pre-stored actions per stimulus and later

without the intention or the awareness the brain will au-

tomatically evoke the relevant action which was habitually

associated [40]. The frequency and recency of a learned

habitual task seem to relate to its probability of getting

selected.

The research on action awareness is a challenging task

and it is assumed to be that individuals are aware only of

the tip of the action iceberg; much further research is

necessary to explore and refine the body of knowledge on

this (cf. [2, 3, 8, 11, 15, 21]). Nevertheless, there are in-

teresting research findings on this. Empirical evidence

collected through an experiment setup proposed by Ben-

jamin Libet and his colleagues [8] has challenged the tra-

ditional view of human will and has shown that the brain

initiates voluntary movements before we are aware of

having decided to move. From a cognitive neuroscience

perspective, human actions are mainly a result of signals

getting to motor neurons (motoneuron) in the spinal cord

mainly via the primary motor cortex and some of its

neighbour areas [e.g. pre motor cortex, supplementary

motor cortex (SMA)]. Early activation of the primary

motor cortex before the agent gets the conscious intention

to move (or to act) is called readiness potential and this

begins hundreds of milliseconds or even up to 10 s before

any awareness state occurs [4, 5, 8]. Therefore, it was

proposed that conscious will is an illusion and it is too slow

to initiate an action, but action formation is due to an un-

conscious causal chain of processes and just before the

action execution, we will develop the awareness of the

action (not as the cause of the action but as an effect of

unconscious processes). John-Dylan Haynes has further

improved the Libet experiment setup to advance beyond

the shortcomings of the experiment (see [5]) and with his

findings again the importance of exploring the tightness of

the link between unconscious predictive brain processes

and subsequent decisions from a conscious perspective is

highlighted:

An important point that needs to be discussed is to

what degree the finding of choice-predictive infor-

mation supports any causal relationship between

brain activity and the conscious will. Such causal

links have been demonstrated previously by direct

cortical stimulation over parietal and frontal cor-

tex.37,80 However, it is unclear if the early predictive

signals are also causally involved in the decision. As

for the criterion of temporal precedence, there should

be no doubt that our data finally demonstrate that

brain activity can predict a decision long before it

enters awareness. A different point is the criterion of

constant connection. A constant connection would

require that the decision could be predicted with

100 % accuracy from prior brain activity. Libet’s

original experiments were based on averages, so no

statistical assessment can be made about the accu-

racy with which decisions can be predicted. Our

prediction of decisions from brain activity is statis-

tically reliable, but far from perfect. The predictive

accuracy of around 60 % (which is significant, but

only 10 % above chance) can be improved if the

decoding is tailored to each subject. However, even

under optimal conditions, this is far from 100 % for

several reasons… … …. Importantly, a different in-

terpretation could be that the inaccuracy simply re-

flects the fact that the early neural processes might

only be partially predictive of the outcome of the

decision. In this view, even full knowledge of the state

of activity of populations of neurons in FPC and in

the precuneus might not permit the full prediction of

a decision. In that case, the signals have the form of a

biasing signal that influences the decision to a de-

gree, but additional influences at later time points

might still play a role in shaping the decision. The

fact that decoding after the decision from motor

cortex can be achieved with higher accuracy might

point toward the fact that neural signals in BA10 and

in PC are not fully predictive in principle. However,

the exact topology of clustering of calls with similar

tuning preferences in BA10/PC is, to date, unknown,

and thus might turn out to be less suitable for fMRI

decoding than in motor cortex ([5], pp. 16–17)

With the concerns highlighted in the above quote (for

more criticisms on this hypothesis see [41]), though the

awareness state emerges just before the action execution, it

is not yet clear whether there is not at all an impact on

action execution from this subjective awareness. One of the

issues that have turned out to play an important role both in

the execution decisions for an action, and in its attribution,

is the prediction of the (expected) effects of the action,

based on internal simulation starting from the preparation
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of the action [42, 43]. If these predicted effects are satis-

factory, this may entail a ‘go’ decision for the execution of

the action, thus exerting control over action execution. In

contrast, less satisfactory predicted effects may lead to a

‘no go’ decision (cf. [44–46]). Predicted action effects also

play an important role in attribution of the action to an

agent after it has been performed. In neurological research,

it has been found that poor predictive capabilities are a

basis for false attributions of actions, for example, for pa-

tients suffering from schizophrenia [38, 47, 48]. In addition

to the predictive effects, the sensation of the actual effect

(after executing the action) also has been noted as impor-

tant in action formation research [15, 17, 21, 37, 43]. In

literature, it has been reported that the predicted sensory

effect and the sensed actual effect are integrated with each

other as a basis for proper attribution of the action [20, 47,

48]. Another element, put forward in [20], is the distinction

between action awareness based on prediction (prior to

execution), and action awareness based on an inference

after execution of the action (in retrospect):

Our results suggest that both predictive and infer-

ential processes contribute to the conscious aware-

ness of operant action. The relative contribution of

each of these processes seems to be context depen-

dent. When we can predict the consequences of our

actions, as in a high action-effect contingency block,

the awareness of action reflects these predictions.

This would provide us with a predictive sense of our

own agency. In addition, our results show clear evi-

dence that inferential processes also influence the

conscious awareness of operant action … … …. The

interaction between predictive and inferential pro-

cesses is of particular interest … … …. The time

course over which information about action is built

up may be an important clue to this interaction … …
…. Sensory feedback provides more precise evidence

about actions and their effects. This evidence be-

comes available only after a short sensory delay, but

can then be transferred to memory. Thus, reliable and

enduring sensory evidence replaces short-lived pre-

dictive estimates. We suggest that awareness of ac-

tion therefore switches from a predictive to an

inferential source as the action itself occurs, and as

sensory information becomes available.’0([20],
pp. 142–143)

With these evidences, they have suggested that aware-

ness of an action is a dynamic combination of both prior

awareness (i.e. awareness of the action-effect prediction)

and retrospective awareness (i.e. the awareness of the ef-

fects of an action) through predictive motor control and

inferential sense-making relative to the action execution,

respectively [15, 21, 37, 43] (cf. [19]). Furthermore,

Haggard and co-workers presented a new phenomenon

called intentional binding: when a voluntary action pro-

duces (with the awareness and intention) the temporal

(subjective) gap between the action and its perceived sen-

sory outcome is less when the awareness is pre-existing but

it is high when the awareness does not involve this [15].

This phenomenon has been argued to be an effect of either

prior awareness or retrospective awareness with different

experiment setups. To investigate the relation with prior

awareness, transcranial magnetic stimulation (TMS) was

randomly applied over the motor cortex and the entailed

disruption of awareness observed (here through the inten-

tion in this setup). A significantly weakened intentional

binding has been observed; therefore, it may be useful to

highlight the necessity of prior awareness (see [19]).

Similarly, there are experiments to analyse the influence

from retrospective awareness selecting some tasks where

prediction of the action outcome is difficult (or unpre-

dictable) but there is a ‘tone’ after the action execution [20]

and it has been observed that retrospective processes play a

role when prior predictive processes are absent (or when

prediction was minimal). In addition to the mentioned roles

in prior and retrospective effects of intentional binding,

there are some evidences for its neural basis also:

Moore and colleagues investigated the contribution

of two specific target sites: the pre-supplementary

motor area (pre-SMA) and primary motor cortex

(M1). The pre-SMA is involved in higher-order cog-

nitive aspects of self-generated action [49] and with

the conscious experience of intending to act [50]. In

this sense it is likely to support predictive contribu-

tions to intentional binding. On the other hand, M1

processes signals that are involved in actual motor

execution, signals that the authors suggest are re-

quired to support inferences of agency … … …. It

was found that only stimulation of pre-SMA led to a

significant reduction in intentional binding. Stimula-

tion of M1 marginally reduced intentional binding,

but this effect was not significant. The authors

therefore concluded that pre-SMA is likely to play a

key role in intentional binding. ([19], pp. 5)

Inhibition and suppressive mechanisms may also be as

important as the excitation mechanisms in cognitive con-

trol [though some different viewpoints are also put forward

(see [51])]. By Gamma-aminobutyric acid (GABA), neu-

rons are performing inhibition at synaptic, circuit and

systems levels (cf. [51]). Furthermore, various inhibition

types in neuroscience and psychology have been discussed

in [51]. Inhibition activates in automatic (e.g. lateral inhi-

bition: if a particular representation accumulates more

evidences, that will suppress its fellow representations) and

voluntary (e.g. suppression of an irrelevant response,
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stimulus or memory; in intentionally) manners. Another

peculiar aspect that has been observed is that within the

process of co-occurrence of predicted effects and sensed

actual effects, the predicted effect suppresses the sensed

actual effect [29, 52, 53]. Moreover, it has been put for-

ward that the predicted effect and the sensed actual effect

are not simply compared or matched, as claimed in the so-

called ‘comparator model’ in earlier literature such as [38,

42, 54], but in fact are added to each other in some inte-

gration process [20, 47, 48].

Though these evidences are facilitating an adequate

level of information to comprehend a theoretical cognitive

system in the form of a model, it is further required to

confirm these findings; this may have different variants to

be explored in future research.

3 Description of the cognitive computational model

Having discussed the evidence on awareness (a person’s

subjective experience) and ownership (in how far does a

person attribute an action to him or herself or to another

person) in Sect. 2, this section presents a computational

agent model. This model will be used in agent-driven ap-

plications where the awareness is paramount (or necessary)

for decision-making and justifications of actions through

communication. More specifically, this model can provide

interesting and important input for problem domains con-

cerning performing or learning specific healthy behaviours

or lifestyles. In such domains, having an idea about the

extent of the awareness of decisions concerning health or

lifestyle is important and the model may provide the fun-

damentals for applications in these domains (with further

refinements and customization where needed). Further-

more, this model may be useful in medical domains where

people can analyse and compare the phenomenal effects of

certain scenarios through various simulations and further to

compare and contrast different hypothesis in theoretical

manner to conduct more complex experiments. Also

computational simulations have become a promising ap-

proach to analyse the emergence in complex systems (e.g.

in the aviation domain, or in social science) and a model

like this may provide more realistic results especially when

human cognitive aspects are necessary in such simulations

(e.g. simulating situation awareness in air traffic control,

including the human cognitive aspects).

