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Abstract Predicting the evolution of individuals is a

rather new mining task with applications in medicine.

Medical researchers are interested in the progression of a

disease and/or how do patients evolve or recover when they

are subjected to some treatment. In this study, we investi-

gate the problem of patients’ evolution on the basis of

medical tests before and after treatment after brain trauma:

we want to understand to what extend a patient can become

similar to a healthy participant. We face two challenges.

First, we have less information on healthy participants than

on the patients. Second, the values of the medical tests for

patients, even after treatment started, remain well-

separated from those of healthy people; this is typical for

neurodegenerative diseases, but also for further brain im-

pairments. Our approach encompasses methods for mod-

elling patient evolution and for predicting the health

improvement of different patients’ subpopulations, i.e.

prediction of label if they recovered or not. We test our

approach on a cohort of patients treated after brain trauma

and a corresponding cohort of controls.
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1 Introduction

In the recent years, methods from machine learning and

data mining are increasingly being used in the epi-

demiological and clinical domains. These methods help the

clinicians in studying the causes, effects and progression of

diseases and the treatments as well. In the context of brain-

related degenerative diseases, e.g. traumatic brain injury

and mild cognitive impairment, medical researchers want

to analyse/monitor the patients suffering from such disease

as they evolve over time. In particular, they would like to

answer questions like: have the patients reached a similar

state like that of healthy people? or given a patient’s cur-

rent state what is the most suitable treatment regime that

can be recommended to him? or how likely is it for a

certain patient to recover from the disease? In order to

provide answers to these questions, we propose mining

methods that learn evolutionary predictive models over the

evolving cohort of patients. These methods determine (1) if
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the patients have achieved a state as that of healthy people

by juxtaposing them to a cohort of controls, and (2) given a

patient’s current state, will he show recovery after he has

been prescribed a treatment regime or plan.

The study of patient evolution on the basis of times-

tamped clinical data has been largely influenced by the

seminal work of Cox [1] on censored failure times and age-

specific failure rates. As pointed out by Fitzmaurice et al.

[2], the work of Cox [1] ‘‘...was followed by a rich and

important body of work that established the conceptual basis

for the modern survival analysis’’ [2]. Survival analysis is

not applicable to this problem, because there is neither a

well-defined target event, nor explicit timepoints to guide

the learner. Although there is a control population to jux-

tapose the patients to, there are no target values to predict,

because the assessments of the controls are very different

from those of the patients. To acquire the labels for the

patients, we rely on the recommendations of the clinical

experts. We present here a method that learns an evolu-

tionary model from unsupervised data and can also incor-

porate the labels for supervised evolutionary prediction.

Hospitals in recent years have started to maintain ela-

borate electronic health records. These store not only the

condition or the state a certain patient is experiencing (for

example, blood pressure pulse rate, sugar level, etc.) but

also keeps track of the medications, their impact and side

effects. An important challenge with respect to the impact

of a treatment emerges when the desirable target state is

not well defined: if clinical data show that patients after

treatment are in a different state than before treatment, but

they do not exhibit the abilities of a comparable healthy

population (controls), what can then be concluded about

the impact of treatment? We propose a method that pre-

dicts how a treatment improves the state of brain trauma

patients, although there is no well-defined target state and

the control population exhibits features (values in medical

tests) that patients cannot reach.

We study recordings of patient and control cohorts over

a certain time horizon. Longitudinal analysis of cohorts is

an established and a mature field of research in statistical

domain. Focus of the earliest studies in the longitudinal

analysis stemmed from the studies on morbidity and mor-

tality [2].

The contributions of our approach are as follows. We

model the evolution of subpopulations of patients, for

whom only two moments are available, whereby these two

moments are not defined as timestamps.1 We use this

model to compute a future/target state for each patient and

also the recovery labels based on clinical

recommendations. We show that the projected target state

of patients allows a reasonable comparison to a control

population, the recordings of which are very different from

the patient recordings.

2 Related work

Data mining methods are only recently deployed for ana-

lysis and prognosis of brain pathologies or injury condi-

tions. The authors of [3] use different methods (e.g.

decision trees, multilayer perceptron and general regression

neural networks) to analyse data from neuropsychological

tests (concerning attention, memory and executive function

tests) from 250 subjects before and after a cognitive

treatment instrumented by a cognitive tele-rehabilitation

platform. Their objective is to predict the expected out-

come based on the cognitive affectation profile and the

performance on the rehabilitation tasks. Our objective is

not the prediction of a well-defined outcome, but rather of

the future similarity between treated patients and a

population of healthy people.

