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Abstract The reconstruction quality of a functional MRI

sequence is determined by reconstruction algorithms as

well as the information obtained from measurements. In

this paper, we propose a Linear Dynamic Sparse Modelling

method which is composed of measurement design and

reconstruction processes to improve the image quality from

both aspects. This method models an fMRI sequence as a

linear dynamic sparse model which is based on a key

assumption that variations of functional MR images are

sparse over time in the wavelet domain. The Hierarchical

Bayesian Kalman filter which follows the model is

employed to implement the reconstruction process. To

accomplish the measurement design process, we propose

an Informative Measurement Design (IMD) method. The

IMD method addresses the measurement design problem of

selecting k feasible measurements such that the mutual

information between the unknown image and measure-

ments is maximised, where k is a given budget and the

mutual information is extracted from the linear dynamic

sparse model. The experimental results demonstrated that

our proposed method succeeded in boosting the quality of

functional MR images.

Keywords Linear Dynamic Sparse Modelling � Kalman

filter � Sparse Bayesian Learning � Mutual information

1 Introduction

Functional MR imaging (fMRI) technique has been widely

used for measuring brain activity. By using controlled

stimulus, it collects a sequence of brain MR images in

order to localise brain activity which relies on neuron

activity across the brain or in a specific region [1]. After

being stimulated, the neurons remain active for only 4–6 s,

so the time available for measuring neuron signals is

physically constrained. In addition, the time for each

measurement of a frequency by MRI is usually fixed [2], so

the number of measurements that can be made is limited.

For this reason, an urgent problem of fMRI is how to

optimise the image quality using a limited number of

measurements; two fundamental problems need to be

addressed: How to boost the reconstruction by improving

the reconstruction algorithm, and how to gather more

information via a well-designed measurement strategy.

With a limited number of measurements, the image

quality of MRI has been greatly improved using an

emerging technique known as compressive sensing (CS).

CS can reconstruct a signal accurately using underdeter-

mined measurements as long as the signal can be sparsely

represented in a specific domain [3]. Most of the existing

CS methods guarantee an exact or approximate recon-

struction if the measurement matrix which is determined by

the measurement strategy is well-conditioned (e.g. satisfies

RIP condition [3]). However, Sparse Bayesian Learning
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(SBL) [4], an advanced Bayesian CS method, does not

have such strict requirement on the measurement matrix.

Three different ways have been proposed to solve the MR

imaging problem by utilising the CS techniques. The most

direct way [2] is to apply CS to each MR image separately,

while the quality of images reconstructed in this way is

usually low. An alternative [5, 6] is to treat the entire

sequence of MR images as a single spatiotemporal signal

and perform CS to reconstruct it. The image quality

obtained in this way is better, but a real-time reconstruction

is impossible. The most recent and advanced way [7–9] is

to employ dynamic tracking techniques to causally and

sequentially reconstruct the images in an fMRI sequence,

and therefore real-time reconstruction is realised. It greatly

utilises the correlations of sparse patterns between two

time-adjacent MR images so as to improve the recon-

structed image quality.

In addition to the reconstruction algorithm, the image

quality is also determined by measurement strategies; if the

measurements carry more useful information about the

signal, a higher quality image should be reconstructed. The

most common measurement design scheme for the CS MR

imaging technique is variable density random undersam-

pling [2]. It chooses measurements according to a prior

distribution which is calculated using distinct characteris-

tics of signals in high and low frequency domains. In

addition, historical MR images have been also used as prior

information to design measurement trajectories [10, 11].

Moreover, Seeger et al. [12] designed an iterative Bayesian

method to select measurements. In each iteration step, the

posterior distribution of a MR image was updated using

previous measurements. The new measurement was selec-

ted to minimise the uncertainty of the posterior distribution.