An overview of the postulated cognitive agent model is

presented in Fig. 1 and its abbreviation details can be found

in Table 1. The model is a refined version of a previous

model presented in [22] but improving the action prepa-

ration process and simulation results. In this model,

awareness states are taken specific for a given action a,

effect b, context c and stimulus s. When the context c is

self, an awareness state for a, b, c and s indicates self-

attribution awareness, whereas for context c, an observed

agent B, it indicates awareness of attribution of the action

to B. Specific attention is given to ‘self’ than ‘other’ in

simulations of this paper (for ‘other’ see [22, 23]). Fur-

thermore, causal relationships in the model are based on

the neurological literature presented in the Sect. 2; they do

not take specific neurons into consideration but use more

abstracted cognitive or mental states for the design of the

action execution

effect prediction (as-if body loop) 

EA(ai) 

SR(bi)SS(bi)

F(bi) 

WS(bi) 

WS(ck) SR(ck)SS(ck)

 SS(sk) SR(sk)WS(sk) 

RO(ai, bi, ck, sk) 

PAwr (ai, bi, ck, sk)

PA(ai) 

RAwr(ai, bi, ck, sk)

  PO(ai, bi, ck, sk)
EO(ai, bi, ck, sk) 

Fig. 1 Overview of the

computational cognitive agent

model. Here an arrow

represents a direct activation to

state B from state A, an arrow

represents a direct

suppression to state B from state

A, an arrow represents a

suppression to all the

complements of ‘ith’ state on Bi

from state Ai (where ‘i’ presents

an instance of a particular state),

and represents a direct

supression to all parellel forms

of that state
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model (through an interlevel relation between the neuro-

logical level and the cognitive/affective mental modelling

level). The model uses three world states (WS) as inputs

for:

stimulus s : WS sð Þ
context c : WS cð Þ
effect b : WS bð Þ

The stimulus s represents any internal (bodily, e.g. self-

generated facial expression) or external change that may

lead to an action execution. Context c represents additional

information perceived to improve the process of action

selection. The context c can be differentiated as ‘self’ and

‘other’ (self-other distinction). Effects of mirroring can be

modelled when c is ‘other’ (see [22, 23]). The effect

b represents the effects of the execution of an action a.

The input world states WS(s), WS(c) and WS(b) lead to

sensor states SS(s), SS(c) and SS(b), and subsequently to

sensory representation states SR(s), SR(c) and SR(b), re-

spectively. The unconscious causality of action formation

has been modelled as explained in [55]: by combining

Damasio’s as-if body loop (see [44–46]) and James’s body

loop (see [56]) hypotheses. The body loop has been map-

ped in this model by the following causal relationships:

WS sð Þ ! SS sð Þ ! SR sð Þ ! PA að Þ ! EA að Þ ! WS bð Þ
! SS bð Þ ! SR bð Þ ! F bð Þ

Damasio extended the body loop concept and argued

that the cognitive process of action selection is due to an

effect of an internal simulation process prior to the

execution of an action [44–46]. The brain will evaluate the

effect of each relevant action option [i.e. PA(ai)] by com-

paring the feelings associated to each individual valuated

effects (without actually executing them through the body

loop). The simulated option that has the strongest valuated

feeling performs as a GO signal through the body loop and

else are NO–GO options. The as-if body loop consists of:

sensory representation ! preparation for bodily changes

! felt emotion

In this model, this is represented by the as-if body loop

as follows:

PA að Þ ! SR bð Þ ! F bð Þ

The as-if body loop and the body loop demonstrate the

working of predicted sensory effects and sensed actual ef-

fects, respectively, as highlighted in the Sect. 2. These pro-

cesses are mainly considered to be unconscious processes

involving multiple options for responses evaluated in par-

allel, to determine an adequate response associated to a sti-

mulus (cf. [40]). Through this parallel internal action

simulation mechanism, the agent will not select a random

option but the one which has the strongest valuated feeling.

Therefore, depending on the weight values attached to each

option at that particular moment, the model will show dif-

ferent behaviours in simulations. This purely unconscious

mechanism may be interrupted by the effects of awareness

(which will be explained later) to select something different

by adding some bias to thementioned process. Being a cyclic

process, the effects of an injected bias may have the ability to

compete with other options to finally provide a GO signal.

In Fig. 1, state labels are attached with subscript letters

k and i, which indicate, for example, the kth instance for a

stimulus s (e.g. WS(sk)) for a given sk stimulus and the ith

option for an action a (e.g. PA(ai)). Therefore, through this

model, it is possible to have multiple action options either

through a single stimulus or from multiple stimuli, de-

pending on the specific model instance.

Each PA(ai) state is affected by its associated feeling

through the as-if body loop. Moreover, each PA(ai) state

suppresses its complementary options PA(aj) for j = i (as

shown in dotted looped red arrow in Fig. 1) proportional to

the accumulated strength of that option. This behaviour is

Table 1 Nomenclature for

Fig. 1
WS(W) World state W (W can be either: context ck, stimulus sk, or effect bi)

SS(W) Sensor state for W (W can be either: context ck, stimulus sk, or effect bi)

SR(W) Sensory representation of W (W can be either: context ck, stimulus sk, or effect bi)

PA(a) Preparation for action ai

F(bi) Feeling for action ai after as-if loop or action execution

EA(ai) Execution of action ai

PO(ai, bi, ck, sk) Prior ownership state for action ai with bi, ck, and sk

RO(ai, bi, ck, sk) Retrospective ownership state for ai with bi, ck, and sk

PAwr(ai, bi, ck, sk) Prior-awareness state for action ai with bi, ck, and sk

RAwr(ai, bi, ck,sk) Retrospective awareness state for action ai with bi, ck, and sk

EO(ai, bi, ck, sk) Communication of ownership and awareness of ai with bi, ck, and sk
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in line with the explanation for the lateral inhibition in [51]

and will contribute to further strengthen the action selec-

tion process. Therefore, naturally the strongest internally

satisfied option (which is exceeding a threshold value) will

become selected as a result of the unconscious action se-

lection process as explained earlier. The feeling state in this

model can be either a positive feeling or a negative feeling.

A given stimulus sk may trigger multiple preparation op-

tions in parallel and those might have different associated

feelings, also in parallel (note that when a feeling state’s

activation level is ‘0’ it is assumed to be a case of no

feeling).

Prior ownership states have been integrated with the

above-mentioned processes and mainly they get affected

from sensory representation states SR(sk) and SR(ck), ac-

tion preparation state PA(ai) and feeling states F(bi). Also

the PO(ai, bi, ck, sk) states affect prior awareness states

PAwr(ai, bi, ck, sk), retrospective ownership states RO(ai,

bi, ck, sk), action execution states EA(ai) and sensory rep-

resentation states SR(bi) of effects bi. Having a direct link

between SR(sk) and PO(ai, bi, ck, sk) facilitates the em-

bedding of salient features of the input to the ownership

and therefore the agent will be able to relate the input and

output [together with RO(ai, bi, ck, sk)]. Furthermore, the

link from SR(ck) to PO(ai, bi, ck, sk) facilitates the neces-

sary behaviour of mirror neurons when c is other (for more

details see [23]). The state PO(ai, bi, ck, sk) has a sup-

pressive effect on SR(bi); this provides the mechanism by

which the predicted effect suppresses the sensed actual

effect (see [29, 52, 53]). Similar to prior ownership, once

an action is executed retrospective ownership will develop.

The retrospective ownership state RO(ai, bi, ck, sk) is af-

fected by the prior ownership state PO(ai, bi, ck, sk), SR(ck),

F(bi) and EA(ai). Furthermore, RO(ai, bi, ck, sk) activation

has effects on the states RAwr(ai, bi, ck, sk), PO(ai, bi, ck,

sk) and EO(ai, bi, ck, sk). As RO is affected by EA(ai) and

F(bi), this provides the cognitive behaviour of retrospective

effects as differentiated from prior behaviour. For more

details on ownership states of this model, see [23]. Once

RO(ai, bi, ck, sk) developed it has a suppressive effect on

PO(ai, bi, ck, sk) and through this also it is contributing to

the cognitive shift from predictive to inferential.

For each ownership state, an associated awareness state

may (or may not) emerge. Awareness states play a higher

order cognitive role. The direct links from ownership and

feeling to awareness state realise bottom–up activation.

Conversely, the effects of awareness states on other states

realise top–down activation, which is considered to be a

conscious or intended process. Therefore in the presented

model, PAwr(ai, bi, ck, sk) is only affected by PO(ai, bi,

ck, sk) and F(bi). This is useful to model the idea of

Benjamin Libet and others: brains initiate voluntary

movements before we are aware of having decided to

move (also see the simulations in Sect. 4). Moreover

PAwr(ai, bi, ck, sk) affects PA(ai) and EA(ai) and this is

reflects the idea of Haggard and co-workers: there may be

an impact from this subjective awareness state on action

execution. By this PAwr(ai, bi, ck, sk) to PA(ai) link the

agent can inject some bias to the current unconscious

process through awareness. This may strengthen a weaker

action option and improve the predictive feeling of that

option (which may lead to getting it executed). Further-

more, in this model PAwr(ai, bi, ck, sk) can also directly

strengthen the action execution state. Both the prior

ownership states and the prior awareness states are asso-

ciated to the predictive aspects of the system. In contrast,

retrospective awareness states are associated to the in-

ferential aspects, as highlighted in Sect. 2: awareness of

an action is a dynamic combination of both prior

awareness and retrospective awareness through predictive

motor control and inferential sense-making relative to the

action execution. Once the RAwr(ai, bi, ck, sk) state is

activated, it has a suppressive effect on PAwr(ai, bi, ck, sk)

and due to this PAwr(ai, bi, ck, sk) will weaken and

RAwr(ai, bi, ck, sk) will be dominant after the action

execution. Finally, acknowledging of ownership and

awareness of an action is modelled by the connection

from the RO(ai, bi, ck, sk) and RAwr(ai, bi, ck, sk) to the

EO(ai, bi, ck, sk). Once the state EO(ai, bi, ck, sk) has

become activated, it has a suppressive effect on SR(bi) so

that this will allow to stop the inferential sense-making

process.

In addition to the above mentioned connections a few

more suppressive connections are available, which are

shown in orange arrows in Fig. 1. These connections are

mainly for purposes of having an appropriate scenario. Once

a stimulus s and context c are activated, the agent starts to

activate the internal processes as mentioned above and once

the agent performed the action, a mechanism is assumed that

stops the stimuli as an action effect: the agent has performed

the task and due to that environment has changed. Therefore

these orange connections: EA(ai) toWS(sk), EO(ai, bi, ck, sk)

to WS(ck), and EO(ai, bi, ck, sk) to WS(bi) have been in-

cluded to stop the input stimulus sk, input context ck and the

effect bi of action ai. Furthermore, having two inputs (i.e. s1,

s2, c1 and c2) if only one action is executed [let’s say i = 1:

EA(a1) and EO(a1, b1, c1, s1)] then it will be assumed that the

executed action will suppress all the inputs, for the purpose

of an appropriate scenario.