In [4], the authors present an artificial neural network

model that predicts in-hospital survival following traumatic

brain injury according to 11 clinical inputs. A similar ap-

proach was taken by Shi et al [5], who also consider neural

networks and logistic regression, but rather study recovery

from brain surgery. An early discussion of methods for

prediction of recovery from brain injury, including short-

term evolution of patients, can be found in [6]. The effect

of cognitive therapies along longer periods (6 months to 1

year) is studied in [7, 8]. Brown et al. learn decision trees

on variables that include physical examinations and indices

measuring injury severity, as well as gender, age and years

of education [7]. Rovlias and Kotsou further consider

pathological markers (hyperglycemia and leukocytosis)

and the output of computer tomography, and learn CART

trees [8]. Our study is different from the aforementioned

ones, because we do not learn a model on patient recovery

(we do not have recovery data), but rather study the evo-

lution of the patients towards a control population.

There are studies [9–13] that track the responses to

cognitive-behavioural treatments for brain-related disorder,

e.g. post-traumatic disorder, mild cognitive impairment and

traumatic brain injury. These studies aim towards finding

the response groups based on their developmental trajec-

tories. Methods include group-based trajectory modelling

[10, 13] and growth mixture modelling (GMM) [11, 12]. In

[13], the method learns developmental trajectories of

groups with distinct cognitive change patterns; it uses a

cohort of MCI patients. In [12], the authors study the

progress of the PTSD (post-traumatic stress disorder) pa-

tients on two different therapeutic protocols. Their aims

1 The one moment is ‘‘before’’ the treatment began, the other moment

is ‘‘after’’ the treatment began, but without knowing when exactly the

treatment began or ended.
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were to identify distinct trajectories of treatment response

and to test whether pre-treatment markers predict assign-

ment to those trajectories.

Close to our work are the methods of Tucker et al. [14] and

Li et al. [15], who predict the progression of glaucoma from

cross-sectional data (rather than longitudinal data). The

methods learn temporal models on trajectories. A trajectory

is built by fitting so-called ‘‘partial paths’’ upon the cross-

sectional data: path construction involves selecting one

healthy individual and one patient, labelling them as start and

end and then re-ordering the remaining cross-sectional in-

stances based on the shortest path from start to end. Our

approach shares with [15, 14] the need to construct a tra-

jectory of evolution. In principle, we could construct a

‘‘partial path’’ by combining the recordings of the controls

and the recordings of the patients during treatment. But this

would imply ignoring part of the already available temporal

information (pre-treatment data). Moreover, the Trauma

Brain Injury dataset of [16], which we use, shows that the

control individuals are too different from the patients: this

might lead to overlong and unrealistic partial paths. Thus, we

rather build a single, projected moment, using data before and

after the begin of treatment, and we do not involve the

recordings of the controls in our learning process.

A separate thread of work models and monitors how

subpopulations (clusters) evolve over time. The framework

MONIC [17] encompasses a set of ’transitions’ that a

cluster may experience, a set of measures and a cluster

comparison mechanism that assesses whether a cluster

observed at some timepoint has survived, disappeared,

merged or become split at the next timepoint. Later

frameworks [18, 19] build upon MONIC to explain evo-

lution: they model the clusters and their transitions as

nodes, resp. edges of an evolution graph. In [20], we build

upon [19] to learn a Mixture of Markov chains that capture

the evolution of different subpopulations. We take up the

idea of subpopulations here, but our goal is to predict rather

than model the evolution of the subpopulations.

There are also studies concentrating on how individual

objects evolve over time. Gaffney and Smith [21] model

the evolution of an object as a trajectory and cluster to-

gether objects that evolve similarly. Krempl et al. [22]

extend [21] into the online algorithm TRACER that dis-

covers and adapts the clusters as new observations of ex-

isting objects arrive and new objects appear.

3 Label prediction for evolving objects

3.1 Material

The traumatic brain injury dataset (TBI) contains assess-

ments on cognitive tests for 15 patients with brain injury

and for 14 controls [16]. These tests are recorded once for

the controls and twice for the patients—at moments tpre and

tpost. The cognitive tests are listed in Table 1 with their

acronyms;2 a detailed presentation can be found in [16].