Most of the above methods are investigated for

improving MR image quality. However, further improve-

ment can be made in functional MRI. This is because it is a

specialised application of MRI techniques which has some

special properties (e.g. correlation exists between two time-

adjacent functional MR images). In this paper, our work

relies on a key assumption that variations of functional MR

images are sparse over time in the wavelet domain. Based

on this assumption, we first introduce the concept of linear

dynamic sparse model; it is to model an fMRI sequence as

a linear dynamical system with an identity transition

matrix, and the image variations presented by the system

noise are assumed to be sparse. Then, a linear dynamic

sparse modelling (LDSM) method is proposed to solve the

fMRI sequence reconstruction problem. Our LDSM

method consists of two processes: image reconstruction

and measurement design; both algorithms are investigated

to fit the linear dynamic model.

Hierarchical Bayesian Kalman filter (HB-Kalman) [13]

which is implemented by integrating CS with standard

Kalman filter is an advanced dynamic sparse signal track-

ing algorithm. It sequentially reconstructs a signal

sequence following our linear dynamic model, we therefore

use it to implement the image reconstruction process of our

LDSM method. The HB-Kalman algorithm employs the

state-of-art CS method, SBL [4], to estimate the sparse

variations between two adjacent images; the classic Kal-

man filter update step is processed for image reconstruc-

tion. The HB-Kalman algorithm can not only improve the

point estimation of functional MR images, but also provide

a full posterior density function (pdf) which yeilds ‘‘error

bars’’ on the estimated image. These ‘‘error bars’’ can

indicate the measure of confidence of the reconstructed

image. Our measurement design method, Informative

Measurement Design (IMD), makes use of the posterior

distribution of the reconstructed image. It is the first

measurement design method in fMRI that utilises the cor-

relations of fMRI images in a sequence. It calculates the

prior distribution of the present image using the posterior

distribution of the previous adjacent image as well as the

prior distribution of image variations. After obtaining the

prior distribution of an unknown image, the measurement

design problem turns to select k feasible measurements,

where k is a given budget. The measurements are selected

to maximise the mutual information [14] between the

unknown image and measurements. As this problem is

intractable, a novel approximation method is employed to

solve it. Comparing with the previous fMRI methods, our

approach makes better use of signal information so that the

qualities of reconstructed images can be highly increased.

The remaining paper is organised as follows: In Sect. 2,

we first formulate the fMRI sequence reconstruction

problem using a linear dynamic sparse model. We then

illustrate our LDSM method and explain both the

Fig. 1 Example of sparse variations
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reconstruction and measurement design algorithms in Sect. 3.

Next, the experiment results of applying our method to an

fMRI sequence are detailed in Sect. 4. Finally, Sect. 5

presents discussions of our work.

2 Problem formulation

2.1 Sparsity of variations

The key assumption of our work is that the variations of

functional MR images are sparse over time in the wavelet

domain. We demonstrate it for a fMRI sequence [15] in

Fig. 1. In order to reduce the impact of measurement noise,

the variations are filtered by a threshold which is deter-

mined by one-tenth the maximum variation in a given time

interval. The sparsity level is determined by jNcnNtj, where

Nt refers to the number of two-level Daubechies-4 2D

discrete wavelet transform (DWT) of the functional MR

image at time t, and Nc ¼ jNtnNt�1j refers to the number of

DWT coefficient changes with respect to the previous

frame. In most cases, the number of variations is less than

10 % of the signal size. Note that the two outliers

ðjNcnNtj[ 40%Þ result from the high degree of similarity

between the two time-adjacent images. When the two

images are nearly the same, the maximum variation is so

small that the noise impact is increased.

2.2 Linear Dynamic Sparse Model

Linear dynamic model [16] is a state-space model that

describes the probabilistic dependence of a latent variable

and its corresponding measurements. It is characterised by

a pair of equations: system equation and measurement

equation. Our proposed linear dynamic sparse model is a

special case of linear dynamic model, that is, the system

equation is modified to meet the sparsity constraint. The

details of our model are explained below.