The following is a brief summary of the agent’s internal

causality when given stimulus sk and context ck as inputs:

(1) action-effect prediction sensory representation of

effect bi is affected by preparation of an action ai
(2) preparation for action ai is affected by sensory

representation of sk, prior-awareness, feeling of
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effect prediction of action ai and the complements

of current preparation for action ai
(3) a prior ownership state is triggered based on

preparation for action ai, predicted effects bi of ai,

stimulus sk, retrospective ownership and context ck
(4) a prior awareness state is activated based on

feeling of the predicted effect, prior ownership and

retrospective awareness

(5) execution of action ai is affected by prior-aware-

ness, prior ownership and preparation for action ai
(6) a prior ownership state and prior awareness state

exert control over the execution of a prepared

action (go/no–go decision, vetoing)

(7) suppression of the sensory representation of effect

bi by both prior ownership and communication of

ownership and awareness

(8) suppression of the prior ownership state when the

retrospective ownership state is developed

(9) suppression of the prior awareness state when the

retrospective awareness state is developed

(10) a retrospective ownership state is activated based

on co-occurrence of predicted action effects and

action effects sensed afterwards

(11) a retrospective awareness state is activated based

on action effects sensed by execution of action ai,

retrospective ownership and prior-awareness

(12) a retrospective ownership state and retrospective

awareness are internal states that also can lead to

acknowledging authorship of the action (indi-

vidually), for example, in a social context

(13) execution of an action ai affects the stimulus sk in

the world

(14) communication of ownership and awareness affects

both context ck in the world and effect bi of action

ai in the world

3.1 Dynamics of the model

Connections between state properties (the arrows in Fig. 1)

have weights xk, as indicated in Table 2. In this table, a

weight xk has a value between -1 and ?1 and may de-

pend on the specific context ck, stimulus sk, action ai and/or

effect bi involved. By varying these connection strengths,

different possibilities for the repertoire offered by the

model can be realised and can be aligned with the con-

sidered scenario and behaviour. Usually weights are as-

sumed to be nonnegative, except for the inhibiting or

suppressive connections. The behaviour of the model

(through simulations) depends on the values of each of

these weights (together with other parameters). Deter-

mining proper values for these parameters is a non trivial

task.

In this table, the column LP refers to the (temporally)

Local Properties: LP1 to LP17 (cf. [57]) and that specifies

the update dynamics of the activation value of the ‘to state’

based on the activation levels of the ‘from states’. For the

dynamics of each local property, a LEADSTO formalisa-

tion is used, which has been shown to be an appropriate

approach to model dynamic behaviours of computational

cognitive models [57]. LEADSTO is a hybrid modelling

language in which a dynamic property or temporal causal

relation a ? b denotes that when a state property a (or

conjunction thereof) occurs, then after a certain time delay,

state property b will occur (see [57] for the relevance and

benefits of LEADSTO in dynamic models). LEADSTO can

be compared to Linear Temporal Logic, but differs in the

sense that predicate logical state expressions can be used

and also real numbers in them. The traces generated for

LEADSTO can be seen as continuous time models satis-

fying the finite variability property: between any two time

points there are only a finite number of state changes.

The time delay defined in LEADSTO is taken as a

uniform time step Dt here. Table 3 below summarises the

formalisation of LP both in LEADSTO format and in dif-

ferential equation format. This is used as the formalisation

of the computational form of the cognitive model de-

scribed. During the processing, each state property has a

strength represented by a real number between 0 and 1

Table 2 Overview of the connections and their weights

from states to state weights LP
EA(ai) WS(sk) ω1 LP1

EO(ai, bi, ck, sk) WS(ck) ω2 LP2 
EA(ai), EO(ai, bi, ck, sk) WS(bi) ω3, ω4 LP3 

WS(sk) SS(sk) ω5 LP4 
WS(ck) SS(ck) ω6 LP5 
WS(bi) SS(bi) ω7 LP6 
SS(sk) SR(sk) ω8 LP7 
SS(ck) SR(ck) ω9 LP8 

PA(ai), SS(bi), PO(ai,
bi, ck, sk), EO(ai, bi, ck,

sk)

SR(bi) ω10, ω11, ω12,
ω13

LP9 

F(bi), SR(s), PAwr(ai,
bi, ck, sk), PA(aj) (j≠i)

PA(ai) ω14, ω15, ω16,
ω17

LP10 

SR(bi) F(bi) ω18 LP11 
SR(s), SR(c), PA(ai), 
F(bi), RO(ai, bi, ck, sk)

PO(ai, bi, ck,
sk)

ω19, ω20, ω21,
ω22, ω23

LP12 

PO(ai, bi, ck, sk), F(bi),
RAwr(ai, bi, ck, sk)

PAwr(ai, bi,
ck, sk)

ω24, ω25, ω26 LP13 

PA(ai), PO(ai, bi, ck, sk), 
PAwr(ai, bi, ck, sk)

EA(ai) ω27, ω28, ω29 LP14 

EA(ai), F(bi), PO(ai, bi,
ck, sk), SR(c)

RO(ai, bi, ck,
sk)

ω30, ω31, ω32,
ω33

LP15 

EA(ai), RO(ai, bi, ck,
sk), F(bi), PAwr(ai, bi,

ck, sk)

RAwr(ai, bi,
ck, sk)

ω34, ω35, ω36,
ω37

LP16 

RO(ai, bi, ck, sk), 
RAwr(ai, bi, ck, sk)

EO(ai, bi, ck,
sk)

ω38, ω39 LP17 

Here the red colour xk indicates negative weights
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through variables V (with subscripts) that run over these

values. In dynamic property specifications, this is added as

a last argument in the state property expressions. This

representation is considered only for the LEADSTO based

formalisation. Therefore, the unary predicate representa-

tion of each state in the Table 2 was extended to a binary

predicate representation by including the state strength Vn

[e.g. EA(ai) to EA(ai, Vn)]. Furthermore, the temporal step

in the original LEADSTO formalisation (see [57]) is used

as a uniform time step Dt in this paper. As an example let

us consider LP9 according to the LEADSTO formalisation:

LP9 sensory representation for an effect bi state

This expresses that after time duration Dt, the value for

the sensory representation SR(bi) of effect bi has changed

from V5 into

V5 þ c½f x10V1; x11V2; x12V3; x13V4ð Þ�V5�Dt

This means that

DSR bið Þ ¼ c½f x10V1; x11V2; x12V3; x13V4ð Þ�V5�Dt

or

DSR bið Þ ¼ c
�
f
�
x10:PA aið Þ; x11:SS bið Þ;

x12:PO ai; bi; ck; skð Þ; x13:EO ai; bi; ck; skð ÞÞ�SRðbiÞ�Dt

This expression in difference equation format can be

rewritten into differential equation format:

dSRðbiÞðtÞ
dt

¼ c

"

f
x10:PA aið Þ tð Þ;x11:SS bið Þ tð Þ;x12:PO ai; bi; ck; skð Þ tð Þ;

x13:EO ai; bi; ck; skð Þ tð Þ

� �

�SRðbiÞðtÞ
#

The same formalisation but specifically for the rate of

activation change can be presented in its differential form

as found in Table 3 under LP9s row. Here, f is a function

for which different choices can be made. The function f

should be a combination function (when a given state has

only a single input the identity function f(W) = W is also

usable though it is less configurable). For the simulations,

the combination function f is based on a continuous logistic

threshold function g(r, s, X) is used as in the Eqs. (1) and

(2).

f x1iy1; x2iy2; . . .ð Þ ¼ g r; s;
X

j

xjiyj

 !

with

g r; s;Xð Þ ¼ 1

1þ e�r X�sð Þ �
1

1þ ers

� �
1þ ersð Þ

when x[ 0

ð1Þ

g r; s;Xð Þ ¼ 0; when X� 0 ð2Þ

In the above equations, r is the steepness and s the

threshold; these are configuration parameters that change

the shape of the curve and its midpoint on the X-axis.

Activation of a state depends on multiple other states that

are directly attached to it; therefore incoming activation

levels from other states are combined to some aggregated

input and perform the activation according to a specifica-

tion as in LP9 above, or in an alternative differential

equation format, as in Eq. (3) [where g is the logistic

function specified in the Eqs. (1) and (2), and yi is the

activation level of state i].

dyi

dt
¼ ci g r; s;

X

j

xjiyj

 !

� yi

" #

ð3Þ

Parameter c is an update speed factor, indicating the

speed by which an activation level is updated upon re-

ceived input from other states. In this model two speed

factor values are used: one for the internal states (states

which are inside the dotted box in Fig. 1), and the other for

the external states: WS(sk), WS(ck), WS(bi), SS(sk), SS(ck),

SS(bi), EA(ai) and EO(ai, bi, ck, sk). The internal states’

speed factor is higher than the external states (adhering to

the phenomenon that brain neurons are activating much

faster than sensor and effector organs).

To obtain a computational specification for temporal

simulation of each state, a difference equation is used in the

form of Eq. (4).

yi t þ Dtð Þ ¼ yi tð Þ þ ci g r; s;
X

j2 s ið Þ
xjiyj

0

@

1

A� yi tð Þ

2

4

3

5Dt

ð4Þ

By having different values for each parameter (i.e. for

weight values xi, time step size Dt, slow and fast speed

factors c, steepness ri, threshold si), the agent can facilitate

a wide variety of behaviours. Each LP in Table 3 is rep-

resented in a computational form (by the JAVA language)

and the dynamics of the system is achieved through

evaluating the causality effects through a set of difference

equations as in Eq. (4). For each discrete time step Dt the

If the preparation state for action ai has level V1
and the sensor state for effect bi has level V2
and the prior self-ownership of action ai for bi, ck, and sk has 

level V3
and the communication of ownership and awareness of ai

for bi, ck, and sk has level V4
then after time duration Δt the state sensory representation 

for an effect bi will have the level:
V5 + γ [ f( ω10V1, ω11V2, ω12V3, ω13V4) – V5 ] Δt
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Table 3 Specification of local properties in the hybrid language LEADSTO and in differential equation format

Here Y(i,k) means (ai, bi, ck, sk) and for each LP, the first representation is in the LEADSTO and that will be followed by the differential equation

format
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behaviour of each state is calculated the emergence of the

behaviour is traced with a identified parameter value set.

From a mathematical point of view, the dynamics of the

model is (numerically) solving the differential equations of

LP1 to LP17 by assuming that at time t = 0, WS(s) and

WS(c) holds value 1 as state level.

Some of these behaviours are presented as simulations

in Sect. 4.

4 Simulation results

In this section, simulation experiments for a number of

example scenarios are discussed, which all involve the

occurrence of a preparation state for an action ai, triggered

by some stimulus sk and context ck. These scenarios relate

to phenomena in the literature, as discussed in Sects. 1 and

2. They have been generated based on the specification

presented in Sect. 3. Eight scenarios have been simulated

to highlight the different possible behaviours of the model

and among those three scenarios are new, whereas the other

five were selected from the previous work in [22] but those

behaviours have been significantly improved in the newer

versions presented here. Furthermore, for the scope of this

paper only c is ‘self’ situations are selected (for some ex-

amples where c is ‘other’ see [22, 23]). The following is a

summary of the different simulated scenarios:

(1) The first scenario simulated describes a situation

where the prepared action has satisfactory predicted

effects and therefore is executed; in this case both

prior and retrospective awareness states occur. This

scenario will be considered as the base case for the

interplay between conscious and unconscious

processes.

(2) The second scenario simulated describes a situation

where the prepared action has satisfactory predicted

effects and therefore is executed but the awareness is

absent (in other words merely an unconsciousness

action). The strength of the action execution is lower

as compared to the first scenario.

(3) The third scenario simulated describes a situation

where the prepared action lacks satisfactory predict-

ed effects, and is therefore not executed: a no–go

decision, or vetoing in unconscious form. Further-

more, the awareness state is almost absent due to the

almost absent feeling.