3.2 Learning a ground truth for the TBI dataset

The data in the TBI dataset are not labelled. For the two

timepoints (i.e. tpre and tpost), we are only provided the

scores on how did each of the patient fare wrt. different

cognitive tests. In order to compute the labels of the patient

after they had undergone treatment, i.e. for timepoint tpre,

we use the method presented in the following subsection.

Ground truth: The opinion of the medical experts sug-

gests that if the computed difference between pre-treatment

and post-treatment values of the individual is high, it is

more likely that the individual has recovered from trau-

matic injury. For our experiments, these extracted labels

also serve as the ground truth. Our ground truth estimation

method uses a similar approach but incorporates additional

information. The method is outlined in the following.

1. Compute the difference between the values recorded

for the variable ICP or WNC during the pre-treatment

phase and post-treatment phase for each patient,

separately.3

2. Plot the pre-treatment values of the used variable (i.e.

the one which has been used in step 1) against the

computed difference of this variables from the pre-

treatment phase to post-treatment phase. We depict an

example plot in Fig. 1.

3. Patients can be separated into a number of classes

based on regions they fall in within the plot. In Fig. 1,

we depict the regions.

3.3 Predicting the recovery of patients

In this section, we present our evolutionary label predic-

tion method EvoLabelPred. This method is based on

the unsupervised instance prediction method Evolu-

tionPred of Siddiqui et al. [23]. EvoLabelPred

takes as input a labelled longitudinal dataset of indi-

viduals. It learns a clustering model over the individual

timepoints (i.e. tpre and tpost), and then learns a cluster-

based transition model, the ‘‘cluster evolution graph’’, by

discovering transitions or relationships between the

2 The acronyms were derived from the original Spanish names.

Therefore, the textual descriptions do not reflect the acronyms. We

also provide the English acronyms in parentheses.
3 The experts considered ICP as more trustworthy than WNC.
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clusters across timepoints. EvoLabelPred uses this

cluster transition model to predict the labels of the indi-

viduals. In the next section, we first describe learning

of transition model and then explain how it is used for

predicting the labels of the individuals. A list of used

symbols is given in Table 2.

3.3.1 Bootstrap sampling

EvoLabelPred learns the prediction model from the set

of patients X . Since the cardinality of X is small (as is the

case for many cohort datasets), we learn an ensemble of

models by performing bootstrap sampling over X . The

bootstrap sampling is done without replacement, and

subsequent instances of each out-of-sample patient

(i.e. xpre; xpost) are removed from both tpre and tpost.

Table 1 Acronyms and description of cognitive tests from the TBI dataset presented in [16]

Name Description

TMT-B Train making test-part B: measures cognitive flexibility (frontal lobe function)

BTA Brief test of attention (total score)

WCST-NC Wisconsin card shorting test: percentage total score of conceptual level (number of categories correctly achieved); also

measures cognitive flexibility

WCST-RP Wisconsin card shorting test: # preservative responses (represent error)

FAS Phonetic fluency test which uses as cues letters F, A, and S as the initial letters for the patients to start the production of

words

ICP Measure a subject’s ability to perform daily activities, and awareness of the disease

CIV Verbal intelligent quotient (VIQ): measures ability to handle verbal material

CIM Performance IQ (PIQ): measures ability to handle visio-spatial / non-verbal material

CV Verbal comprehension index (VCI)

MT Working memory (WM): measures the subject’s ability to maintain information in short-term memory and recall it

OP Perceptual organization (PO)

VP Processing speed index (PSI)

IAC Attention/concentration index (ACI)

IMG General memory index (GMI)

IRD Delayed recall index (DRI)

Fig. 1 Plot of differences in the ICP values from tpre and tpost (x-axis)

against ICP values (y-axis). Squares represent the values for tpre,

while rhombuses represent the values from tpost. Patients can be

separated into 4 classes based on the difference and the ICP values

from tpre, i.e. Class_1 = [low diff, low ICP1] (green region),

Class_2 = [high diff, low ICP1] (red region), Class_3 = [low

diff, high ICP1] (yellow region), and Class_4 = [high diff, high

ICP1] (blue region). (Color figure online)