2.2.1 System equation

Based on the assumption that the variations of functional

MR images are sparse, an fMRI sequence is modelled as a

linear equation with an identity transition matrix:

xt ¼ xt�1 þ qt; ð1Þ

where random variable xt denotes the DWT coefficients of

a functional MR image at time t. For simplicity, we call xt

image in the rest of this paper. Random variable qt denotes

its sparse variations with respect to the previous image

xt-1. To meet the sparsity constraint, a hierarchical

sparseness prior is placed on qt. Each element qti of the

variation qt is randomly sampled from a zero-mean

Gaussian distribution Nðqtij0; a�1
i Þ; the variance at of

which is randomly sampled from a Gamma Cðaija; bÞ: That

is,

pðqtja; bÞ ¼
YNt

i¼1

Z 1

0

Nðqtij0; a�1
i ÞCðaija; bÞdai: ð2Þ

After marginalising the hyperparameter, the prior of qt

corresponds to a product of independent student’s t distri-

bution. Tipping et al. [4] demonstrate a strong sparse

property of this hierarchical distribution.

2.2.2 Measurement equation

The fMRI technique measures a subset of discrete Fourier

transform (DFT) coefficients of MR images. At each time t,

the measurement process can be modelled as:

yt ¼ Utxt þ nt; ð3Þ

where random variable yt which is called measurements in

this application is a subset of DFT coefficients determined

by the measurement matrix Ut; and random variable nt

refers to the measurement noise. The measurement matrix

Ut is formed by a subset of k vectors selected from the

projection matrix U, which in our case is constructed by the

DFT matrix and the inverse DWT matrix. The budget k is a

given positive integer. It determines the number of fre-

quencies to be measured.

3 Methods

Our proposed LDSM method aims to design measurement

strategy as well as reconstruct image sequence following

the linear dynamic sparse model. Figure 2 illustrates the

framework of our method. For each time instance, the

measurement design method is first performed to select a

subset of k vectors from the projection matrix U using the

posterior distribution of the previous adjacent image xt-1,

where the selected vectors are used to form the measure-

ment matrix Ut: When the measurement yt is obtained by

following the determined strategy, the posterior distribu-

tion of the present image xt can be calculated using the

reconstruction algorithm, and it can be used in the next

measurement design process. The framework is processed

iteratively until the whole fMRI sequence is reconstructed.

HB-Kalman (see [13] for more details) which is derived

from the principles behind the Kalman filter and SBL is

employed to implement the image reconstruction process. It

works on the linear dynamic sparse model and meets the

sparsity constraint. Benefiting from the hierarchical

Bayesian model, the posterior distributions of reconstructed

LDSM for functional MRI 13
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images are provided which satisfy the requirement of the

measurement design process.

The reconstruction quality of a functional MR image is

limited by the information obtained from measurements.

According to [14], information acquired from measure-

ments can be quantified by the mutual information between

the unknown image and measurements. The mutual infor-

mation quantifies the extent to which uncertainty of the

unknown signal is reduced when measurements are given.

Furthermore, measurements are determined by a mea-

surement matrix according to the measurement equation

(Eq. 3). Given the budget k (the number of DFT coeffi-

cients to be measured), the measurement design problem is

to select a subset of k vectors from the projection matrix U
so as to maximise the mutual information between the

unknown image and measurements, where the mutual

information is defined as follows:

Iðxt; ytÞ ¼ hðytÞ � hðytjxtÞ: ð4Þ

Because the conditional entropy hðytjxtÞ is merely the

entropy of noise nt, which is an invariance to the mea-

surement matrix Ut; we can maximise the entropy h(yt) of

the measurements yt instead. Using the system equation

(Eq. 1) and the measurement equation (Eq. 3), we obtain:

yt ¼ Utðxt�1 þ qtÞ þ nt: ð5Þ

Because nt is invariant to Ut; maximising h(yt) is equivalent

to maximising hðUtðxt�1 þ qtÞÞ: The measurement design

problem then addresses the solution of the following

optimisation problem:

Ut ¼ arg maxUt
hðUtðxt�1 þ qtÞÞ

s.t. Ut is formed by k row vectors of U:
ð6Þ

The posterior distribution of xt-1 which is provided by the

HB-Kalman reconstruction algorithms is a multivariate

Gaussian distribution with mean xt�1jt�1 and covari-

ance Rt�1jt�1: As explained in the system equation

(Sect. 2.2.1), we place a student’s t sparse prior on each

element of qt. To make the prior non-informative, we

set the hyperparameters a and b close to zero. Given

the posterior distribution of xt-1 and the prior distri-

bution of qt, the distribution of yt can be determined.