(4) The fourth scenario simulated describes a situation

where a poor action prediction capability is mod-

elled: the action effect is falsely predicted as

satisfactory. This leads to a prior ownership state,

which is sufficient to actually execute the prepared

action. In this case, a low retrospective ownership

state and almost absent retrospective awareness state

will occur, as the sensory representation of the effect

stays low. This simulation is used to explain the

basic cognition and behaviour of a schizophrenic

patient.

(5) The fifth scenario simulated describes a situation

where two prepared actions exist for two input

stimuli (s1, s2, c1 and c2) but one is relatively less

positive compared to the other on predicted effects

(difference is 0.2 in terms of the weight x10). The

one which is less positive (2nd option) gets diluted

over time in terms of PA(a2), SR(b2), F(b2), PO(a2,

b2, c2, s2) and PAwr(a2, b2, c2, s2) while the other

prepared action gets executed and develops the

retrospective awareness too.

(6) The sixth scenario simulated describes a situation

exactly as in the fifth scenario but in this case once

the action with the strongest predictive effect [i.e.

SR(b1)] is executed it does not suppress the inputs s2
and c2. Therefore, once EA(a1) is executed because

of the existence of s2 and c2 the agent is preparing

for EA(a2) and successfully this will be performed.

This confirms the agent capacity of cognitive control

combining both conscious and unconscious

processes.

(7) The seventh scenario simulated describes a situation

where the agent is prepared for an action by

expecting a particular effect b1, though it is actual

effect after execution is different: b2 (mismatch

between the predicted and actual). As claimed by

Haggard, this scenario contributes to the idea that

awareness of an action is a dynamic combination of

both predictive and inferential sense-making. Having

a strong predicted effect agent develops a strong

prior awareness, but not sensing the same effect it

leads to a poor retrospective awareness of that

predicted effect. This phenomenon is important for

the agent’s learning process through error correction.

(8) The eighth scenario simulated describes a situation

that can be considered as an early stage of a

cognitive impairment for depressive symptoms. In

this case, the agent is preparing for two action

options where one is having a positive feeling while

the other is with a negative feeling [i.e. F(b1) and

F(b2)]. According to the biased nature on negative

feelings, the agent consciously affects selection of

the negative one, though both options are identical

from an action selection perspective (i.e. by having

exactly the same values for all the parameters for

each option except for x29). Due to this conscious

biased influence agent will execute the action with a

negative feeling and it is considered to be that

repeatedly performing these type of thoughts/tasks it
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will develop a negative mood that leads to a

depression situation (in a long run).

Although these simulations will be presented in more

abstract manner without relating them to real examples all

the time, in general from a real-world perspective, the

following example explanation of a scenario can be kept in

mind:

• Stimulus s is that you need to withdraw some money.

• Context c is that you are in a bank and in front of an

ATM.

• Action a is clicking on specific buttons to withdraw €
55.

• Effect b of action a is that you get € 55 cash.

This simple happy example scenario may have many

variations such as:

• the person may doubt whether to directly withdraw € 55
or to first check the current balance in the account

• once the person has entered € 55 to withdraw, the

system may inform the person that it does not have € 5

notes and ask to change the amount

• may be surprisingly ATM will return the card but

without the money

Furthermore, when considering complex systems like

Air Traffic Management there will be many examples that

this model can be utilised (see [58] for more examples).

4.1 Selecting values for parameters of the model

Selecting parameter values for a dynamic cognitive model

which consists with set of differential equations is a non-

trivial research challenge. This will be even more difficult

when there are no detailed numerical empirical data to use in

this process, but only some characteristics of behaviours

available inmore fuzzy form (cf. [59]). Furthermore, another

problem with computational cognitive models is that for

different types of persons with different behaviours it may

seem necessary to find a unique person-dependent set of

parameters from scratch. As an alternative, if it is possible to

identify a particular parameter value set which is able to

demonstrate a variety of situations using only veryminimum

number of variations this would make the issue easier to

handle. Therefore, in this work the focus has been on finding

such a generic parameter value set that provides more con-

fidence from the model validation perspective and its prac-

tical usage in future complex applications. The current

model consists of many parameters: 39 weight values (for

one option: k = i = 1):xi, a time step size:Dt, slow and fast

speed factors: c, 17 steepness: ri, and 17 threshold: si.
Table 4 presents connection weight values and Table 5

presents threshold (s) and steepness (r) values used in con-

figurations of simulations on this cognitive model. From

these it is clear that the weight value set is generic and just

changing very fewweights (inmost of the cases either one or

two) have obtained the different expected behaviours.

The main challenge in this approach is that there is no

real detailed data value set that can be compared to the

output of the agent model to estimate parameters. Only

certain features of the behaviour of each cognitive state are

known for different scenarios, based on neurological and

behavioural evidence from the literature (for example prior

awareness should occur before the action execution and

after prior ownership, there should be a dip in the sensory

representation in-between predictive representation and

inferential representation, et cetera). To identify the pa-

rameter values a systematic approach is used. For this

approach, it is a necessary condition to select multiple

scenarios (minimum is three but having more will improve

the quality of the results) which are interrelated from a

functional point of view. For example, the first scenario is

considered to be as a reference scenario and the second

scenario is different from that just by achieving that

awareness states are not developing (i.e. x24 = x25 =

x34 = x35 = x36 = 0). Furthermore, the third scenario

handles a case in which a prepared action lacks satisfactory

predictive effects (i.e. x24 = 0.2), and the fourth scenario

addresses poor action prediction capability (i.e.

x18 = 0.2); and so on (see Table 4). This interrelation

among scenarios is very important for a minimum number

of parameter changes enabling to identify a generic pa-

rameter value set for the model.

In this parameter estimation approach the idea is as follows:

• First scenario is addressed and parameter values are

calibrated to simulate its behaviour as identified

through the literature.

• Then using the obtained parameter value set, by changing

just a few (scenario-related) weight values it is checked

whether themodelwith these parameter settings is able to

generate the behaviour for the second scenario.

• If this provides a simulation with a pattern as expected

(without changes to the previously obtained parameter

values, except for the changes particular to the current

scenario) then it provides a good confidence on the

current identified parameter value set,

• But if not, then it is necessary to change the parameter

values of the first simulation (based on the sensitivity of

certain parameters on the required final output) until the

behaviours for both simulations are satisfactory.

• This approach is incrementally extended to each

scenario until a generic parameter value set for all the

scenarios has been identified. For any new scenario if

any changes to the previously obtained parameter

values are required, then all previously addressed

scenarios are readdressed.
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• In the first few iterations, it may challenging to identify

a parameter value set, but over time the convergence is

really fast and it will be experienced that the identified

parameter value set is more generic and it is facilitating

the necessary behaviours for simulations even without

any changes to the obtained parameter value set.

In addition to the parameter values in Tables 4 and 5 for

the step size (Dt), slow speed factor (c), and fast speed

factor (c) parameter values 0.25, 0.6 and 0.7 were used

respectively for all the scenarios.

4.2 Scenario 1: normal execution with ownership

and awareness

The first scenario considered describes a situation where

the context c is the agent itself, and a stimulus s occurs.

The action effect b of a is considered positive for the agent

and the awareness of action formation and execution will

occur, together with generated prior and retrospective

ownership states. The following execution trace will be

expected from the agent here:

– External stimulus s and context c will occur and trigger

preparation of action a.

– Based on the preparation state for a, the sensory

representation of the (positive) predicted effect b of a is

generated.

– Based on this positive predicted effect and the

other states, a prior ownership state for action a is

generated.

– Prior ownership for action a is followed by the prior

awareness; this is generated just before the action

execution.

Table 4 Connection weight values used for cognitive agent model

Weights Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8
Stim. 1 Stim. 2 Stim. 1 Stim. 2 Effect1 Effect2 Stim. 1 Stim. 2

ω1 0.5 * * – * *
ω2 0.8 * * * – * *
ω3 0.7 0.0 0.5
ω4 0.7 0.0 * *

ω5– ω6 1.0 –
ω7 0.8 0.5

ω8– ω9 1.0 –
ω10 0.8 0.2 0.6 0.6 0.0
ω11 0.8
ω12 0.5 0.0
ω13 0.9

ω14– ω15 0.8 –
ω16 0.7 –
ω17 0.0 0.8 0.8 0.8 0.8 – 0.1 0.1
ω18 0.8 0.2
ω19 0.3 –

ω20– ω22 0.8 –
ω23 0.8 –
ω24 0.9 0.0 –
ω25 0.8 0.0 –
ω26 0.8 –

ω27– ω28 0.8 –
ω29 0.5 – 0.1 0.8
ω30 0.8 0.0
ω31 0.8
ω32 0.8 0.0
ω33 0.8
ω34 0.7 0.0 0.0
ω35 0.7 0.0
ω36 0.7 0.0
ω37 0.7 0.0

ω38– ω39 0.8
In here if a value of a particular weight is empty for a scenario that means it is equal to the value of that in the Scenario 1. Furthermore if a value

is ‘–’ then such a link was not existed for that scenario and furthermore ‘*’ presents that the particular link suppresses both its mapping inputs and

all the remaining
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– The prior ownership and prior awareness states for

action a lead to actual execution of action a.

– The execution of a affects b in a positive manner and

propagates to the sensory representation of b and the

feeling of b.

– At the same time the sensory representation of b is

suppressed due to the prior self ownership state.

– Based on the generated states, after the execution of

action a the agent develops a retrospective ownership

state.

– Retrospective ownership of sensed effect b of action

a is followed by retrospective awareness of action

a and its effect

– Finally, the agent communicates this ownership and

awareness of it.

The simulation result of this scenario is shown in

Fig. 2. In this figure, it is shown that (after sensing the

stimulus) the agent triggers preparation of action a from

time point 3 on (with a peak value of 0.74 around time

point 55). Based on that the sensory representation of the

predicted effect b of a is generated (through the as-if

body loop with peak value 0.15 around time point 15 and

through the body loop with peak value 0.59 after action

execution around time point 50). This is followed by the

feeling of b (through the as-if body loop with the peak

value 0.19 and through the body loop with the peak value

0.62). These states contribute to the generation of a prior

ownership state which starts to trigger at time point 5 and

reaches a peak value of 0.77 around time point 57. After

activating prior ownership, prior awareness is developing,

mainly upon the formation process of effect prediction

b of a, and its associated feeling. The prior awareness has

started to pop up around time point 13 and has obtained

peak value 0.71 around time point 45. As a result of the

prior ownership and awareness states, the agent initiates

the actual execution of action a which propagates its ef-

fects through the (external) body loop. This clearly shows

that prior awareness is just before the action execution

(cf. [4, 5, 8]) as the action execution process started at

time point 15, and has its peak around time point 55, with

maximum strength 0.92. Furthermore, it shows that via

the body loop and the sensor state, the execution of action

a also affects the sensory representation of b and the

feeling of b. Therefore, the sensory representation b of

a behaves as expected, by adding the sensed actual effect

to the predicted effect, and the same effect is propagated

to the feeling of b too (cf. [20, 47, 48]). Due to the action

execution, the agent develops a retrospective ownership

state (starts at time point 26 with peak value 0.82 around

time point 58), which is followed by a retrospective

awareness state (starts at time point 29 with peak value

0.78 around time point 62). Finally, the agent communi-

cates ownership and awareness of it for the performed

action, based on the retrospective awareness and owner-

ship states (with the maximum strength of 0.82 around

time point 67). Note that when the stimulus is taken away

(as explained in Sect. 3 this has been performed through

an external suppressive mechanism through the orange

colour arrows in Fig. 1), all activation levels will come

down to 0; they will come up again when a new stimulus

occurs. Note that the numerical information related to the

time scale or the peak values has not been coupled with

actual brain signals but is only used as a frame of

reference.