Table 2 List of used symbols and notations

Symbol Description

tpre Timepoint before the start of the treatment

tpost Timepoint after the end of the treatment

X Set of individuals. The cardinality of the set is n

xpre Instance of a patient at timepoint tpre

lpre Label of a patient at timepoint tpre

fpre Clustering model learned over the instances of individuals

from tpre

fpost Clustering model learned over the instances of individuals

from tpost

c 2 f A cluster of individuals from the model f

G A cluster transition graph learned over clustering fpre and

fpost
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3.3.2 Building a cluster evolution graph

The cluster evolution graph G is learned over each boot-

strap sample. Before G can be learned, EvoLabelPred

first learns clustering models fpre and fpost, over the in-

stances of patients from tpre and tpost, respectively. We

apply K-Means over the instantiations at each moment t,

and build a set of clusters ft.

For learning G, we use concepts similar to MONIC [17]

and FingerPrint [24] to identify cluster transitions from tpre

to tpost. For each pair of clusters c 2 fpre and c0 2 fpost, we

compute the extend to which they contain the instances

from the same patients. We define their intersection as

c \ c0 ¼ fx 2 Xjxpre 2 c ^ xpost 2 c0g;

and their union as

c [ c0 ¼ fx 2 Xjxpre 2 c _ xpost 2 c0g:

If c \ c0 6¼ ;, we draw an edge ðc; c0Þ and assign to it the

weight wðc;c0Þ

wðc;c0Þ ¼
jc \ c0j
jc [ c0j :

The learned transition graph G is a directed graph, and all

the edges originating from a cluster c sum up to 1, i.e.
P

co
wðc;coÞ ¼ 1.

We define

first matchðcÞ ¼ argmaxc02fpost
wðc; c0Þ; ð1Þ

i.e. the first_match of a pre-treatment cluster c is the post-

treatment cluster with the highest weight among the clus-

ters linked to c.

In Fig. 2(a), we show the instantiations of example in-

dividuals at timepoints tpre (yellow) and tpost (aubergine);

the corresponding clusters are in Fig. 2(b); the transition

arrows along with the transition weights are shown in Fig.

2(c). The yellow star indicates the ‘‘projection’’ of the in-

dividual marked as a red star; projections are explained

hereafter.

3.3.3 Projecting patients into the future

Let x 2 X be a patient, c 2 fpre be the cluster containing

xpre, of X and cfm be the firstmatchðcÞ as of Eq. 1.

Hard projection: We define the hard projection of x

from tpre to tproj as the instantiation of x such that the value

of each a 2 A is determined by the values in xpre and in

bc; ccfm :4

projHðx; tpre; tpostÞ ¼ xpre þ ccfm � bc
� �

: ð2Þ

The projection is done for each attribute a 2 A.

POST

PRE

CONTROLS

w=1.0

w=0.75

w=0.25

Projection

(c)(b)(a)

Fig. 2 Clustering, Evolution graph and Soft projection with Evo-
lutionPred: in (a) the nodes are patient instantiations at tpre

(yellow) and tpost (aubergine), instantiations of the same individuals

are connected with dashed arrows; additionally, we also show the

controls (green); (b) clustering is performed at each moment (i.e. tpre

and tpost), showing that not all individuals of a pre-treatment cluster

evolve similarly; in (c) the evolution graph is built by linking pre- and

post-treatment clusters that share some individuals; the weights of the

graph edges are used to compute the soft projection of the instance

denoted by the red star. (Color figure online)

Algorithm 1: EvolutionPred
Input : zX sampled patients,

z′
X non-sampled patients,

K number of clusters

ζpre ← Learn clustering over zX for tpre instances.1
ζpost ← Learn clustering over zX for tpost instances.2
G ← Learn cluster transition graph over ζpre and ζpre.3
foreach x ∈ z′

X do
x̂h

post ← Hard projection for x given xpre (Eq. 2)4

x̂s
post ← Soft projection for x given xpre (Eq. 3)5

end6

4 We denote the centroid of an arbitrary cluster clu as cclu.
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Soft projection: We define the soft projection of x from

tpre to tproj as an instantiation, the values of which are in-

fluenced by all clusters in fpost that are linked to c:

projSðx; tpre; tpostÞ ¼ xpre þ
X

c02fpost

�
bc0 � bc

�
� wc;c0 : ð3Þ

The projection is again done for each attribute a 2 A. Here,

wc;c0 is the weight of a transition edge.