However, the calculation of close form of the sum of a

norm random variable and a student’s t random variable

is analytically intractable. Seeger et al. [17] suggested

that a student’s t distribution can be approximated in

terms of a Gaussian distribution, we therefore use a

zero-mean multivariate Gaussian distribution to

approximate the sparse prior of qt, where qt�QN
1 Nð0; cÞ: The constant value c is determined by the

level of variations qt. The higher the level, the larger

the value of c should be.

As yt is an affine transformation of ðxt�1 þ qtÞ�
N ðxt�1jt�1;Rt�1jt�1 þ diagðcÞÞ; Utðxt�1 þ qtÞ has a multi-

variate normal distribution with mean Utxt�1jt�1 and

covariance UtðRt�1jt�1 þ diagðcÞÞUT
t : The entropy

hðUtðxt�1 þ qtÞÞ therefore satisfies

Ut ¼ arg maxUt
jjUtðRt�1jt�1 þ diagðcÞÞUT

t jj
s.t. Ut is formed by k row vectors of U:

ð7Þ

Solving the above optimisation problem usually has high

computational complexity. For this reason, an approxima-

tion approach [18] is employed. Because the objective

function is submodular, this method does not only reduce

the computational complexity but also provide perfor-

mance guarantee.

In each iteration l, this algorithm is to select one row US�

from the unselected set USl . The selected row is the solu-

tion of this following optimization problem:

Fig. 2 Framework of fMRI

sequence reconstruction
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s�  arg maxj2Sl/jU
�1
l /T

j

with Ul ¼ r�1
X

i2Ml

/T
i /i þ R�1

tjt�1;
ð8Þ

where Sl and Ml denote the unselected and selected pro-

jection vectors before iteration l, respectively, and where

Rtjt�1 ¼ Rt�1jt�1 þ diagðcÞ:
Our proposed method, IMD, not only uses the posterior

distribution of the previous signal to model the uncertainty

of the current unknown signal, but also involves a sparse

prior of the variation signal to further modify the uncer-

tainties. The measurement matrix is constructed by

k numbers of projection vectors selected from the projec-

tion domain, and the determined measurements can

improve the reconstruction accuracy.

4 Experimental results

We performed experiments on a fMRI sequence used by

Lu et al. [15], which was generated by a real rest brain

sequence with additional synthetic BOLD contrast. The

rest brain sequence ðTR/TE ¼ 2; 500=24:3 ms; 90� flip

angle, 3 mm slick thickness, 22 cm FOV, 64 9 64 matrix,

90 volumes) was acquired by a 3T whole-body scanner and

a gradient-echo echo-planar imaging (EPI) acquisition

sequence. The BOLD contrast signal convolved with a bi-

Gamma hemodynamic response (HDR) was created to

represent a 30-s on/off stimulus, and it was added to the

pixels at an average contrast-to-noise ratio (CNR) of 4.

Two experiments were conducted to reconstruct the first

15 volumes of the image sequence with k = 0.3N mea-

surements for t [ 1. The reconstruction accuracy is eval-

uated according to the root squared error (RSE), defined as

eðtÞ ¼ jjxt � x̂tjj2=jjxtjj2. In the first experiment, with

k randomly selected measurements, we compared the

reconstruction accuracies obtained using the HB-Kalman

algorithm and the SBL algorithm [4], and demonstrated

that HB-Kalman performed better. Then, in the second

experiment, we used the HB-Kalman to reconstruct the

fMRI sequence. We applied our proposed measurement

design method to select k measurements, and compared it

against the random selection technique.

4.1 HB-Kalman versus SBL

We compare the performances of HB-Kalman and SBL.