4.3 Scenario 2: normal execution with ownership

but without awareness

There are many situations in which human action forma-

tion occurs merely unconsciously, especially when related

to habitual tasks [40]. As in the first scenario above also in

this case, the agent will experience that the prepared action

has satisfactory predicted effects. Nevertheless, the agent

will not develop any awareness state of the experienced

feeling. The following execution trace will be expected

from the agent for this scenario.

– External stimulus s and context c will occur and trigger

preparation of action a.

– Based on the preparation state for a, the sensory

representation of a (positive) predicted effect b of a is

generated.

– Based on this positive predicted effect and the other

states a prior ownership state for action a is generated,

but no prior awareness

Table 5 Threshold (s) and Steepness (r) values used in configurations of simulations

WS(sk) WS(ck) WS(bi) SS(sk) SS(ck) SS(bi) SR(sk) SR(ck) SR(bi)

r 1.00 1.00 6.00 2.00 2.00 3.50 2.00 2.00 3.00

s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

PA(ai) F(bi) PO(Y(i,k)) PAwr(Y(i,k)) EA(ai) RO(Y(i,k)) RAwr(Y(i,k)) EO(Y(i,k))

r 2.00 3.50 6.00 5.00 6.00 5.00 4.00 5.00

s 0.50 0.01 1.00 0.60 1.00 1.90 1.60 0.80
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– The prior ownership state for action a leads to actual

execution of action a.

– The execution of a affects (via sensing) the sensory

representation of b and the feeling of b in a positive

manner

– At the same time, the sensory representation of b is

suppressed due to the prior ownership state.

– Based on the generated states, after the execution of

action a, the agent develops a retrospective ownership

state, but no retrospective awareness.

– The agent does not communicate this ownership.

The simulation result for this process is presented in

Fig. 3. The agent starts to prepare for action a at time point

2, and for this preparation a peak value of 0.52 is obtained.

Together with the action preparation, agent develops the

sensory representation of predicted effect b of a (with peak

value 0.15 based on the as-if body loop, and peak value

0.61 through the body loop) and the associated feeling of

b (with peak value 0.68). Based on this predictive infor-

mation, the agent develops prior ownership from time point

6 on and with peak value 0.7. More importantly, in this

simulation prior awareness has not developed. The devel-

oped states lead to performing the action a which starts at

the time point 14 and obtains peak value 0.43. The

execution positively affects (via the sensor state) the sen-

sory representation of b and the feeling of b (adding the

sensed actual effect to the predicted effect). With this ac-

tion execution effect, the agent develops retrospective

ownership with peak value 0.44. Finally, the agent does not

communicate the ownership about the performed action

(has a very low strength due to lack of awareness).

This cognitive behaviour trace is in line with the expec-

tations, and mainly when comparing it to Scenario 1, it

demonstrates the possible impact of the awareness states. For

example,when a prior awareness state occurs, it facilitates an

enhancing effect on action preparation, sensory representa-

tion and feeling and also provides much smoother effects (as

seen in Fig. 2). Nevertheless, in this Scenario 2, these states

have lower activation levels (also the action preparation

state), that may be attributed to the absence of enhancing

effects through prior awareness.Also this scenario highlights

the strength of action execution with awareness: the action

has executedwith a relatively high peak value (0.92 vs. 0.43).

Thismight be explained as an influence fromprior awareness

to action execution. Nevertheless, according to the literature,

further research is required to conclude this; cf. [5]. From the

computational perspective, this at least confirms the model’s

capability of action formation both with awareness and

without awareness.

4.4 Scenario 3: prepared action lacks satisfactory

predicted effects

Humans are not always responsive to all the environmental

stimuli (even in unconscious form). Nevertheless, there

should be an explanation from the perspective of internal

Fig. 2 Scenario 1: Executing an action with ownership and awareness. In here ‘Y_1’ represents ‘a1, b1, c1, s1’
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processes when receiving a stimulus why that stimulus

does not lead to an actual action execution. This simulation

provides the behaviour for such situation and explains how

the lack of (positive) predicted effects generated through

the as-if body loop relates to this. The following execution

trace will be expected for this scenario:

– External stimulus s and context c occur and trigger

preparation of action a.

– Based on the preparation state for a, only a weak

sensory representation of predicted effect b of a is

generated.

– Poor predictive effects will be reflected through the

feeling state with very low activation.

– Based on this poor predicted effect b and the other states,

a low prior ownership state for action a is generated.

– Due to the poor prior ownership and low predictive

feeling states, the agent does not develop adequate prior

awareness.

– The low prior ownership state for a does not lead to

actual execution of action a; the action a can be

considered vetoed

– The agent develops no retrospective ownership state for

a and no retrospective awareness.

– The agent does not communicate ownership or

awareness.

The simulation of this scenario is shown in Fig. 4. The

predicted effect is very low compared to the Scenario 1. This

clearly shows that the action a triggered by stimulus s (which

has an effect b) is not positive for the agent (in other words it is

more like neutral to the agent in terms of the feeling): it leads to

not getting any feelings out of it. Nevertheless, the prediction

capabilities are assumed correct in this case, so no high level of

b is correctly predicted for a. As a result of this low prediction,

the prior ownership state also stays at a very low level. Due to

this, prior awareness is not developed (stays in a very low

level), which would be needed to strengthen the action

execution. Therefore execution of the action also stays very

low (below 0.1) and due to that, there is no retrospective

ownership state, nor communication of ownership. Having a

single weight value change [x10: PA(ai) to SR(bi) from 0.8 to

0.2] to obtain this behaviour from the reference Scenario 1

shows the coherent nature of action formation and higher order

coupling as a process. This shows, from a complex systems

simulation perspective, how the same agent model by limited

variations in assigned parameter values demonstrates qualita-

tively different results. Furthermore, this confirms that the

model has adequately adapted Damasio’s hypothesis: in the

agent’s decision-making process, it has to assess the incentive

value of the choices through an internal simulation process.

4.5 Scenario 4: poor feelings of action prediction

effects of a schizophrenic patient

In the previous scenario, it was presented how the lack of

satisfactory predicted effects will lead to a No–Go decision

Fig. 3 Scenario 2: Executing an action with ownership and no awareness. In here ‘Y_1’ represents ‘a1, b1, c1, s1’
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on action execution. In the current simulation scenario, the

focus is on poor feelings of predicted effects (the satisfaction

level of the predicted effect is high but it does not adequately

feel to the agent). In this situation the action effect b for

action a, in principle is positive for the agent, like in the first

scenario. Nevertheless, the agent will not properly feel the

effects of prediction. This is what assumed to happen in (at

least some) patients with Schizophrenia [38, 47, 48]. Much

evidence exists that relates this to poor emotional aspects in

expression, experience and perception (mainly due to ab-

normalities in the workings of Amygdala) [60, 61]. Schizo-

phrenic patients often have the impression that their own

actions are being created, not by themselves, but by someone

from the outside [38]. The following execution trace will be

expected for such a phenomenon:

– External stimulus s and context c occur and trigger

preparation of action a.

– Based on the preparation state for a the sensory

representation of predicted effect b of a is generated.

– Lack of feeling of predicted effects will be

experienced.

– Based on this predicted effects and its poor feeling, a

relatively low level of a prior ownership state for action

a is generated.

– Based on this low level of prior ownership and poor

feelings, a relatively low level of prior awareness will

be developed.

– This prior ownership and awareness levels for action

a are still sufficient to lead to actual execution of action

a.

– The execution of a affects b in a positive manner and

(via sensing) the sensory representation of b but still the

felt feelings are weaker.

– Due to poor feelings, agent will not develop adequate

level of retrospective ownership and retrospective

awareness.

– The agent does not communicate ownership or aware-

ness for action a.

The simulation of this scenario is shown in Fig. 5. In

this case, the agent has not fully felt the predicted effects of

action a. After sensing, the stimulus agent has triggered

preparation of action a at time point 3 (with a peak value of

0.52). Based on that the sensory representation of predicted

effect b of a is generated (through the as-if body loop with

peak value 0.25 and through the body loop with peak value

0.59) and followed by the feeling of b (through the as-if

body loop with peak value 0.08 and through the body loop

with peak value 0.25). This clearly shows that the predicted

effect has not been properly felt by the agent due to very

low values for feeling state F(bi). Next these states con-

tribute to generate a prior ownership which starts to trigger

at the time point 6 with peak value 0.52. Together with the

prior ownership, the agent has experienced prior awareness

with peak value 0.47 (this strength is relatively less

Fig. 4 Scenario 3: Prepared action lacks satisfactory predicted effects. In here ‘Y_1’ represents ‘a1, b1, c1, s1’
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compared to the same in the first scenario: 0.71). The prior

ownership and awareness levels are much better in this

case compared to the situation in the third scenario.

Therefore, in contrast to the third scenario, these levels turn

out high enough for the execution of the action. The

maximum strength of the actual execution of action a is

0.57 and this execution has positive effects which are

sensed. Therefore, the sensory representation b of a be-

haves as expected after adding the sensed actual effect to

the predicted effect. Nevertheless, the agent has again not

properly felt the effects: it has not developed a sufficient

strength for the feeling state. Due to these poor perceived

effects of feeling, the agent has not developed an adequate

level of retrospective ownership and no retrospective

awareness. This behaviour can be interpreted as having

some strength for the prior ownership and awareness for

the action but no retrospective values for it. The agent may

reach an internal conflict situation where the action seems

not being created by itself, but by someone else. From the

parameter values’ perspective, this result has been achieved

only with a single change from the first scenario on x18

[from SR(bi) to F(bi)] from 0.8 to 0.2. Nevertheless, the

cognitive impairment behind a schizophrenic patient is

more complicated than modelled here; for example, the

impact of some other states (perception, attention, emo-

tions, etc.) has to be considered as well. Therefore, it is

required to extend the current model to provide more

realistic cognitive behaviour for Schizophrenia. Neverthe-

less, the current behaviour already demonstrates some of

the the basics.

4.6 Scenario 5: cognitive controlling when multiple

action options compete

The fifth simulation scenario explains a situation when two

action options exist (for the simulation two input stimuli

were considered for this) and both have the potential to

execute an action. The competition among the two options

and the cognitive control through unconscious and con-

scious processes on this action selection is captured, re-

sulting in execution of only one of the actions. For this

behaviour two independent input tuples (sk, ck) were used,

occurring in parallel (nevertheless it is possible to use a

single input that triggers two action options, but due to the

requirements in the next scenario the mentioned approach

was used). For each option, the same configurations were

used as in the first scenario, except for few weights (see

Table 4). In this scenario, for the connection strength re-

lated with option 2 (i.e. k = i = 2) from the action

preparation a2 to its predicted effect b2 a moderately low

value has been selected: x10 = 0.6. Values for the other

parameters were again the same as in Scenario 1 (cf.