Hence, we learn models fpre and fpost on some indi-

viduals and then assess the projection location of other (or

the same) individuals. In Fig. 2(c), we show the soft pro-

jection of an individual (red star): the projected position is

outside both post-treatment clusters, since the individual is

located at the rim of the pre-treatment cluster.

3.3.4 Predicting patient recovery

To predict the next label of a patient, we use a prediction

method EvoLabelPred that uses cluster transition G and

learns conditional probabilities over each cluster. The

method is depicted in Algorithm 2 and we explain it in the

following.

Learning conditional probabilities: For each cluster

c 2 fpre, iterate over all the patients that are members of c.

For each label l in tpre and each label l0 in tpost; we compute

the occurrences of patients who undergo label transition

l! l0. We compute the conditional probability using the

following:

Pðl0jlÞ ¼ countð8xjlpre is l ^ lpost is l0Þ
countð8xjlpre is lÞ : ð4Þ

Label prediction: We define the label prediction l̂post of

x from tpre to tpost as the label that is computed using the

conditional probability model inside each cluster c 2 fpre.

Let c be the cluster in fpre that is closest to x, the label can

then be computed using the following:

predCLðx; lpreÞ ¼ argmaxl02cPðl0jlpreÞ: ð5Þ

Algorithm 2: EvoLabelPred

Input : zX sampled patients,
z′
X non-sampled patients,

K number of clusters

ζpre ← Learn clustering over zX for tpre instances.1
ζpost ← Learn clustering over zX for tpost instances.2
G ← Learn cluster transition graph over ζpre and ζpre.3
Learn conditional probabilities based on labels from4
tpre for each cluster in ζpre.
foreach x ∈ z′

X do5

l̂post ← Predict label for x given lpre and the6
nearest cluster c ∈ ζpre (Eq. 5)

end7

4 Evaluation

In this section, we evaluate our methods on predicting the

recovery of patients with traumatic brain injury. Details

about the dataset have already been presented in Sect. 3.1.

Here, we describe our evaluation framework.

4.1 Evaluation settings and framework

We have presented two methods, i.e. one for projecting the

patients into future given his current state, Evolu-

tionPred, and the other for predicting the recovery of

the patients, EvoLabelPred, given his current state and

current label, e.g. at tpre.

4.1.1 Framework for EvolutionPred

To evaluate the performance of the projections from

EvolutionPred, we are inspired by the mean absolute

scaled error (MASE) [25], which was originally designed

to alleviate the scaling effects of mean absolute er-

ror(MAE). To define our variation of MASE, we assume an

arbitrary set of moments T ¼ ft1; t2; . . .; tng. For an indi-

vidual x, we define the MASE of the last instantiation xn as

MASEðxÞ ¼ dðxproj; xnÞ=
1

n� 1

Xn�1

i¼2

dðxi; xi�1Þ;

where dðÞ is the function computing the distance between

two consecutive instantiations of the same individual x.

This function normalizes the error of EvolutionPred at

the last moment tn (nominator) to the error of a naive

method (denominator), which predicts that the next in-

stantiation of x will be the same as the previous (truly

observed) one. If the average distance between consecutive

instantiations is smaller than the distance between the last

instantiation and its projection, then MASE is larger than 1.

Obviously, smaller values are better.

We further compute the HitsðÞ, i.e the number of times

the correct cluster is predicted for a patient x. Assume that

instantiation xpre belongs to cluster cpre and let cproj denote

the firstmatchðcpreÞ (cf. Eq. 1) at the projection moment tproj.

We set HitsðxÞ ¼ 1, if cproj is same as cpost (i.e. cluster

closest to xpost), otherwise HitsðxÞ ¼ 0. Higher values are

better.

For model purity, we compute the entropy of a cluster c

towards a set of classes n, where the entropy is minimal if

all members of c belong to the same class, and maximal if

the members are equally distributed among the classes. We

aggregate this to an entropy value for the whole set of

clusters f, entropyðf; nÞ.

38 Z. F. Siddiqui et al.
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In general, lower entropy values are better. However,

the labels used by the EvolutionPred are Control and

Patient: if a clustering cannot separate well between patient

instantiations and controls, this means that the patient in-

stantiations (which are the result of the projection done by

EvolutionPred) have become very similar to the

controls. Hence, high entropy values are better.