SBL reconstructs the image sequence by performing a

simple SBL process on each MR image. SBL is compa-

rable to HB-Kalman, as it is a CS method and satisfies the

requirement of our method that it can estimate a posterior

distribution of the unknown image. Both methods carry out

the reconstruction process with a limited number of ran-

dom samples. From Fig. 4, we can clearly see that the SBL

algorithm generates nearly random guesses. This is because

the wavelet transform coefficients are not very sparse (as

shown in Fig. 3, jsuppðxtÞj � 31%N), so the underdeter-

mined observations ðk ¼ 30%NÞ cannot provide enough

information of the unknown signal to even produce a rough

reconstruction result. By contrast, HB-Kalman has

remarkable reconstruction performance. It uses the

knowledge of the preceding image as a prior to predict the

present functional MR image, and the observations are

used to modify the prediction. Hence, even when the

samples are under-determined, the information is large

enough to provide an approximate or exact reconstruction

result.

Fig. 3 Sparsity of image xt. jsuppðxtÞj refers to the 95 % energy

support of DWT coefficients of image at time t
Fig. 4 Reconstruction errors (HB-Kalman vs. SBL)
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4.2 IMD versus random sampling

The above result demonstrated that the HB-Kalman

reconstruction algorithm performed better on the fMRI

application. We used HB-Kalman to implement the

reconstruction process, and focused on comparing the

reconstruction performances by utilising random sampling

and the IMD method. The constant value in Eq. 7 is

empirically set to c ¼ 1e2.

The results shown in Fig. 5 demonstrate a significant

improvement in the reconstruction accuracy from random

sampling to the IMD. The reconstruction error of the IMD

method is in average 46.28 % less than when using random

sampling (45.2 vs. 86.5 %).

It is worthwhile to point out that both methods have a

decreasing trend of reconstruction errors in the number of

frames. This is because the brain images are very similar to

each other. As the number of reconstructed frames (the

total number of samples) increases, the uncertainty of the

unknown frame is reduced.

Furthermore, Fig. 6 shows the visually reconstructed

results generated by the two methods. The random sam-

pling results in more blurry and noisy functional MR

images. Meanwhile, the IMD method is able to provide

more detailed functional MR images, which is very

important in fMRI techniques (e.g. activity pattern

detection).

5 Discussion and conclusion

In this paper, we propose a LDSM method for solving

functional MRI sequence reconstruction problem. Based on

a key assumption that the variations of functional MR

images are sparse over time in the wavelet domain, our

method models an fMRI sequence as a linear dynamic

sparse model. By using the linear sparse model, the prior

information of the unknown fMRI image can be extracted

from the previous fMRI image and the sparse variations.

The prior information, expressing certainty and uncertainty

of an unknown image, can be employed to boost the

reconstructed image quality. Firstly, the uncertainty of the

image can be used to guide the measurement so that more

useful information can be obtained. Secondly, even when

the number of measurements is under-determined, a high

quality image can still be generated by involving its prior

Fig. 5 Reconstruction errors (IMD vs. random sampling)

Fig. 6 Reconstructions of

functional MR images (2nd,

5th, 8th, 11th, 14th frames). a
original sequence, b random

sampling, c proposed method

16 S. Yan et al.
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information in the reconstruction process. For this reason,

the reconstruction and measurement design algorithms that

adopt the linear dynamic sparse model are preferred.