Table 4). More importantly, if in this situation at a given

time only one input tuple occurs (either s1, c1 or s2, c2) then

Fig. 5 Scenario 4: Poor feelings of action prediction effects of a schizophrenic patient. In here ‘Y_1’ represents ‘a1, b1, c1, s1’
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each action will execute according to the same behaviour

as in the first scenario. The simulation of this scenario is

shown in Fig. 6. The following execution trace is expected

from the agent in this case:

– External stimuli s1, s2 and contexts c1, c2 will occur and

trigger preparation of actions a1 and a2 separately.

– Based on the preparation state for a1 and a2, the sensory

representations of predicted effect b1 of a1 and b2 of a2
are also generated.

– Nevertheless, the agent will show strong effects on

option a1 and the rate of activation for preparation of a2
will quickly slow down and disappear subsequently,

due to suppression by the preparation for the other

option.

– Based on this positive predicted effect and the other

states for a1, a prior ownership state for action a1 is

generated.

– Prior ownership for action a1 is followed by the prior

awareness, generated just before the action execution.

– The agent will develop neither prior ownership nor

awareness for option a2.

– Prior ownership and prior awareness states for action a1
lead to actual execution of action a1.

– The execution of a1 affects b1 in a positive manner and,

via sensing, the sensory representation of b1 and the

feeling of b1.

– At the same time the sensory representation of b1 is

suppressed due to the prior self ownership state of it.

– Based on the generated states, after the execution of

action a1 the agent develops a retrospective ownership

state for action a1.

– Retrospective ownership of action a1 is followed by

retrospective awareness of action a1.

– Finally, the agent communicates this ownership and

awareness related with option a1.

The behaviour captured in the Fig. 6 is in line with the

expected trace. Both action preparations [i.e. PA(a1) and

PA(a2)] are activated at time point 2 and, more impor-

tantly, with the same rate of activation strength until time

point 15 (this highlights the non-biased effects in early

action formation). Nevertheless, after time point 15, it is

clear that option a1 has maintained somewhat the same rate

of activation for action preparation, while for option a2 the

preparation activation strength has started to decrease, due

to suppression by the preparation for option a1, via the

suppressive link with strength x17. In parallel to action

preparation, the sensory representations and feelings for

each option are also activated, but due to the assigned

slightly lower value for weight link x10 on option 2 the

sensory representations and feelings for predicted effect of

option 2 are not maintained, in addition to the effect

through the suppressive link x17 On the preparation state

Fig. 6 Scenario 5: Cognitive controlling when multiple action options compete. In here ‘Y_1’ represents ‘a1, b1, c1, s1’ whereas ‘Y_2’

represents ‘a2, b2, c2, s2’
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for a2. Each option for action preparation independently

suppresses its complements’, proportional to the current

strength of each preparation (as in [51] for lateral inhibi-

tion). As x10 for option 2 is slightly weaker, this con-

tributes to the relatively a low value of PA(a2) in

comparison with PA(a1). Therefore, through these uncon-

scious mechanisms, the activation level of preparation state

PA(a2) becomes lower. Due to this bias in the action for-

mation process, none of the other states related to the op-

tion 2 are activated. In contrast, for option 1 all the

remaining states are activated in the same order as in the

first scenario. More importantly, not having strong dips for

sensory representation and feeling states as in the second

scenario, this further highlights the conscious influence for

action formation when compared to the aspects highlighted

for the second scenario. The agent has developed both prior

and retrospective awareness states with acceptable strength

and finally has communicated the ownership and awareness

specific to option 1.

As presented in the third section, this model includes

some suppressive external links for the purpose of the

scenario; for this scenario, once the action related to option

1 was executed it has suppressed all of the inputs, even

those related to option 2 (i.e. s2, c2) and therefore all the

states values become zero at the end of the simulation.

4.7 Scenario 6: cognitive control when multiple action

options compete: an extension of the fifth scenario

In the fifth scenario once the action a1 related to option 1

was executed, it has suppressed (or stopped) the input

stimuli related with both the options (i.e. s1, c1, s2 and c2).

In the current scenario, the same identical setup was used

but execution of action a1 does not stop the input stimuli

related with the second option. As the action option 2 has

been suppressed by action option 1, once the effects of

action option 1 have been realised, and due to that its

triggers have disappeared, execution of action option 2 can

get a second chance in the action formation process. The

following execution trace will be expected from the agent

in this case:

– External stimuli s1, s2 and contexts c1, c2 will occur in

parallel and trigger preparation of actions a1 and a2.

– Based on the preparation states for a1 and a2, the

sensory representations of predicted effect b1 of a1 and

b2 of a2 are generated.

– Nevertheless, the agent will show stronger effects on

option a1 and the rate of activation for a2 will quickly

slow down and disappear subsequently.

– Based on the positive predicted effect and the other

states for a1 a prior ownership state for action a1 is

generated.

– Prior ownership for action a1 is followed by prior

awareness; this is generated just before the action

execution.

– The agent develops neither prior ownership nor

awareness for option a2.

– Prior ownership and prior awareness states for action a1
lead to actual execution of action a1.

– The execution of a1 affects b1 in a positive manner and,

via sensing the sensory representation of b1 and the

feeling of b1.

– At the same time, the sensory representation of b1 is

suppressed due to the prior self ownership state of it.

– Based on the generated states, after the execution of

action a1, the agent develops a retrospective ownership

state for action a1.

– Retrospective ownership for action a1 is followed by

retrospective awareness of action a1.

– Finally the agent communicates this ownership and

awareness related with option a1.

– With the execution of action a1, the agent suppresses

the inputs s1 and c1.

– Due to the absence of inputs s1 and c1, preparation for

action a1 is not triggered anymore.

– The still existing inputs s2 and c2 still trigger prepa-

ration of action a2. This is not suppressed by prepara-

tion of action a1, since this is not activated anymore.

– Based on the preparation state for a2 the sensory

representation of predicted effect b2 of a2 is generated.

– Based on this positive predicted effect and the other

states a prior ownership state for action a2 is generated.

– Prior ownership for action a2 is followed by prior

awareness for action a2, which is generated just before

the execution of action a2.

– Prior ownership and prior awareness states for action a2
lead to actual execution of action a2.

– The execution of a2 affects b2 in a positive manner and,

via sensing the sensory representation of b2 and the

feeling of b2.

– At the same time, the sensory representation of b2 is

suppressed due to the prior self ownership state.

– Based on the generated states, after the execution of

action a2 the agent develops a retrospective ownership

state for action a2.

– Retrospective ownership of action a2 is followed by

retrospective awareness of action a2.

– Finally the agent communicates this new ownership

and awareness too.

The simulation of this scenario is shown in Fig. 7. In this

figure, from time point 0 to (roughly) 80 the behaviour is

exactly the same as in the fifth scenario, but around time

point 80 due to the suppressive effect on inputs s1 and c1 the

agent shows the effects of losing the suppression of action

Computational cognitive modelling of action awareness 97

123



option a2. Therefore, the agent has again strengthens the

preparation of action a2 and subsequently the sensory rep-

resentation of predicted effect b2 of a2, and the feeling of b2.

Prior ownership co-occurs with the above states (mainly due

to its pre obtained activation strength). Followed by the prior

ownership state, the prior awareness state develops as ex-

pected. As a result of the prior ownership and awareness

states, the agent initiates the actual execution of action a2,

which propagates its effects through the external body loop.

This shows a possibility to get action a2 executed, in contrast

to Scenario 6 above where due to the action competition it is

suppressed. The peak value obtained for the action execution

is 0.88 (the same for option a1 is 0.89); this clearly shows that

both options have the same power in getting executed. The

execution of action a2 (via the body loop) has further effects

too. Due to the action execution, the agent develops the

retrospective ownership state for action a2,which is followed

by a retrospective awareness state. Finally, the agent com-

municates ownership and awareness about the just per-

formed action. This simulation shows the ability of action

selection through competition mainly from an unconscious

perspective. Having a slightly different weight value forx10

[from PAwr(ai, bi, ck, sk) to PA(ai)] on action option 2, the

same process can be simulated to demonstrate the effects of

conscious cognitive control as a top–down effect. Further-

more, it is also possible to combine both of these effects in a

simulation.

4.8 Scenario 7: mismatch between the predicted

and actual effects of an action

In most of the previous scenarios, the predicted effect al-

ways has positively affected action execution. Neverthe-

less, it may not always be the case and as pointed out in

Sect. 1 (with the example of learning how to ride a bicycle)

there may be a difference between what is predicted and

what actually occurs. In this scenario, this phenomena will

be simulated. For this simulation, a single input is con-

sidered but which triggers preparation of an action a1 for

which two options for an effect are considered: the first is

b1 which is the predicted effect of a1, whereas the second

b2 is not predicted. The second option indicates what ac-

tually will occur after execution of a1 (see Table 4). In

Table 4, the weight changes for this case have been high-

lighted for each effect option separately. For the effect

option 1 weight x3 [i.e. from EA(a1) to WS(b1)] was set ‘0’

as the effect of actual execution is not b1 and the same

weight for effect option 2 was set ‘0.5’ to facilitate the

different non-predicted effect of the action (the same ex-

planation for x4). The weight from WS(b2) to SS(b2) (i.e.

x7 for option 2) was set 0.5 to facilitate the effects of actual

sensing (this value can be further increased but 0.5 was

selected merely to highlight an average effect in the

sensing). Also according to the formation of this scenario at

the beginning, the agent will only predict the effect b1 of

Fig. 7 Scenario 6: Effects of cognitive controlling when multiple action options compete but after the first action execution. In here ‘Y_1’

represents ‘a1, b1, c1, s1’
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action a1, but not b2. Therefore, the weight x10 [i.e. PA(a1)

to SR(b2)] was set ‘0’ (the same explanation applies for

weight x12). The weight x30 from EA(a1) to RO(a1, b1, c1,

s1) was set ‘0’ as there will not be any retrospective

ownership for action a1. Furthermore, the weight x32 for

effect option 2 [i.e. from PO(a1, b2, c1, s1) to RO(a1, b2, c1,

s1)] was set ‘0’ as there is no prior ownership on action

option a2. Additionally, the link from EA(a1) to RAwr(a1,

b1, c1, s1) (i.e. x34) was also set ‘0’. Also as there is no

prior awareness related with effect option b2, weight x37

[i.e. from PAwr(a1, b2, c1, s1) to RAwr(a1, b2, c1, s1)] was

also set ‘0’. The following execution trace is expected from

the agent:

– External stimulus s1 and context c1 occur and trigger

preparation of action a1.

– Based on the preparation state for a1, the sensory

representation of a (positive) predicted effect b1 of a1 is

generated.

– Based on this positive predicted effect and the other

states, a prior ownership state for action a1 is generated.

– Prior ownership for action a1 is followed by prior

awareness, which is generated just before the action

execution.