For learning evolutionary prediction model, we use a

bootstrap sampling [26] with a sample size of 85 % and

10,000 replications. Model validation is done with the help

of out-of-sample data. For clustering the union of projected

instances and the controls, we use K-Means clustering. We

use bootstrap sampling with a sample size of 75 % and

1,000 replications, and vary K ¼ 2; . . .8.

4.1.2 Framework for EvoLabelPred

In order to evaluate EvoLabelPred, we use accuracy to

assess the quality of computed labels towards the ground

truth that we established in Sect. 3.2. Additionally, we will

vary the parameter for the number of the subgroups, i.e.

K = 3, 4.

To learn an evolutionary label prediction model, we use

a bootstrap sampling [26] with a sample size of 85 % and

5,000 replications. Sampling is done without replacement,

i.e. duplicates are not allowed. Model is validated on the

objects that are outside of the sample.

4.2 Evaluation results

4.2.1 Evaluating evolutionary projection

Validation of the projection from tpre to tpost: In the first

experiment, we project the patient instantiations from tpre

to tpost. Since the true instantiations at tpost are known, we

use these projections to validate EvolutionPred,

whereupon evaluation is done with the MASE and Hits

measures (cf. Sect. 4.1). Figure 3 depicts the hard and soft

projections of the pre-treatment patient instantiations,

while Table 3 depicts the MASE and Hits values for each

patient separately. We perform 10,000 runs and average the

values per run.

In Fig. 3, we can see that the hard projection (yellow)

and soft projection (green) behave very similarly. Both

predict the patient instantiations at tpost very well: the mean

values for the projected patient instantiations are almost

identical to the true instantiations, and the shaded regions

(capturing the variance around the mean) overlap with the

variance of the true values almost completely.

The first row of Table 3 enumerates the 15 patients in

the TBI dataset, and the subsequent rows show the MASE

values for the hard, respectively, the soft projection. The

last row shows the Hits value per patient. The last column

averages the MASE and Hits values over all but one pa-

tient: patient #14 is excluded from the computation, be-

cause prior inspection revealed that this patient is an

outlier, for whom few assessments are available. All other

patients exhibit low MASE values (lower is better), indi-

cating that our projection mechanisms predict well the

patient assessments at tpost.

Projection from tpost to the future tproj: In the second

experiment, our EvolutionPred projects the patients

after treatment start towards a future moment tproj, which

corresponds to an ideal final set of assessments that the

patient might ultimately reach through continuation of the

treatment. We do not have a ground truth to evaluate the

quality of our projections. Rather, we use a juxtaposition of

patients and controls, as depicted in Fig. 4. We show the

BTA WCST NC FAS 1 ICP CIV CIM CV MT OP VP IAC IMG IRD

0

25

50

75

100

125

150

Fig. 3 Variance plots for patient projections, where tproj is set to

predict the (already known) instances at tpost: the solid lines represent

the mean values of the true patient instantiations at moment tpre, tpost

and of the projected patient instantiations, while the surrounding

regions (same colour as the solid line) represent the variance of the

instantiations; the two projections overlap almost completely with the

true distribution at tpost, both with respect to the line of the mean and

to the region of the variance. (Color figure online)
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averages of values per population through a solid line,

around which we expand to the variance of values for each

variable. The cyan line and surrounding cyan-shaded re-

gion stand for the moment tpre, denoted as ‘‘Pre’’ in the

legend; the blue line and region stand for the moment tpost

(‘‘Post’’), while the ‘‘Controls’’ are marked by the red line

and red-shaded region. Except for Gender and Age, for

which controls have been intentionally chosen to be similar

to the patients, patients differ from controls. Even where

we see overlap between the red area and the cyan (Pre) or

the blue (Post) area of the patients, as for assessments CIM

and CV, we also see that the average values are different.

Figure 5 shows the same lines and areas for assessments

before and after treatment start (Pre:cyan, Post:blue) as

shown in reference Fig. 4, but also the projected assess-

ment values (Proj: green/yellow). These projected assess-

ments are closer to the controls, indicating that at least for

some of the assessments (FAS1, ICP, CIM, CV, MT, VP),

treatment continuation may lead asymptotically to similar

values as for the controls.