In fMRI, measurements are achieved by following pre-

defined acquisition trajectories. The early trajectory used in

MR imaging is Cartesian. It generates images with few

artefacts, but its long acquisition time is against the speed

requirement of fMRI. Then, a rapid acquisition trajectory,

echo planar imaging (EPI), was started to be concerned in

1977 [19]. Comparing with Cartesian, the acquisition speed

is highly increased. However, it results in longer readout

duration so that artefacts are introduced. More recently,

spiral trajectory has regained interest with applications of

fMRI [20]. It makes fast and efficient use of gradient

hardware, and introduces fewer artefacts by reducing the

readout duration. The conventional reconstruction methods

for spiral trajectory [21, 22] require interpolation of the raw

data and consume long computational time, e.g. several

hours and sometimes even days. The most recent recon-

struction methods, based on CS, are promising to overcome

the computational limitation. They work with underdeter-

mined measurements and require the measurements to be

incoherent; random sampling is usually used, as it can

provide low incoherent measurements. To satisfy the

requirement of reconstruction methods, the development of

advanced trajectories has been continued to be driven by

neurosciences, and more powerful and higher field strength

systems have become available [23, 24]. Our proposed

IMD method aims to find a small number of measurements

that are maximally informative about the signal. Compar-

ing with random sampling, our method can generate more

informative measurements, with which higher quality

images are achieved. Our method has the potential to be

developed by modifying the spiral trajectory. The spiral

trajectory enables sparse acquisition methods, and the

candidate measurements provided by it are individual

voxels rather than parallel lines of K-space that are pro-

vided by Cartesian trajectories. In addition, multi-inter-

leave-perturbed spiral trajectory [23] can cover

approximately the full K-space which is desired by our

method.

The IMD method is an extension of the Bayesian

method of Seeger et al. [12] that utilises correlations of

adjacent images in an fMRI sequence. This is the first study

to explore the benefits of this for designing measurements.

Two approximation techniques are used in this study to

resolve the intractability of the measurement design prob-

lem. One is to use a zero-mean multivariate Gaussian

distribution to approximate the student’s distribution,

which makes the calculation of the prior distribution of a

MR image tractable. The other is to use a greedy algorithm

to reduce the computational complexity of the optimization

problem. The experiment results demonstrate that our

proposed method can improve the quality of reconstructed

functional MR images. However, the theoretical bounds of

the approximation techniques are still unknown. Also, a

learning algorithm, that can enable dynamic modification

of the hyperparameters of variations using the information

from reconstructed images, needs to be explored in the

future.
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Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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24. Weiger M, Pruessmann KP, Österbauer R, Börnert P, Boesiger P,

Jezzard P (2002) Sensitivity-encoded single-shot spiral imaging

for reduced susceptibility artifacts in bold fMRI. Magn Reson

Med 48(5):860–866

Shulin Yan is a PhD candidate in the Department of Computing at

Imperial College London. She received her BS degree in Electronic

Engineering from UClan in 2009, and an MSc degree in Computing

Science from Imperial College London in 2010. Her research interests

include compressive sensing and neuroimaging.

Lei Nie is a PhD candidate at the Institute of Computing Technology,

Chinese Academy of Sciences and a visiting student at Imperial

College London. He got his BS degree in mathematics from Sichuan

University in 2009. His research interests include neuroimaging and

biological networks.

Chao Wu is a Research Associate in the Discovery Science Group at

Imperial College London. He received his PhD degree from Zhejiang

University, China. From 2011, his main research interests include

social network (especially semantic social network), folksonomy

system, cloud computing for web application development and

neuroimaging.

Yike Guo is a Professor of Computing Science in the Department of

Computing at Imperial College London. He is the founding Director

of the Data Science Institute at Imperial College, as well as leading

the Discovery Science Group in the department. Professor Guo

received a first-class honours degree in Computing Science from

Tsinghua University, China, in 1985 and received his PhD in

Computational Logic from Imperial College in 1993. During past 10

years, he has been leading the data mining group of the department to

carry out many research projects, including some major UK e-science

projects such as a discovery net on grid based data analysis for

scientific discovery, MESSAGE on wireless mobile sensor network

for environment monitoring, Biological Atlas of Insulin Resistance

(BAIR) on system biology for diabetes study. He has focused on

applying data mining technology to scientific data analysis in the

fields of life science and healthcare, environment science and

security. His research interest include large-scale scientific data

analysis, data mining algorithms and applications, parallel algorithms,

cloud computing and neuroimaging.

18 S. Yan et al.

123


	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Sparsity of variations
	2.2 Linear Dynamic Sparse Model
	2.2.1 System equation
	2.2.2 Measurement equation


	3 Methods
	4 Experimental results
	4.1 HB-Kalman versus SBL
	4.2 IMD versus random sampling

	5 Discussion and conclusion
	Open Access
	References