– Prior ownership and prior awareness states for action a1
lead to actual execution of action a1.

– The execution of a1 does actually not affect b1 but a

different effect b2. Therefore, through sensing the agent

will develop a sensory representation of b2 and the

feeling of b2.

– Based on the generated states, after the execution of

action a1 the agent may develop a low retrospective

ownership state for action a1 with effect b2 due to the

conflict between predicted effect and sensed actual

effect.

– Retrospective ownership of action a1 with effect b2 is

followed by retrospective awareness of action a1 with

effect b2.

– Finally the agent may not properly communicate this

ownership and awareness (depend on the context).

The simulation of this scenario is shown in Fig. 8. As

expected the agent triggers preparation of action a1 at time

point 3 (with the peak value of 0.73). Based on that the

sensory representation of predicted effect b1 of a1 is gen-

erated (through the as-if body loop with peak value 0.23),

followed by the feeling of b1 (through the as-if body loop

with the peak value 0.30). Next these states contribute to

generate a prior ownership (for a1 with effect b1) which

starts to trigger at the time point 5 with peak value 0.84.

After activating the prior ownership, prior awareness de-

velops, mainly upon the formation process of effect pre-

diction b1 for a1. The prior awareness starts to pop up

Fig. 8 Scenario 7: Mismatch between the predicted and actual effects of an action. In here ‘Y_1’ represents ‘a1, b1, c1, s1’ whereas ‘Y_2’

represents ‘a2, b2, c2, s2’
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around time point 12 and obtains peak value 0.85. As a

result of the prior awareness and ownership states, the

agent initiates the actual execution of action a1 which

propagates its actual effects through the (external) body

loop. The action execution starts at time point 13 and its

maximum strength is 0.97. In Fig. 8, it is clearly shown

that the execution of action a1 does not affect b1 via

sensing. Instead it has a different actual effect b2; through

sensing it affects the sensory representation and the feeling

of b2. Therefore, the sensory representation b1 of a1 does

not behave as expected by adding the sensed actual effect

to the predicted effect and the same effect does not pro-

pagate to the feeling of b1 (cf. [20, 47, 48]). Two activa-

tions: that do occur are of the sensory representation of b2
and feeling for b2. They emerge just at that point in time as

they were not there at the beginning. These new states

provide satisfactory activation levels but contribute for

relatively low retrospective ownership and awareness states

(mainly due to the nonexistence of influences of prior

ownership and awareness states, respectively). Subse-

quently due to these poor retrospective ownership and

awareness states, agent does not properly communicate the

action and its effect. Poor communication was noted ex-

perimentally in [62] through a card game together with a

covert exchange to facilitate the conflict between predicted

and actual outcome. Therefore, also from experimental

findings this poor communication can be justified. Fur-

thermore, in simulation scenario 1 when there is no conflict

between predicted and occurring effect, prior awareness on

sensed effect has initiated at time point 35, whereas in this

simulation it occurs around time point 50. Therefore, the

temporal gap between the action and its perceived sensory

outcome is less when the awareness is pre-existing but it is

more when the (prior) awareness is not involved, which is

observable from these simulation results; this is referred as

intentional binding [15].

This behaviour has shown the effects when there is a

conflict between what predicted versus actual. In future

work, this will be especially useful when learning should

incorporate with the model in a dynamical form. Having

this conflict between sufficiently large prior awareness and

a very low retrospective awareness can be further explored

with more neuroscientific evidences. This is useful for

adaptive behaviours especially for situation awareness-

driven applications.

4.9 Scenario 8: cognitive impairment for shifting

to a positive feelings

In real life, agents will experience both positive and

negative situations. Nevertheless, if an agent always sticks

to negative thoughts while suppressing the possible

positive thoughts, in the long run this will lead to a de-

pression. In this scenario, the agent is preparing for two

action options where one leads to a positive feeling F(b1),

while the other leads to a negative feeling F(b2). According

to the bias to negative feelings, the agent tends to select the

negative action though both options share exactly the same

weight values for all weights on each option, except for x29

which is for prior awareness (which introduces a conscious

intervention on action execution). For the weight x29 on

the first (positive) action option 0.2 was used and for the

second (negative) option 0.8. Except this change all the

other parameter values are identical and through this only

the impact from biased conscious awareness towards a

particular action is modelled. If the agent is executing the

action which is associated to negative feeling (though at the

same time a possible positive action also exists) this will

affect the agent’s mood (the mood of the agent has not been

in the scope of this model but will be a future work).

Having a negative mood all the time together with this

biased awareness towards such negative actions will take

the agent to a cognitive disorder state called depression. A

healthy agent will have the ability to shift in a relatively

short time period again to positive actions by correcting the

biased influence. Therefore, this model can be used to

simulate a depression situation also, but with further im-

provements in the model. For the biased cognitive im-

pairment on negative actions through awareness, the

following trace is expected:

– The external stimulus s1 and context c1 will occur and

trigger preparation of actions a1 and a2.

– Based on the preparation state for a1, the sensory

representation of predicted effect b1 of a1 is generated

and in the same way for a2, the sensory representation

of predicted effect b2 of a2 is generated.

– It is assumed to be that both effects positively

contribute to the action formation process while the

effect b1 has a positive associated feeling, and the

effect b2 has a negative associated feeling.

– Based on this positive predicted effect and the other

states, a prior ownership state for action a1 and a2 is

independently generated.

– Prior ownership for action a1 is followed by the prior

awareness of a1 and the prior ownership for action a2 is

followed by the prior awareness of a2.

– Nevertheless, the prior awareness of a2 will dominate

the action formation process due to the biased

competition.

– Due to this the states related to action a1 will loose their

activation, while the sates related to action a2 will

continue as the selected options.

– Prior ownership and prior awareness states for action a2
lead to actual execution of action a2.
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– The execution of a2 affects b2 in a positive manner

through the sensing.

– The agent develops sensory representation of b2 and the

feeling of b2 in line with what is predicted.

– Based on the generated states, the agent develops a

retrospective ownership state for action a2 with effect b2.

– Retrospective ownership of action a2 with sensed effect

b2 is followed by retrospective awareness of action a2
with effect b2.

– Finally the agent communicates this ownership and

awareness.

The simulation of this scenario is shown in Fig. 9; it is

in line with the expected trace. The agent has initiated two

action preparations once the input stimuli are received.

Both PA(a1) and PA(a2) are activated at time point 3 and

almost with the same activation speed. Parallel to this the

agent also initiates the sensory representation and feelings

for effects b1 and b2 for actions a1 and a2, respectively.

Furthermore, the rates of activation for these four states are

also almost the same at the very beginning (until prior

awareness states pop up). Followed by these states, prior

ownership states are also activated for both options and

then subsequently the prior awareness states for each op-

tion. Roughly at time point 10, the prior awareness states

start to emerge and from that very moment the states re-

lated with the option 1 show decline effects. For example,

the action preparation states initially have same speed but

after the time point 10 state PA(a1) is losing the speed,

whereas PA(a2) maintains the same momentum and

reaches maximum value 0.75. Similar to this SR(b1)

reaches peak value 0.11 through the as-if body loop (i.e.

through the predictive process), whereas SR(b2) reaches

peak value 0.23 through the predictive process and 0.63

through the body loop. Furthermore, F(b1) reaches peak

value 0.14 through the as-if body loop, whereas F(b2)

reaches peak value 0.30 through the predictive process and

0.66 through the body loop. Moreover, PO(a1, b1, c1, s1)

reaches peak value 0.15, whereas PO(a2, b2, c2, s2) reaches

peak value 0.68. Also PAwr(a1, b1, c1, s1) reaches only a

0.09 value but PAwr(a2, b2, c2, s2) reaches 0.68.

These results clearly show the impact from conscious

intervention for the action formation process (all the other

unconscious related suppressive parameter values are

identical for both options and therefore no bias was intro-

duced by unconscious processes). Therefore, due to this

bias the negatively associated action option a2 has executed

with peak value 0.92. Furthermore, it is shown that the

execution of action a2 (via the body loop) also affects in

positive manner via sensing, the sensory representation of

b2 and the feeling of b2. Due to these, the agent develops

RO(a2, b2, c2, s2) at time point 30 with peak value 0.79 and

RAwr(a2, b2, c2, s2) at the time point 34 with peak value

0.76. The agent does not develop any retrospective effects

associated to action option a1. Finally, the agent has

Fig. 9 Scenario 8: Cognitive impairment for shifting to a positive feeling. In here ‘Y_1’ represents ‘a1, b1, c1, s1’ whereas ‘Y_2’ represents ‘a2,

b2, c2, s2’
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strongly communicated the ownership and awareness on

action a2.

5 Discussion and future work

Computational modelling is considered an important pillar

for the development of cognitive science and related dis-

ciplines [63–65]. Moreover, the developments in brain

imaging and recording techniques also strongly contribute

to more and more focused phenomena explored in the

cognitive, behavioural, affective and physiological re-

search areas. Nevertheless, there is room for a more

generic, compound process to explain a wide range of

cognitive functionalities by aggregating many of these lo-

cal but highly influential information from the computa-

tional perspective [66]. For example, Ron Sun in [66] has

stated that ‘‘integrative computational cognitive modelling

may serve in the future as an antidote to the increasing

specialization of scientific research’’ [66], p. 14. On the

other hand, there are many implications of these hypothe-

ses (or evidences) and it would be beneficial if there was a

mechanism that can be used to scrutinize these ideas or

hypotheses using this as a workbench in much more ab-

stract and global level (cf. [64]). Additionally, the human

brain and its phenomena are immeasurably complex sys-

tems/processes that involve many uncountable factors that

make experiments not always coherent with reality. Nev-

ertheless, having computational models enables to uplift

the progress of understanding these processes in a broader

level as a multidisciplinary approach (cf. [63]).

From the Artificial Intelligence perspective, more and

more complex systems related problems are addressed that

include human cognitive aspects. For example, situations

related to air traffic management, stock market analysis,

business processes, human awareness of energy usage,

cognitive impairments and various medical disorders, how

a certain form of therapy can have its effect on a patient,

etc. In many such situations, it is not practical to create real

experimental setups to analyse the emergence of problems.

Nevertheless, the importance and significance of such

analysis is essential from a safety, performance and health

perspective. Multi-agent-based simulation approaches have

been noted as the potential solution for this [67] by con-

sidering agent-based simulations. Such simulations can

capture emergent phenomena, providing a natural de-

scription of a system, and its flexibility: essentials for such

complex system research. Even though agent-based

simulations are a promising technology for this, there are

many problems associated with it in terms of more realistic

models for such agents to behave or perform. Often non

nature inspired, simple heuristically determined rule-driven

agent simulations are used for this, although reality is more

complicated and far away from those simplifications. It

needs more realistic representations and analysis in much

closer to the natural situation (cf. [67]). Therefore, in agent

systems more realistic computational models that make use

of the latest neuro-cognitive findings can be used to

simulate agent behaviour in a more realistic manner.

Especially when it comes to the systems that include hu-

man cognition factors in dynamic systems, nature inspired

cognitive computational models have more power to pro-

vide realistic results. Therefore, computational cognitive

modelling as a multidisciplinary approach has many ben-

efits for both cognitive science and artificial intelligence.