Table 3 Hard and soft projection of patients from tpre towards tpost, with MASE and Hits per patient: low MASE is better, values larger than 1

are poor; high Hits are better, 1.0 is best; averages over all patients after excluding outlier patient #14

IDs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 Avg
MASE
Soft 0.29 0.14 0.12 0.19 0.24 0.83 0.13 0.22 0.15 0.21 0.58 0.22 0.37 3.24 0.34 0.27
Hard 0.22 0.09 0.10 0.14 0.16 0.90 0.07 0.17 0.13 0.20 0.29 0.23 0.34 3.49 0.42 0.24

Hits 0.86 0.62 0.93 0.62 0.95 0.99 0.86 0.89 0.96 0.96 0.54 0.87 0.77 0.81 1.00 0.83

BTA WCST NC FAS 1 ICP CIV CIM CV MT OP VP IAC IMG IRD
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Fig. 4 Average assessment values and variance regions for controls and for patients before (Pre) and after treatment start (Post) for 16 variables:

despite some overlaps, lines and regions of patients are mostly distinct from those of the controls. (Color figure online)
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Fig. 5 Average assessment values and variance regions for controls and for patients before (Pre) and after treatment start (Post), and as result of

Hard (yellow) and Soft (green) projection: the projected patient assessments are closer to the controls. (Color figure online)
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Clustering patients with controls: We investigate whe-

ther the patients can be separated from the control

population through clustering. We skip the assessments

TMT-B, BTA, WCST-NC and WCST-RP, which have

been recorded only for some patients. We cluster the

controls with the patient instantiations before treatment

(Pre: red line), after treatment start (Post: yellow line), with

the Hard projected instantiations (green line) and with the

Soft projection (blue dashed line). We use bootstrapping

with a sample size of 75 % with 1,000 replications. In Fig.

6, we show the entropy while we vary the number of

clusters K. Higher values are better, because they mean that

the clustering cannot separate controls from patients. High

values are achieved only for the projected instantiations.

In Fig. 6, the entropy values are very high for the

clusters containing controls together with projected pa-

tients, whereby soft projection and hard projection behave

identically. The high values mean that the clustering al-

gorithm cannot separate between projected patients and

controls on similarity; the instances are too similar. This

should be contrasted with the clusters containing controls

and patients before treatment (red line): entropy is low and

drops fast as the number of clusters increases, indicating

that patients before treatment are similar to each other and

dissimilar to controls. After the treatment starts, the

separation between patients and controls on similarity

(yellow line) is less easy, but an increase in the number of

clusters leads to fair separation. In contrast, projected pa-

tients are similar to controls, even when the number of

clusters increases: the small clusters contains still both

controls and patients.

4.2.2 Evaluating evolutionary label prediction

We present the results from the label prediction ex-

periments on TBI dataset in Table 4. In the experiment, we

first learned the evolutionary model using EvoLa-

belPred with K ¼ 3; 4 and then utilized the conditional

probabilities-based label prediction (cf. Sect. 3.3.4) within

each individual cluster to predict the labels for the out-of-

sample patients. The accuracy of label prediction for the

label learned from ICP variable is very low: the method is

able to achieve a very high accuracy for some of the pa-

tients, but if fails completely for other patients.

To reflect on the low accuracies of the label prediction,

we show the clusters from tpre and tpost in Fig. 7, after

removing the outliers. The membership information is

given in Table 5. We can observe how patients move closer

to the controls (depicted as a dashed blue line) from tpre to

tpost. The clusters take into account the changes in the

similarity among patients, but this does not lead to mean-

ingful predictions. Upon inspecting the dataset, we dis-

covered that the ICP variable is not correlated with other

attributes in the TBI dataset. One would expect this to be

true, because the selected cognitive tests that are not cor-

related to each other. We can clearly see from the above

experiments that it is not really possible to predict the ICP

values from the values of other cognitive tests.

We conducted further experiments to test this non-cor-

relation among the variables. We applied PCA on TBI

dataset prior to model learning. We present the results in

Table 6 with EvoLabelPred model based on K = 3

Fig. 6 Controls clustered with the patients before treatment (Pre:

red), after treatment start (Post: yellow), with the Hard projection

(green) and the Soft one (blue dashed): entropy drops as the number

of clusters increases, but has higher (better) values for the projected

instantiations, indicating that these are closer to the controls

Table 4 Label prediction

accuracies of each patient for

EvoLabelPred with

GroundTruth based on ICP

attribute

ID EvoLabelPred

K = 3 K = 4

#1 0.00 0.00

#2 0.93 0.91

#3 0.41 0.23

#4 1.00 0.70

#5 0.00 0.01

#6 0.03 0.01

#7 0.00 0.00

#8 0.91 0.87

#9 0.05 0.01

#10 0.95 0.87

#11 1.00 1.00

#12 0.89 1.00

#13 0.09 0.09

#14 0.50 0.16

#15 0.95 0.89
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clusters and conditional probabilities-based label predic-

tion. Although we see slight improvement compared to our

results without PCA (cf. Table 4), the overall performance

is low. After removing the outliers from the label predic-

tion model, the performance of our label prediction even

dropped considerably. This means that the ICP variable

does not predict well whether the patient has recovered or

not (contrary to the expectations).

