Skip to main content

Table 1 CNN-LSTM structure

From: Channel-independent recreation of artefactual signals in chronically recorded local field potentials using machine learning

Layer Type Description
1 sequenceInput
2 sequenceFolding
3 convolution2d size=5, filters=32, dilation=1
4 batchNormalization+elu
5 convolution2d + elu size=5, filters=32,dilation=2
6 convolution2d + elu size=5, filters=32,dilation=4
7 convolution2d + elu size=5, filters=32,dilation=8
8 convolution2d + elu size=5, filters=32,dilation=16
9 averagePooling2d size=1,stride=5
10 sequenceUnfolding with flattening
11 gru 128
12 lstm 64
13 dropout 0.25
14 lstm 32
15 dropout 0.25
16 regression