This paper presented a computational cognitive model

for action awareness focusing on action preparation and

performance by considering its cognitive effects and affects

from both prior and retrospective perspective relative to the

action execution. It is a fundamental research question what

is the human cognition behind the action selection and how

this is related to conscious and unconscious elements.

Mainly for two hypotheses or claims, attention has been

obtained by the community, as presented in Sects. 1 and 2.

However, it is not yet clear what is the exact process behind

this human cognition. The first hypothesis (by Benjamin

Libet and others) claimed that humans may prepare for and

perform actions without being conscious of these prepara-

tion and execution processes, and the awareness of motor

intention of this action is not causing the behaviour, but

comes after the action preparation and relatively just before

the action execution time [4–8]. The second hypothesis (by

Haggard and co-workers) claims that awareness of an action

is a dynamic combination of both prior awareness and ret-

rospective awareness through predictive motor control and

inferential sense-making relative to the action execution,

respectively [20, 21]. Furthermore, the intentional binding

effect [15] shows the impact of awareness on action selec-

tion and this contributes to the second hypothesis to bring

out the influence of awareness on action selection. Although

these two hypothesises seem to contradict each other from

the semantic point of view, by other research (cf. [5]) from a

pragmatic point of view it seems hard to generally reject any

of these claims on the basis of the available empirical evi-

dences. This paper utilizes both ideas into a compound

process (together with other supportive processes) and

scrutinizes the behaviour through related scenarios. This

work was not conducted from scratch, but adopts parts of the

model presented in [23], mainly for the mechanisms of ac-

tion ownership and other unconscious states/processes (e.g.

action preparation, sensory representation, effect prediction

process, mirroring, etc.). Having that previous model which

was validated through simulations mainly for unconscious

action formation, in this paper its scope is further extended

to incorporate the conscious aspects related to action se-

lection. The main research questions for this work are
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(1) How does the internal prediction process shape or

contribute to the (prior) awareness of the action?

(2) How does the inferential sense-making shape or

contribute to the (retrospective) awareness of the

action execution?

(3) How does the awareness contribute to action

execution?

(4) What is the relation and interplay between conscious

and unconscious action formation through action

ownership and relevant awareness states?

Each research question is explored from the cognitive

science perspective and analysed through the modelling

perspective (with simulations) to isolate a working defini-

tion. For the internal prediction process, the hypothesis of

Damasio’s as-if body loop is used as a basis, as previously

presented in [23]. In the current model, it is further ex-

tended by embedding an unconscious process referred as

the lateral inhibition (see [49]) to strengthen the competi-

tion among action options through the as-if body loop.

With that new addition the unconscious action prediction

process is coupled with the prior awareness state (as a

higher order cognitive state) to facilitate the conscious

aspects as proposed by Haggard et al.: predictive processes

are also playing a role in action awareness (e.g. see [20,

21]). Also given empirical evidence to support the idea that

awareness of motor intention for an action comes after the

action preparation and relatively just before the action

execution time (cf. [4–8]), in this model it is ensured that

the awareness states are always higher order cognitive

states which are not getting affected by most of the low

level cognitive states. Predictive processes anticipate ef-

fects of each action option and lead to a competition to get

selected a GO signal. The basic decision-making is as-

sumed to be based on a feeling-related valuations associ-

ated with the effects of each action option. These internally

predicted feelings work as a bottom–up feedback to de-

velop a coherent conscious experience of action selection,

mainly on action options that have strong predictive ef-

fects; therefore, actions with poor predictive effects do not

get any conscious attention. Therefore, prior awareness

state is only affected by the feeling and prior ownership

states. The simulation results have confirmed that when

there is a prior awareness it always appears just before the

action execution.

The same approach is applied to the second research

question, also to isolate a working definition. Once the

feedback sensory information on the effects of the actual

action execution is available and is integrated with the

predicted effects as suggested in [20, 47, 48] to evaluate the

binding of what is predicted and the actual effect. Through

this sense-making process, the agent will experience the

retrospective effects as presented in previous work [23],

mainly for acknowledging authorship of an action, reflec-

tion on one’s own functioning, personal learning and de-

velopment. This was further extended with a new abstract

cognitive state name called retrospective awareness which

is responsible for more conscious interpretation of retro-

spective effects of the action execution. Having empirical

evidences for the contribution of inferential processes on

action awareness from Haggard and co-workers’ ex-

periments (cf. [20, 21]), this extension can be justified from

the cognitive neuroscience perspective. Furthermore,

through simulations on relevant scenarios this extension

was validated. Especially the seventh scenario clearly

shows that when there is a mismatch between what is

predicted and what actually occurs, the two steps sigmoid

behaviour on the sensory representation and the feeling

states is not observed, whereas a poor retrospective

awareness on the effect was predicted, as highlighted in

[20]. When considering the first scenario and the seventh,

this may even contribute for the observation of intentional

binding (cf. [15]) mainly through the feeling state: in-

creasing the same feeling through inferential information

and forming a completely new feeling through the infer-

ential process. In the seventh simulation, the agent does not

aggregate the prior awareness to the retrospective aware-

ness and therefore the agent will not be consciously able to

communicate the conflict or mismatch. This also shows the

subjective time effect found in the intentional binding:

when there is no conflict between predicted and occurring

effect, the prior awareness on sensed effect has initiated

earlier than when a conflict occurs. Therefore, the feeling

of the temporal gap between the action and its perceived

sensory outcome can be explained through the retrospec-

tive awareness [15]. To have these results in this model, the

retrospective awareness states were mainly affected by four

states: action execution of ai, feeling of effect bi, prior

awareness for action ai with bi, ck, and sk and prior own-

ership for action ai with bi, ck and sk.

The third research question shows many thoughts within

the cognitive neuroscience community. It suggests that

awareness is not a cause for an action execution but it

seems like an after-effect of a set of unconscious cognitive

processes leading to the action [1, 4–8]. The other idea

shows that an additional influence through awareness may

inject some bias or effect on decision-making especially

with the findings of intentional binding [15, 21, 37, 43].

There are empirical evidences to support the second claim

(at least for some inputs), emphasising why it is hard to

accept the first claim due to its non moderate statistical

strength on empirical evidences: in general only *60 %

accuracy in experimental data (see [5]). Therefore, this

model includes both features: awareness is not required for

action execution and awareness may play a role in action
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execution, depending on the specific scenario. In other

words, the model handles both the purely unconscious

action formation and the hybrid form of action formation

with both conscious and unconscious elements. Further-

more, through the simulation results also this was

validated. Especially the first and second scenarios provide

information to show that the agent is able to execute an

action with and without awareness. The eighth scenario

presents a situation in which biased awareness may trans-

form a healthy person into a cognitively impaired position.

By continuing the cognition behind the eighth scenario for

a longer period of time, this can even explain the effects of

a patient suffering from a depression (this will be consid-

ered as a future work). Therefore, with different settings

and scenarios, the model is capable to demonstrate the

contribution of awareness from zero to high. Therefore, the

model facilitates a good spectrum to represent the effects of

awareness on action selection. There are situations, for

example like flight or fight situations, which mostly show

the unconscious action formation side of the spectrum that

includes very quick and strong action executions (cf. [68–

70]). According to the second scenario, it is clear that when

agent is purely performing in an unconscious mode, the

strength of action execution is relatively weak. Therefore,

it may be possible to add improvements to this model and

its settings, especially on the unconscious perspective in-

cluding the emotion related effects. Further information on

the interplay between bottom–up and top–down processes

seems to be useful for such further improvements of this

model (see [68–71]).

The fourth research question is realised as an aggrega-

tion of the other three questions. The interplay between

conscious and unconscious action formation is mainly re-

alised through having effects from feeling and ownership

states on the awareness states (unconscious to conscious),

and effects from prior awareness states to the action

preparation and action execution states (conscious to un-

conscious). The first links (bottom–up) play a role to pass

low level information to develop awareness of what is

going on in a high level form, whereas the second type of

links (top–down) contributes to inject some bias or ex-

citement to intentionally drive the action formation. When

there is poor activation of the bottom–up links, agent is

unable to develop prior awareness and therefore, as pre-

sented in the second scenario, the agent can perform the

action selection in purely unconscious form by the feeling

of ownership. When the agent is having sufficient activa-

tions in bottom–up links, awareness develops and shows

how that leads to an action execution, as in the first sce-

nario. Also particularly in the eighth scenario, the role of

top–down links demonstrates the power of an intentional

focus on action selection. The third simulation highlights

why agents are not always performing a task even in

unconscious mode. This shows that even in unconscious

form it is necessary to have a sufficiently large satisfactory

predicted effect to have a GO signal. Therefore, this shows

the mechanism of vetoing in unconscious form. The cog-

nitive control is a useful process to explain the interplay

between conscious and unconscious action formation. The

fifth and sixth simulations present the role of cognitive

control. In the fifth simulation, it shows how a particular

option is getting suppressed by the other option through

cognitive control just by having a value of 0.2 difference

for the links between action preparation to sensory repre-

sentation for two options. The sixth simulation shows that

once the dominant option of the fifth simulation completed,

the suppressed action option emerges due to not having the

effects of cognitive control and, more importantly, with

strong activations for each state. Through this, it is clear

from the simulation perspective that the model can have

different configurations to facilitate different behaviours

both from the unconscious and the combination of con-

scious and unconscious forms. Also as mentioned in the

other three research questions, the cognitive neuroscience

basis behind this model was inspired by the experiments

and evidences found in the literature.

Having interesting simulation results for many scenar-

ios, still there is more to improve on this work. It was

possible to isolate a generic parameter value set that

worked for 8 simulations. A generic parameter value set

provides more confidence from the model validation per-

spective and its practical usage in future complex appli-

cations. Nevertheless, it is not a trivial task to find such

generic parameter value set. The approach used to identify

this parameter value set was explained in Sect. 4.1, but it is

not a fully automated process. Due to the complexity of the

human brain and limitations in measuring techniques of

human cognition, there are no detailed numerical empirical

data to use in this process, but only some characteristics of

behaviours are available in more fuzzy form. Due to this

issue, it is not possible to directly use parameter estimation

techniques available for dynamic systems. Therefore, it is

useful to explore the parameter estimation techniques

particular to the characteristics of these types of work.

Furthermore, from the cognitive neuroscience perspective,

this model has many more areas to explore both in con-

scious and unconscious levels. In the third scenario, it

shows the vetoing process in unconscious form, but the

same process with awareness which is referred as inten-

tional inhibition is a future work for this model. Human

awareness has its specializations, for example, emotional

awareness, situation awareness. Working processes behind

these concepts are more complicated and need further re-

search to incorporate those into this model.

Finally, this model may be useful in many applications.

Especially for agent-based simulations on complex systems
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that need action selection related to cognitive aspects. Also,

this model can be used as a basis for subsequent work in

developing ambient agent systems able to monitor, analyse

and support persons trying to develop a healthy lifestyle. If

such systems have such a model of the underlying human

processes, they can use this to have a deeper understanding

of the human.
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