5 Conclusion

In this paper, we have investigated the problem of pre-

dicting the evolution of patients treated after brain injury,

i.e. predicting their recovery and their projection into the

future. We have proposed a mining workflow.

Key points: Our mining workflow, which consists of two

individual methods, EvolutionPred and EvoLa-

belPred, clusters patients on similarity (of their assess-

ments) before and after the treatment began, and then it

tracks how each cluster evolves. It builds a cluster evolu-

tion graph that captures the transitions of patient clusters

before (PRE) to after treatment (POST). Once the cluster

evolution graph has been constructed, our methods Evo-

lutionPred and EvoLabelPred use the clusters and

their transitions to project each patient to a future moment,

and predict their recovery label, respectively. The projec-

tions and predictions are done on the basis of what is

known on the patients thus far.

We have experimentally validated our methods on the

Trauma Brain Injury dataset [16]. We have first applied the

EvolutionPred on known data and have shown that the

projected values are almost identical to the true ones. Then,

we have compared the projected assessments to those of a

control population, and we have shown that some patient

assessments are projected close to the controls. We studied

treatment after brain trauma, but our EvolutionPred is

applicable to any impairment, where progression or the

process of recovery is of interest. The clusters we find may

be of use in personalized medicine. Application of

Table 5 Meta Information on the clustering model from Fig. 7

Colour Members

@ tpre @ tpost

Black #6, #1, #8 #6, #3, #5

Red #7, #9, #10, #14, #12, #13 #7, #9, #10, #14

Green #2, #4, #3, #5 #2, #4, #1, #8, #12, #13

Table 6 Label prediction accuracies of each patient for EvoLa-
belPred with GroundTruth based on ICP ICP variable; PCA was

applied over the TBI dataset prior to the learning of the evolutionary

model

ID PCA with K = 3

With outliers Without outliers

#1 0.00 0.00

#2 97.73 93.06

#3 47.92 11.69

#4 100.00 100.00

#5 0.00 0.00

#6 0.00 0.00

#7 0.00 0.00

#8 98.10 88.57

#9 1.79 0.00

#10 92.31 91.57

#11 100.00 –

#12 93.81 90.41

#13 6.93 5.00

#14 59.78 10.71

#15 96.55 –
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Fig. 7 The line plots for clusters that were discovered by applying K-Means over (left) tpre and (right) tpost. The outliers were excluded from the

data. The depicted clusters are discovered over the complete TBI data rather than bootstraped samples (they are used only for individual runs).

The bold lines represent the centroids of the clusters, while thin dotted lines depict the patients. The colours show which clusters from tpre and

tpost are related to each other. (Color figure online)
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EvoLabelPred did not go as smooth. The models that

we learned were predictive for only a part of the data. A

major reason for this low performance was that the selected

target variable was not sufficiently predictive on these data.

We have to investigate this issue in the future, together

with the medical experts.

Shortcomings and future work: The projected assess-

ments have not yet been evaluated against the assertions of

a human expert about the patients’ health state after

treatment. We are currently in the process of acquiring

such data for an additional evaluation. A further short-

coming is that we ignore the duration of treatment; this is

planed as future step.

The evolution of brain trauma or impairment conditions

is difficult to measure at the functional level. However, the

scholars anticipate that the use of neuroimaging, e.g. MEG,

could lead to the detection of progressive changes in the

connectivity patterns even before they translate into

changes at the memory, movement or orientation functions.

Regularly recording MEG images before and during

treatment of patients allows a more effective evaluation of

treatment by providing hints and indicators about the ef-

fectiveness of a particular therapy. A next step for our work

will be the integration of MEG data into our mining

workflow to check whether the evolution of patients to-

wards the subcohort of controls can be modelled more

effectively with the MEG images.
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